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Abstract. This paper presents novel dissimilarity space specially de-
signed for interactive multimedia retrieval. By providing queries made of
positive and negative examples, the goal consists in learning the positive
class distribution. This classification problem is known to be asymmet-
ric, i.e. the negative class does not cluster in the original feature spaces.
We introduce here the idea of Query-based Dissimilarity Space (QDS)
which enables to cope with the asymmetrical setup by converting it in
a more classical 2-class problem. The proposed approach is evaluated on
both artificial data and real image database, and compared with state-
of-the-art algorithms.

1 Introduction

Determining semantic concepts by allowing users to iteratively and interactively
refine their queries is a key issue in multimedia content-based retrieval. The
relevance feedback loop allows to build complex queries made out of positive
and negative documents as examples. From this training set, a learning process
has to create a model of the sought concept from a set of data features so as
to provide relevant documents to the user. The success of this search strategy
relies mainly on the representation spaces where data is embedded as well as on
the learning machine operating in those spaces.

Various aspects of these problems have been studied with success for the
last few years. This includes works on machine learning strategies such as active
learning [3], imbalance classification algorithms [13], automatic kernel setting [12]
or automatic labelling of training data [10]. All these studies have in common
to consider feature spaces to represent knowledge on the multimedia content.

An alternative solution is to represent documents according to their similar-
ities (related to one or several features) to the other documents rather than to a
feature vector. Considering a collection of documents, the similarity-based rep-
resentation, stored in (dis)similarity matrices or some distance-based indexing
structures [4], characterizes the content of an element of the collection relatively
to a part of or the whole collection. Recent studies have been published for
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document retrieval and collection browsing by using pre-computed similarities
([1], [7]) The idea is to index elements relatively to their closest neighbours, i.e.

those who have the best probabilities to belong to the same class providing then
a sparse association graph structuring the multimedia collection and allowing
fast retrieval of data. As pointed out by authors, the similarity approach pro-
vides a convenient way for multimodal data fusion, since adding new features
simply consists in adding new distances to the same representation framework.
It is also noted that the off-line computation of similarities enables fast accesses
and scalable content-based multimedia retrieval systems.

In [2], we proposed a similarity-based representation that goes further the
nearest-neighbour model by allowing non-linear mapping of the low-level dis-
tance measures to the high-level concept space. Based on Dissimilarity Spaces
(DS) introduced by Pekalska et al [8], we have defined representation spaces
adapted to the query-by-example paradigm. These Query-based Dissimilarity
Spaces (QDS) have the advantages to be of low-dimension, to allow the direct
use of modern non-linear learning techniques (such as SVM or Adaboost) and to
ease the fundamental problem of fusion of multimodal sources (eg multimodal
similarities).

In this paper, we discuss another nice property of the QDS making the
approach attractive for content-based retrieval. We demonstrate indeed how
QDS overcomes the famous problem of asymmetrical classification due to the
ill-definition of the negative class during retrieval. This theoretical study is sup-
ported by experimental comparisons with a kernel-based technique and the ded-
icated Biased Discriminant Analysis approach proposed by Zhou et al [13]. The
overall results obtain on artificial data and collection of images indicate the va-
lidity and the efficiency of QDS for treating asymmetrical classification problem.

2 Query by example and asymmetric classification

In a query by example retrieval system, users formulate complex queries by
iteratively providing positive and negative examples in a Relevance Feedback
(RF) loop. From this training data, the aim is to perform, at each step of the
RF loop, a real-time classification that will select the most relevant documents.
Denoting the query as the set T of positive and negative training examples,
respectively noted P and N with T = P ∪N , p = |P| and n = |N |, the problem
is to estimate (learn) a ranking function f(x|T ) allotting a rank ri for each
element xi relatively to its relevance to the sought concept.

Because the training set is provided manually by user, through a graphical
interface for instance, the number of examples (positive and negative) remains
usually small. As a consequence, the learning may be severely undetermined, es-
pecially when it consists in estimating complex distributions in high-dimensional
space. Moreover, the ill-determination is enforced by the asymmetric nature of
the classification problem: To retrieve a concept out of a collection of documents,
it is generally assumed that, on the average, the positive elements (representing
the sought concept) are close to each other, thus conforming a specific class dis-



tribution. On the other hand the negative examples, drawn from the “rest of the
world”, follow some unknown and complex distributions hardly estimable from
the available sparse sampling . The figure 1.a displays an example of such setup.
Learning the negative classes (the circular distribution is viewed as an undeter-
mined number of classes) becomes an under-constrained optimization problem
when the training sample is small, limiting the efficiency of traditional two-class
learning machines.

Dedicated algorithms have been proposed to address the asymmetrical clas-
sification [5,11]. Among all of them, an interesting approach, named Biased Dis-

criminant Analysis (BDA) [13], consists in maximizing a criterion which tends to
enforce compactness of the positive class while pushing apart negative examples
from the positive centroid. It results in a discriminative subspace where query is
processed by retrieving nearest elements in the Euclidean neighborhood of the
positive centroid. In the following sections, BDA is considered for comparison
with the dissimilarity-based solution studied.
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Fig. 1. The 1+x class problem in feature space (left) and 2D dissimilarity space
(right) where the representation objects are two points from the central class
(cross)

3 Dissimilarity space

Let d(xi,xj) be the distance between elements i and j according to their de-
scriptors x ∈ F . F expresses the original feature space. The dissimilarity space
DΩ is defined relatively to a subset Ω ⊂ F by the mapping d(x, Ω) : F → R

N

d(x, Ω) = [d(x,x1), d(x,x2), . . . d(x,xN )].

The representation set Ω = {x1, . . . ,xN} is a subset of N objects from which
any elements of the collection will be evaluated. The new “features” of an input



element are now its dissimilarity values with the representation objects. As a
consequence, learning or classification tools for feature representations are also
available to deal with the dissimilarities.

The dimensionality of the dissimilarity space is equal to the size of Ω, which
controls the approximation made on the original feature space (such an approxi-
mation could be computed using projection algorithms like classical scaling [6]).
Increasing the number of elements in Ω increases the representation accuracy.
On the other hand, a well-chosen space of low dimension would be more effec-
tive for learning processes as it avoids the curse of dimensionality problem and
reduces the computation load. The selection of a “good” representation set may
be driven by considerations on the particular learning problem we are dealing
with, as shown in the next section.

4 Query-based Dissimilarity Space

In this section, we look at how the selection of the set Ω may offer us the
possibility to turn the asymmetrical classification problem into a more classical
formulation. As stated in section 2, we are facing a 1+x class setup where 1 class
corresponds to positives while an unknown number x of classes are associated to
negative examples. In BDA, this statement consists in finding a subspace where
the distances from negatives to positives (between scatter) are maximized while
inter-positives distances (within scatter) are minimized. This may be achieved
by seeking some linear or non-linear projections of the original space where the
following ratio will be maximized

J =

∑
i∈P,j∈N

d(xi,xj)
2

∑
i,j∈P d(xi,xj)2

, (1)

Then, defining the Query-based Dissimilarity Space (QDS) DP by the map-
ping

d(x,P) = [d(x,x+

1 ), d(x,x+

2 ), . . . d(x,x+
p )] (2)

and noting that, in QDS, the norm is

||di||
2 =

∑

j∈P

d(x,xj)
2,

the quotient J may be simply rewritten as the ratio between the sum of the
negative and the positive vector norms

J =

∑
i∈N ||di||2∑
i∈P ||di||2

.

As a matter of fact, selecting P as the representation set naturally embeds the
data in an intrinsic discriminative space where the criterion to classify elements
is simply the vector norms of elements. Therefore, optimizing any learning ma-
chines in that space to separate positive from negative samples will optimize the



BDA criterion. In other word, in DP , the (1 + x)-class learning is transformed
in a classical binary setup. From a geometrical point of view, the learning task
does not consist anymore in estimating a complex distribution composed of x

negative classes but a simpler (eventually non-linear) function separating the
positive class (close to the origin) to the rest of the space (Figure 1.b).

5 Experiments and evaluations

5.1 Kernel SVM, BDA and QDS

This experimental section proposes qualitative and quantitative assessment of
the retrieval efficiency when operated in QDS, in original feature space and
through the BDA algorithm. For QDS and feature space, we have to choose
machine learning strategy that will estimate the ranking function introduced
in section 2. In both cases, a SVM algorithm is used, where the rank of every
element is obtained by sorting the SVM decision function

f(x) =
∑

i

αik(x,xi) (3)

with xi the support vectors and αi their respective weights. The kernel k(x,y)
is chosen linear for QDS in order to facilitate comparison with BDA, but is
non-linear (rbf Gaussian kernel) for feature space so as to cope with the (1 + x)
classification setup. For all the following retrieval experiments, the Gaussian
scale parameter is set by cross-validation.

As far as BDA is concerned, we follow the algorithm presented in [13], where
the ranking function is obtained by sorting the euclidean distances between
elements and the positive centroid in the discriminative subspace.

5.2 Artificial data

A toy example The toy example depicted in figure 2.a gives an illustration of
how perform the three retrieval approaches considered. In this 2D example, 3
positive and 4 negative examples are provided (* markers) to determine a deci-
sion function enabling to retrieve the positive samples (+ markers) and discarding
negative elements (o markers). Because the problem is 2D, BDA implicitly works
within a 1-dimensional subspace, leading to a linear decision function not suited
for the problem (figure 2.d). On the other hand, rbf SVM in feature space es-
timate a non-linear function, but because the 1 + x class setup and the small
number of training data, the SVM is not able to model well the positive class
with respect to the negative one (figure 2.c). For linear SVM in QDS, the use of
a Euclidean distance as dissimilarity measure leads also to a non-linear decision
function in feature space, but because applied to a 2-class problem, the SVM is
able in that case to provide a better estimation of the positive class distribution
(figure 2.b).
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Fig. 2. Decision function on a toy example

High-dimensional 1+ x class problem A multidimensional feature space is
generated with a positive class of elements x+

i drawn from a centered Gaussian
distribution N(0, σP) and a negative class x−

j uniformly distributed with the

constraint |x−
j | > 10,∀j. The set is composed of 250 positive and 750 negatives

elements.

In this setup, the positive class is effectively surrounded by negative elements
uniformly distributed within the space. The positive scale σP defines how the
two classes overlap each other, making the discrimination more or less difficult
to be achieved. The figure 3.a displays a 2D slice of the a 50-dimension feature
space for two values of σP .

For the experimentation, an equal number of positive and negative examples
is randomly drawn from the two classes. From this training set, an Euclidean
QDS is generated by taking positive examples as representation set. The figure
3.b shows QDS built from two positive samples for the corresponding feature
spaces. It is worth recalling that the dimensionality of QDS is equal to the
number of positive examples p.
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Fig. 3. Artificial data composed of positive (+ markers) and negative (o markers)
elements in a) Feature space and b) the corresponding QDS build from two
positive examples

The retrieval performance is measured using the Average Precision (AP) [9]
computed over the entire ranked list. The measure is repeated 10 times and an
averaged value of AP is given for each experimental conditions given below.
The figure 4.a presents the AP measures for the three retrieval algorithms and a
comparison with the baseline performance given by a random guess of elements.
The artificial data are embedded in 50-dimension space and the positive class
bandwidth is set to σP = 140. An overlap so important between the two classes
does not permit the rbf-SVM to provide results significantly better than the
baseline, even when the number of examples becomes large. On the other and,
BDA and QDS are able to cope with the asymmetric class setup. However, BDA
suffers from the high-dimensionality of the space, especially when the small size
of training set leads to a miss-estimation of the within and between covariance
matrices. For QDS, the linear SVM, trained in low-dimensional space, is able to
provide an efficient retrieval whatever the number of examples involved.
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Fig. 4. Results on artificial data when a.) the number of examples increases and
b.) the overlap between the positive and the negative samples growth.

The second experiment (Figure 4.b) tests the discriminative efficiency as the
classes become more and more intricated. In that experiment, 10 positive and 10
negative examples are provided to the machine learning algorithms. Unsurpris-
ingly, the QDS approach outperforms both BDA and rbf SVM. After a certain
point however, the three approaches perform just like the baseline, indicating
that positive samples are totally scattered within the negative elements.



5.3 Image retrieval

A last evaluation is conducted on a Corel image subset. The feature space consists
in a 64 RGB histogram and embeds 18521 images annotated by several keywords.
Symmetrized Kullback-Leibler divergence is taken as the dissimilarity measure
for QDS. We get interested by successively retrieving images annotated with the
6 following keywords: ’whale’,’ice’,’wave’,’tulip’,’sunset’,’mountain’.
These keywords, somehow correlated with the low-level color descriptors ex-
tracted, have been selected to conform with the 1 + x classification setup.

For every keyword, 50 queries are made by selecting randomly an equal num-
ber of positive (labeled by keyword) and negative (not labeled by keyword) im-
ages. The overall evaluation is obtained by taking the mean AP over all queries
for all keywords (MAP, [9]).

Figure 5 gives the MAP scores for an increasing training set. The result
obtained with QDS outperforms BDA and non-linear SVM, especially when the
training set becomes very small (∽ 1 − 2 examples per class). This behavior is
particularly interesting for retrieval with the RF paradigm because the very first
positive examples are generally tediously gathered to build the query.
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Fig. 5. Results on the Corel image set

6 Conclusion

We have presented a new similarity-based representation space for content-based
multimedia retrieval. The proposed Query-based Dissimilarity Space (QDS) is
adapted to cope with asymmetrical classification problems generally encountered
when dealing with query by example and relevance feedback paradigms. The



idea of QDS is to consider data solely from the point of view of their similarities
with the positive examples provided by user. As a consequence, and as shown by
experimental evaluations, learning is simplified to a binary classification problem
in a low-dimensional space, leading to a more robust and efficient retrieval of
relevant documents.

For the sake of evaluation, learning in QDS has been done through a simple
linear-SVM. However, in order to build an effective multimedia retrieval system
as the one we presented in [2], non-linear approaches and more sophisticated
strategies may be enlisted to cope with real world non-linearly distributed mul-
timodal documents.
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