
From Analysis Model to Software Architecture:
A PIM2PIM Mapping

Jorge Enrique Perez-Martinez and Almudena Sierra-Alonso

Abstract. To our knowledge, no current software development methodology
explicitly describes how to transit from the analysis model to the software
architecture of the application. This paper presents a method to derive the
software architecture of a system from its analysis model. To do this, we are
going to use MDA. Both the analysis model and the architectural model are
PIMs described with UML 2. The model type mapping designed consists of
several rules (expressed using OCL and natural language) that, when applied to
the analysis artifacts, generate the software architecture of the application.
Specifically the rules act on elements of the UML 2 metamodel (metamodel
mapping). We have developed a tool (using Smalltalk) that permits the
automatic application of these rules to an analysis model defined in Rose to
generate the application architecture expressed in the architectural style C2.

1 Introduction

It is well known that the development (and maintenance) of software applications is a
very complex task. Software development methodologies ([1], [2], [3], [4], [7]) were
proposed as tools to decrease complexity, by providing methods to elaborate each
aspect involved in the application development. However, the weakest link in all
those methodologies is the transition between phases: there are no established
methods indicating what to do with the software artifacts generated in one step when
moving to the next one. This deficiency is more evident in the transition from the
analysis phase to the software architecture development [6].

With regard to the development paradigm based on model, in which MDA (Model
Driven Architecture) is supported, permits to transform the software artifacts of a
phase development defined in a source model, in other software artifacts that establish
the target model. To do that transformation it is necessary to define a mapping; that is,
a "specification of a mechanism for transforming the elements of a model conforming
to a particular metamodel into elements of another model that conforms to another
(possibly the same) metamodel" [10].

This work presents a proposal that enables the transition from the software artifacts
generated by the analysis activity to the elements forming the resulting architecture.

To do so, we have designed a mapping that, when applied to the analysis model,
generate the software architecture of the application. Both models (analysis and
software architecture) are described in UML 2 ([11], [13], [14], [15]). The rules that
define the mapping function operate over the UML 2 metamodel. To help this
transition we have built a tool that, when given an analysis model (in Rational
Rose™), and by the application of the rules of mapping, generates the software
architecture of the application for the C2 architectural style [8].

The paper is organized as follows. Sections 2 and 3 characterize the elements that
appear in the analysis model (source model) and in the software architecture (target
model) respectively. Section 4 presents the mapping rules that permit to transform a
PIM (the analysis model) into another PIM (software architecture). In Section 5 we
present a tool to automate this mapping. Finally, in Section 6 we present the main
conclusions of this work and some related future work.

2 Source Model: The Analysis Model

The set of artifacts generated in the analysis activity forms the analysis model. The
analysis activity we are referring to is the use-case analysis as described in [7]. This
analysis activity implies the analysis of the use-cases, the analysis of the classes and
packages and the architectural analysis. We do not take into account this last aspect
since this work proposes to obtain automatically the architecture from the analysis
model. Therefore, this analysis activity is different from the analysis activity des­
cribed, for example, in [20], where this activity focuses on: analyzing the consistency
and completeness of requirements (defined in a software requirements document),
negotiating the requirements (if there are conflicts), prioritizing the requirements,
analyzing technical viability and costs to realize those requirements, etc. Therefore, the
analysis activity is performed over the use case model obtaining the analysis model.
Analysis artifacts include the analysis classes, use-case realization-analysis, analysis
packages, and special requirements. Furthermore, we will use some stereotypes
defined in Rational Unified Process, RUP (a specialization from [7]) to characterize
analysis classes: «boundary» , « c o n t r o l » and « e n t i t y » . The set of artifacts
generated in the analysis activity, and expressed in UML, is shown in Figure 1.

3 Target Model: An UML 2 Profile for C2 Architectural Style

In [19] we can read: "Abstractly, software architecture involves the description of
elements from which systems are built, interactions among those elements, patterns
that guide their composition, and constraints on these patterns." Now, we briefly
describe the C2 architectural style. "The C2 architectural style can be informally
summarized as a network of concurrent components hooked together by message
routing devices" [8]. A fundamental aspect of this style is the principle of limited
visibility or substrate independence, that is, a component only knows the components
on top of it. Every component has its own control flow and no assumptions are made
about the existence of a shared addressing space.

Analysis Class

A
Use-case

Realization-Analysis

o <>

Class Diagram Interaction Diagram

Boundary Control
Class Class

Entity
Class

Collaboration Diagram

Fig. 1. Elements in the analysis model

The key elements of the C2 architecture are components and connectors.
Components communicate through asynchronous message passing. Messages consist
of a name and a set of associated typed arguments. There are two types of messages:
notifications and requests. Notifications are announcements of changes in the state of
the internal object of a component. Requests sent by a component indicate service
requests to components on top of it. A notification is always sent downward through a
C2 architecture while a request is always sent up. Both components and connectors
must have top and bottom domains. The top domain of a component specifies the set
of notifications to which the component responds and the set of requests that can be
sent by the component. The bottom domain specifies the set of notifications that can
be sent by the component and the set of requests to which it responds. The top domain
of a component can only be connected to the bottom domain of a connector and its
bottom domain can only be connected to the top domain of a connector. A connector
can be connected to any number of components and/or connectors. Components can
only communicate through connectors since direct communication between
components is forbidden. Two connectors can only be connected from the bottom of
one to the top of the other. Connectors are responsible for routing and, potentially,
multicasting messages. A secondary responsibility of connectors is message filtering.
Connectors can provide the following policies for filtering and delivery of messages:
no filtering, notification filtering, message filtering, prioritized, and message sink.

As [17] says, UML 2 cannot represent some elements of a software architecture.
For example, UML 2 cannot represent the software connector of the C2 style [18].
Because of this, in this work we have defined a UML 2 profile to represent the C2
architectural style (Figure 2).

« p r o f i l e » C2style

« e n u m er a t i o n »
MesssageType

«enumera t ion»
Domain

request
notification

top
bottom

« e n u m er a t i o n »
Filtering

messageFiltering
messages ink
noFiltering
notificationFiltering
prioritized

« s t e r e o t y p e »
C2InterfaceElement
direction: Direction

« m e t a c l a s s »
Message

+base « s t e r e o t y p e »
C2Message « m e t a c l a s s »

Message

« s t e r e o t y p e »
C2Message « m e t a c l a s s »

Message type: MessageType

« m e t a c l a s s »
Connector

+base « s t e r e o t y p e »
C2Connection

« m e t a c l a s s »
Connector

« s t e r e o t y p e »
C2Connection

« m e t a c l a s s »
Model

+base
<

« s t e r e o t y p e »
C2Architecture

Fig. 2. UML 2 profile to describe the C2 architectural style

The stereotypes defined in the profile have associated constraints. Due to space
constraint, we do not describe the stereotypes of Figure 2. As example, bellow we will
show the constrains associated with the stereotype C2Connection.

3.1 C2Connection Stereotype

In C2, the component port may be linked to the role of a connector. On the other
hand, the role of a connector can be linked to the role of another connector or to the
port of a component. We have to remember that both C2Port and C2Role are
stereotypes of Port. So, how could we state this relationship? It is necessary to define
an association between C2Port and C2Role. However, an association between
stereotypes is only possible if it is a subset of the existing associations in the reference
metamodel between the base classes of those stereotypes. This means there must be
an association between Port and Port. Here comes into play the metaclass Connector,
establishing a link between two instances of type ConnectableElement (like instances
of Port are). Then, to characterize the connection in C2 between a component port
and the role of a connector, or between two roles of two different connectors, we will
define a stereotype of the metaclass Connector called C2Connection.

To be able to access the stereotype from the metaclass it extends, we define in
OCL [14] the function stereotype as follows:

stereotype (c: Class): Stereotype;
stereotype = c.extension.ownedEnd.type

In the context of this stereotype (C2Connection) we define the following cons­
traints (also in OCL):

[1] A connection in C2 links two elements,
self.base.end -> size() = 2

[2] A connection in C2 links a component port with a connector role or two roles of
two different connectors.
let ports: Set = self.base.end -> select (ell stereotype(el.role).name = 'C2Port')
let roles: Set = self base.end -> select (ell stereotype(el.role).name = 'C2Role') in

ports -> size() = 1 implies roles -> size() = 1 and
roles -> size() = 2 implies roles -> forAll (rl r2l rl.end <> r2.end)

[3] A connection in C2 cannot link two ports.
let ports: Set = self.base.end -> select (ell stereotype(el.role).name = 'C2Port') in
not ports -> size() = 2

3.2 Relationships Constraints Among the Stereotypes Defined

Since the C2 style imposes certain topological constraints in relation with the
connectivity between components and connectors, it is interesting to show the
relationships among the different stereotypes defined and the constraints applicable to
those relationships. Figure 3 shows those relationships. Due to space constraint we do
not show that the all relationships between the stereotypes and the metaclasses are
valid ones, meaning that they already exist between the stereotyped metaclasses in the
reference metamodel. For instance, the relationship connectP between C2Port and
C2Connection and the relationships connectR and connectRR between C2Connection
and C2Role (Figure 3) imply that there must be a relationship between the
metaclasses Connector and Port. The Connector metaclass is composed of
ConnectorEnd and each ConnectorEnd is associated, through a relationship role, with
a ConnectableElement. The metaclass Port is a type of ConnectableElement.

In this same sense, we will not detail all constrains that can be applied to the
stereotypes and relationships indicated in Figure 3. Like example we detail the
following constrains (expressed in OCL):

[1] One of the ports of a component in C2 belongs to the top domain of the
component and the other one to the bottom domain.

context C2Component inv:
self.ports -> one (pi p.domain = Domain::top) and
self.ports -> one (pi p.domain = Domain::bottom)

[2] A component in C2 must be connected by at least one of its ports.
context C2Component inv:

self.ports -> exists (pi p.c2Connection -> size() = 1)

[3] The roles of a connector cannot be connected among them.
context C2Connector inv:

self.roles -> forAll (rl, r2l rl <> r2 implies rl.c2Connection.connectRR <> r2)

•^4

_M

hasComp

« s t e r e o t y p e »
C2Architecture

« s t e r e o t y p e »
C2Component

operations

« m e t a c l a s s »
Operation

« m e t a c l a s s »
Property

ports j , 2

1
« s t e r e o t y p e »

C2Connector

filtering: Filtering

« s t e r e o t y p e »
C2Port

domain: Domain

« m e t a c l a s s »
Constraint

^ / O . . ! 0..1 JnterfaceProv

« s t e r e o t y p e »
C2Interface

« s t e r e o t y p e »
C21nterfaceElement

direction: Direction

« s t e r e o t y p e »
C2Connection

flow

{ordered}

« s t e r e o t y p e »
C2Message

type: MessageType

T roles
1..*

« s t e r e o t y p e »
C2Role

domain: Domain

Fig. 3. Abstract syntax to represent the C2 architectural style

[4] If the port of the top domain of a component is connected, it must be with the
role in the bottom domain of a connector.

context C2Port inv:
self.domain = Domain::top and self.c2Connection.connectR -> size() = 1 implies
self.c2Connection.connectR.domain = Domain: :bottom

4 Mapping

Before describing the mapping rules we want to clarify why in this work we talk
about a PIM to PIM transformation instead of PIM to PSM (as it is habitual). From
our point of view, the architectural model expressed in the architectural style C2 is a
PIM. This model will be transformed in a PSM when the implementation platform is
selected. We think that the description of the software architecture of an application
should be independent of the execution platform. Furthermore, to implement an
architecture, heterogeneous platforms (software and hardware) are usually used. We
only could consider that the architectural model in C2 is a PSM if it is supported by a
platform that implements the C2 style (like ArchStudio 3.0). This platform [5]
implements (among others) the component and the connector types specify in C2. In
any case, as it is indicated in [10] "what counts as a platform is relative to the purpose
of the modeller".

4.1 Characteristics of the Mapping

The transformation proposed in this work can be characterized from four orthogonal
viewpoints:

• Degree of model transformation [10]: in this work we have developed a tool that
transforms the models semiautomatically.

• Nature of mapping [10]: in this work the elements of the metamodel that describes
the source PIM have been transformed into other elements of the metamodel that
describe the target PIM. As both models are expressed in UML 2, the mapping has
acted over elements of the UML 2 metamodel (described in MOF [12]).

• Scenario for mapping [9]: the mapping proposed is "refining mapping", because
we are decreasing the abstraction level: from the source model (analysis) to the
target model (architecture).

• Type of mapping function [9]: we express the rules of the mapping function in
imperative mode. The problem of this approach is that the mapping is not
reversible: we can not generate the PIM of analysis from the architectural PIM and
the mapping rules.

Figure 4 illustrate the elements that take part in the proposed transformation. The
mapping function indicated in Figure 4 has the following properties:

AM: set of elements of the UML 2 metamodel used to construct the analysis model
(with the profile for RUP).

level M3
(Meta-metamodel)

Q
«instance of»<' >«instance o f »

level Ml
(Model)

1 Rational Unified Process

Fig. 4. Metamodel mapping function

SA: set of elements of the UML 2 metamodel extended (with the profile for C2)
used to construct the architectural model.

3f: AM -> SA |

(f(x) = yAf(x') = y)=>x = x ' . (1)

3x 6 AM A Vy 6 SA =e> (x, y) g= f. (2)

3y 6 SA A Vx 6 AM ^> (x, y) g= f. (3)

Firstly we have to observe the function is unidirectional: from the analysis model
to architectural model. This one involves that it is not possible obtain the analysis
model from architectural model and the transformation rules. This constraint comes
from the imperative nature of the mapping rules.

The expression (1) that indicates the function f is injective. The expression (2)
indicates that not every element of the analysis model turns into an architectural
model; that is, not every artifact generates during the analysis activity is significant to
the architecture. For example: the association names or association roles. The
expression (3) indicates that there are architectural elements that cannot associate with
any analysis element; for example port and role. These elements are intrinsic to the
architectural style.

4.2 Mapping Rules

We have designed 32 rules but, due to space constraint, we will only include here 9 of
them. The rules have been expressed in natural language and OCL while waiting for
MOF QVT [16] becomes an "Available Specification" (now is an "Adopted Spec­
ification"). The rules presented here deal with some aspects of the analysis classes,
their attributes and operations, and some aspects of the collaboration diagrams.
However, we have designed more rules to deal with different modelling aspects that
can appear in the analysis, like inheritance, aggregations, compositions, abstract
classes, class invariants, preconditions and postconditions on operations, analysis
packages, association classes, class variables, etc.

To be able to define constraints on a stereotype that will apply to the metaclass that
it extends or to any of its relations, we name base the association end (see Figure 2).
From here we consider that:

let clas: Set (Class) = PIM_AM -> select (e I e.oclIsTypeOf (Class))
let comp: Set (Component) = PIM_SA -> select (e I e.oclIsTypeOf (C2Component))

PIM_AM is the analysis model and PIM_SA is the architectural model. The formal
expression en every rule is described in OCL.

1) A concrete analysis class is transformed into a C2 component with the same
name. This component is simple, which means that it does not contain other
architectural elements. This transformation is based on the idea that both elements
have similar abstraction levels: an analysis class represents an entity in the problem

domain while a component represents an independent element in the solution
domain. However, when composition relationships exist among several analysis
classes, these classes can be combined into a single component (see rule 9).

clas -> forAll (ca I comp -> one (co I
ca.name = co.base.name and co.c2Architecture -> size() = 0))

2) The attributes of the analysis class become state variables of the component. All
these variables are private, independently of the visibility of the attributes in the
analysis class. Note that the value of the attributes defined in an analysis class
shows the state of its instances, like the value of the state variables defined in a
component shows the state of the component instances. Furthermore, since only the
interfaces of a component are public, by definition its state variables are private.

clas -> forAll (ca I comp -> forAll (co I ca.name = co.base.name implies
let cat: Set (Attribute) = ca.attribute
let cot: Set (Attribute) = co.base.attribute in
cat-> forAll (at II

if cot -> one (at2l at2.name = atl.name) then
(at 1.visibility = VisibilityKind::public xor
atl.visibility = Visibility Kind: :private xor
atl.visibility = Visibility Kind: protected xor
atl.visibility = VisibilityKind::package) and

(cot -> any (at2l at2.name = atl.name)).visibility =
VisibilityKind: :private

else
endif)))

3) An operation declared as public in an analysis class becomes an operation assigned
to the component interface. The component operation will have the value prov
(provide) in the attribute Direction. This is a direct consequence of the object
oriented paradigm, in which a class specifies what it offers to the rest of the world,
but it does not specifies what it needs from it.

clas -> forAll (ca I comp -> one (co I ca.name = co.base.name implies
ca.operation -> forAll (opl op.visibility = VisibilityKind::public implies

co.bottomlnterfaceProv -> exists (ol o.base.name = op.name and
o.direction = Direction: :prov) xor

co.topInterfaceProv -> exists (ol o.base.name = op.name and
o.direction = Direction: :prov))))

being:

context C2Component def
let topPort: Port = self.ports -> select (pi p.domain = Domain::top)
let bottomPort: Port = self.ports -> select (pi p.domain = Domain::bottom)
let topInterfaceProv: Set(C2InterfaceElement) =

topPort.interfaceProv.services -> select (el e.direction = Direction::prov)
let bottomlnterfaceProv: Set(C2InterfaceElement) =

bottomPort.interfaceProv.services -> select (el e.direction = Direction: :prov)

let topInterfaceReq: Set(C2InterfaceElement) =
topPort.interfaceReq.services -> select (el e.direction = Direction::req)

let bottomlnterfaceReq: Set(C2InterfaceElement) =
bottomPort.interfaceReq.services -> select (el e.direction = Direction: :req)

4) An analysis class with stereotype «bounda ry» is associated with a C2 compo­
nent at the lowest level of the architecture, or at least without elements connected to
its bottom domain (Figure 5). Recall that this kind of classes models the interaction
between the system and the actors.

clas -> forAll (ca I comp -> one (co I ca.name = co.base.name and
stereotype(ca).name = 'boundary' implies

co.bottomPort.connectP -> size () = 0

KD

— - — • I
connector component link

Fig. 5. Topology position of an analysis class boundary in the architecture

5) An analysis class with stereotype « c o n t r o l » is associated to a C2 component
in the intermediate levels of the architecture. Recall that this type of component
models the business logic and often (but not always) interacts with components in
its top and bottom domains. Nevertheless, it is possible that it does not interact with
elements in its top domain or with elements in its bottom domain.

clas -> forAll (ca I comp -> one (co I ca.name = co.base.name and
stereotype(ca).name = 'control' implies

co.topPort. connectP -> empty() implies
co.bottomPort. connectP -> notEmptyO and

co.bottomPort. connectP -> empty() implies
co.topPort. connectP -> notEmptyO))

6) An analysis class with stereotype « e n t i t y » is associated to a C2 component in
the top levels of the architecture, or that at least it always has elements connected to
its bottom domain. Recall that this type of component models persistent data,
repositories or abstract data types.

clas -> forAll (ca I comp -> one (co I ca.name = co.base.name and
stereotype(ca).name = 'entity' implies

co.bottomPort.connectP -> size () = 1)

7) If in a collaboration diagram, an analysis class A does a request op to a class
analysis B, then in the top domain of the component that represents the class A

there will be an operation op with direction req and in the bottom domain of the
component that represents the class B there will be an operation op with direction
prov (Figure 6).

let col: Set (Collaboration) = PIM_AM -> select (e I
e.oclIsTypeOf (Collaboration)) in

clas -> forAll (ca, cb I
let compa: Component = comp -> one (col co.base.name = ca.name)
let compb: Component = comp -> one (col co.base.name = cb.name) in
ca.association -> exists (as I as .participant = cb) and
col -> exists (cl c.interaction -> exists (il i.message -> exists (m I

m.sender = ca and
m.receiver = cb and
m.callAction.operation.name = op))) implies

compa.topInterfaceReq -> exists (e I e.base.name = op) and
compb.bottomlnterfaceProv -> exists (e I e.base.name = op)

op

op

req prov
top domain

B
bottom domain op' op

req prov

notification

request

req prov

top domain op op'

A

bottom domain

req prov

Fig. 6. Requests and notifications at the interfaces top and bottom

8) If in a collaboration diagram, an analysis class B invokes an operation op'
(notification) in an analysis class A to indicates that it has finish a request and to
return the result of that request, then in the top domain of the component that
represents the class A there will be an operation op' with direction prov and in the
bottom domain of the component that represents the class B there will be an
operation op' with direction req (Figure 6).

let col: Set (Collaboration) = PIM_AM -> select (e I
e.oclIsTypeOf (Collaboration)) in

clas -> forAll (ca, cb I
let compa: Component = comp -> one (col co.base.name = ca.name)
let compb: Component = comp -> one (col co.base.name = cb.name) in
cb.association -> exists (as I as.participant = ca) and
col -> exists (cl c.interaction -> exists (il i.message -> exists (m I

m.predecessor -> exists (ml m.callAction.operation.name = op) and
m. sender = cb and
m.receiver = ca and
m.action.oclIsTypeOf(ActionReturn)))) implies

compa.topInterfaceProv -> exists (e I e.base.name = op') and
compb.bottomlnterfaceReq -> exists (e I e.base.name = op'))

9) If in an analysis class diagram a class A is composition of another class B, then
both classes are associated to a single component, whose name is the concatenation
of the names of both classes. Furthermore, all the operations and attributes of class
B are private to the component AB. Regarding this issue we must note that an
element can only be part of a composition and that the composed element is the
only one that can interact with the rest of the world (i.e., only the composed
element can send/receive messages to/from the component). This restriction is
introduced to preserve the encapsulation to follow Demeter's law.

clas -> forAll (ca, cb I ca.associationEnd -> exists (as I
as.agregation = AgregationKind::composite and as.class = cb implies

comp -> one (col co.base.name = (ca.name).concat (cb.name) and
co.operation = ca.operation -> union (cb.operation) and
co.property = ca.attribute -> union (cb.attribute))))

5 Tool

As we have said, we have built a tool (in Smalltalk) that applies these rules auto­
matically. In Figure 7 we illustrate the interface offered by the tool. To generate an
architecture from an analysis model developed with Rational Rose™, we can use the
tool executing the following two steps:

1. The user opens an analysis model of Rational Rose™ through the option Open
Model from the menu Actions. After that, the tool invokes Rational Rose™,
extracts the information of the corresponding model and places the set of analysis
classes and analysis packages of the model in the single selection list of the left
window. The tool analyzes the analysis model and applying the rules displays a
description of the recommended topology indicating, for each component, the
components that should appear in its top and bottom domains.

2. The user creates a new component and links an analysis class with the newly
created component. To do so, she selects the analysis class, from the single
selection list of the left window, places the mouse on top of the icon associated
with the created component and clicks the right button. A menu with several
options appears: Remove, Assimilate class, Generate, and Change definition. In the
menu, she selects the option Assimilate class. The system extracts the information
from the selected analysis class and, applying the rules, generates the charac­
teristics of the component.

At any moment, the user can redefine/refine the information associated to a
component (name, invariants, attributes, private operations, and top and bottom

Actions
| . | n | x |

- ,_, J J

O]^] | u^ l| LiJ
DataWindow
Mandelbrot

A

JlETiliElliraiiBElHEl^
DisplayWindow

JalJl

o
M.indelbrotServer

DisplayWindow DataWindow

Fig. 7. Tool user interface

interfaces) by selecting the option Change definition from the menu corresponding to
the component.

Figure 8 shows the architecture of the developed tool (using the C2 style).This
architecture contains two packages:

1. The components in C2Architecture package support the graphical manipulation of
architectural elements, allowing several operations: add, connect, remove, resize,
move, check topological rules, etc. In this package there is also a component (Rose
Extensibility Interface, REI) that supports collaboration with Rational Rose™, with
the purpose of extracting information from the selected analysis model.

components C2
Smalltalk
specification

**s
C2Metamodel

Package

A Component Connector V-

zr
WorkingArea

UIArchitectureC2

ZL
C2Architecture

Host Graphics Package

Topology
specification

Fig. 8. Architecture of the tool

2. The C2Metamodel package contains a hierarchy of classes that implement the
stereotypes defined on UML 2 metaclasses to describe the architectural elements of
C2. Among these classes we can name C2Component, C2Connector, C2Port, and
C2Role that support the concepts of component, connector, port, and role
respectively.

6 Conclusions and Future Work

In this work we have presented a mapping from the software artifacts generated
during the analysis activity (a PIM) to the architectural elements of style C2 (another
PIM). The mapping consists of a set of rules that operate over the UML 2 metamodel
extended with a profile (metamodel mapping). Also, we have developed a tool that
extracts the analysis model from a file generated by Rational Rose™ (with extension
.mdl) and, applying the mapping, generates a C2 style architecture.

This proposal has several benefits: (1) the software architecture of the system is
directly derived by applying the mapping; (2) since the architecture is directly derived
from the analysis artifacts, there is a direct trace relationship between these artifacts
and the elements of the resulting architecture, which eases the system maintenance;
(3) the current problem of transiting from coarse-grain abstractions in the problem
domain (analysis) to fine-grain abstractions in the solution domain (design) is
simplified. Furthermore, this work is an example of how can be generated the
architectural model of an application from the analysis model and mapping rules.

The mapping proposed in this work generates an architecture in C2 style from an
analysis model. With other mapping rules and other profiles for every architectural
style, that analysis model can lead to the same architecture expressed in different
styles. We want to elaborate other rules to generate other architectural styles (client-
server, peer-to-peer, pipe&filter, etc.). On the other hand, the mapping defined is not
reversible: one can't construct the source model from the target. To solve this
problem we are going to express the rules using the declarative facilities of QVT.
Lastly, we think it is interesting to generate a record of transformation that this work
has not consider (which parts of the PIM have turned into which part of the PSM).

References

1. Beck, K. (1999). Embracing change with extreme programming. IEEE Computer, 32(10),
70-77.

2. D'Souza, D.F. and Wills, A.C. (1998). Objects, components, and frameworks with UML.
The Catalysis approach. Reading, MA: Addison-Wesley.

3. Henderson-Sellers, B. and Graham, I.M. (2000). Process and product life cycles: OPEN's
version 2 life cycle model. Journal of Object-Oriented Programming. 13(1), 23-26, 39.

4. IEEE (1997). IEEE Std. 1074-1997. Standard for developing software life cycle process.
5. Institute for Software Research, http://www.isr.uci.edu/projects/archstudio. University of

California, Irvine.
6. Inverardi, P. and Muccini, H. (2001). Coordination models and software architectures in a

unified software development process. [Internal Report 14/01. Universita dell'Aquila,
Italy].

http://www.isr.uci.edu/projects/archstudio

7. Jacobson, I., Booch, G. and Rumbaugh, J. (1999). The unified software development
process. MA: Addison-Wesley.

8. Medvidovic, N. (1999). Architecture-based specification-time software evolution.
(Doctoral Dissertation, University of California, Irvine, 1999).

9. Mellor, S.J., Scott, K., Uhl, A. and Weise, D. (2004). MDA distilled: principles of model-
driven architecture. Boston: Addison-Wesley

10. Object Management Group (2003). MDA guide Vl.0.1. Document number omg/2003-06-
01, Date: 12111 June 2003.

11. Object Management Group (2004). Unified Modeling Language (UML) Specification:
Infrastructure version 2.0. ptc/04-10-14. Finalized Convenience Document.

12. Object Management Group (2004). Meta Object Facility (MOF) 2.0 Core Specification.
ptc/04-10-15. OMG Available Specification.

13. Object Management Group (2005). Unified Modeling Language: Diagram Interchange
version 2.0. ptc/05-06-04. Convenience Document.

14. Object Management Group (2005). OCL 2.0 Specification version 2.0. ptc/2005-06-06.
15. Object Management Group (2005). Unified Modeling Language: Superstructure version

2.0. formal/05-07-04.
16. Object Management Group (2005). MOF QVT Final Adopted Specification, ptc/05-11-01.
17. Perez-Martinez, J.E. and Sierra-Alonso, A. (2004). UML 1.4 versus UML 2.0 as

Languages to Describe Software Architectures. First European Workshop on Software
Architecture (EWSA 2004). St. Andrews - Scotland (UK).

18. Perez-Martinez, J.E. and Sierra-Alonso, A. (2005). UML 2.0 can't represent architectural
connectors. 3rd Nordic Workshop on UML Software Modeling. Tampere, Finland.

19. Shaw, M. and Garlan, D. (1996). Software architecture. Perspectives on an emerging
discipline. Prentice-Hall.

20. Sommerville, I. (2004). Software Engineering, 7' ed. Addison-Wesley.

