
Test Case Management Tools for Accessibility

Testing

Sandor Herramhof1, Helen Petrie2, Christophe Strobbe3, Evangelos
Vlachogiannis4, Kurt Weimann5, Gerhard Weber5, and Carlos A. Velasco6

1 University of Linz, Institut Integriert Studieren,
Altenbergerstr. 69, 4040 Linz, Austria,

sandor.herramhof@jku.at
2 University of York, Department of Computer Science,

Heslington, York, YO10 5DD, UK,
petrie@cs.york.ac.uk

3 Katholieke Universiteit Leuven, Dept. Electrical Engineering - SCD,
Kasteelpark Arenberg 10, 3001 Heverlee, Belgium,

christophe.strobbe@esat.kuleuven.be
4 University of the Aegean, Department of Product and Systems Design,

Ermoupolis, Syros, GR83200, Greece,
evlach@aegean.gr

5 University of Kiel - Multimedia Campus Kiel,
Theodor Heuss Ring 140, 24143 Kiel, Germany,

{k.weimann, g.weber}@mmc-kiel.com
6 Fraunhofer-Institut fuer Angewandte Informationstechnik FIT,

Schloss Birlinghoven, D53757 Sankt Augustin, Germany,
carlos.velasco@fit.fraunhofer.de

Abstract. Two tools are presented which support test case management
for accessibility test suites. Creating test suites for the Web Content Ac-
cessibility Guidelines 2.0 is one major objective of the EU-funded project
BenToWeb1. Parsifal is a desktop application which easily allows editing
test description files. Test description files compose an XML layer con-
taining descriptive information about the particular test cases. Amfortas
is a web application which allows controlled evaluation of the test suites
by users. Controlled in that sense means, that Amfortas not only stores
the evaluation results, but also is aware of the physical and technical
condition of the evaluator.

1 Introduction

According to the AMFORTAS methodology [?] a test case consists of test mate-
rial (e.g. an HTML file) and a test case description. The Test Case Description
Language TCDL [?] developed within the scope of BenToWeb, not only states
whether a test case passes or fails. For user evaluations it additionally provides
guidance on the combination of assistive technologies/user agents/devices a test

1 http://www.bentoweb.org

evlach
TO APPEAR: ICCHP2006



case should be tested with. The creation of test cases (a complete set matching
each of the requirements of a high-level specification like WCAG) is costly and
work-intensive, but it has the advantage that false negatives are much easier to
find than in the evaluation reports of real websites [?].

Preparation, editing and management of user, expert or manual tests can
be improved if appropriate software tools are available. Two tools have been
developed to support the editing process of the test case description files and to
manage the test case evaluation procedure.

2 Parsifal - Test Case Editor

Parsifal is a graphical Test Case editor for editing user test descriptions as defined
by TCDL1.1 specification [?]. Test case description files are written in XML.
Since work with XML documents in text editors is not very comfortable and
error-prone a graphical editor was implemented to ease editing XML test case
description files. Parsifal is implemented in C# using .Net Framework 1.1. A
setup routine for easy installation and runtime configuration is provided for
Parsifal. In Parsifal parallel work on test case descriptions is guaranteed by
using a Concurrent Versions System (CVS), for managing multiple submits from
different partners at a time. The Annotation facility of CVS is used to comment
changes made on test cases.

Parsifal consists of three main components. A graphical user interface com-
ponent, which describes the graphical editor. A CVS component, which deals
with CVS file synchronization between editor and CVS server. And a serializer
component, which is responsible for reading, writing, previewing and printing
test case documents. Standard requirements for editing, saving and printing
test case descriptions have been implemented in Parsifal. Moreover features like
document preview and CVS debugging have been added for internal quality
assurance. Parsifal’s graphical interface consists of three main panes (see Fig.
??.). Document structure and navigation tree on the top-left. A short descrip-
tion about the meaning of the tree entry is on the lower left, the main pane
(content pane) is on the right. The top level tree node is called ’Test Case’ and
gives the author a detailed summary to which WCAG guideline the test applies.
In addition test case meta-data includes information about the WCAG guideline
the and success criteria the test covers. This information is relevant for test case
authors preparing user tests.

In ’Document Status’ field authors can change the document’s status (e.g.
draft version) and can add a CVS comment to their changes made. Document
history and versions are also traceable on this pane. The section labeled ’Files’
provides access to relevant test files. Test files are presented in the user panel.
On basis of a test file the authors can create test scenarios. Therefore authors
can preview test files and read the tests purpose. The test case purpose de-
scribes what the test file should test and what the expected test result is. The
section ’Required Tests’ hosts scenario child nodes describing user tests. Tests
can be marked as automatic, end user, experts, and one expert test by the test



Fig. 1. Status information about a test case description file

case authors. A user test description is only necessary if a test is not marked
as automatic test only. Authors can remove and add scenario child nodes as
needed. A scenario (see Fig. ??.) describes user groups to run the test with
corresponding questions and user guidance. A user is categorized by his disabil-
ity/disabilities and his experience level in usage of assistive technologies, user
agents and devices. For all three experience levels detailed information about
each type (e.g. browser, screen reader), exact product name, product version,
and experience level can be specified. Experience levels range from not experi-
enced to very experienced (1-5). One scenario node includes user guidance and
questions subsections. User guidance and questions will be presented to users in
multiple languages in Amfortas. Therefore localization of all texts is possible in
Parsifal. One user guidance entry describes necessary prerequisites a user must
undertake to accomplish a test. One sample instruction could ask the user to
switch on his screen reader. All user guidance and question texts are described
in a subset of XHTML1.0. Therefore a basic HTML editor component eases au-
thoring user guidance and question text entries. Parsifal supports questions of
type yes/no, yes/no/open, multiple choice, and likert scale. Each question type
supports different settings like likert scale and multiple choice questions need at
least labels and values being specified. Open questions need information about
layout and spacing to be presented correctly to user panel by Amfortas. As
mentioned before all question texts must be translated into different languages,



this happens by adding child nodes to the Questions entry with corresponding
language specific labels.

Fig. 2. Scenario pane in Parsifal

On the right hand side question corresponding input can be edited. In this case
a yes/no/open question at least needs a question text. A mandatory ’Other
Options’ entry is used if e.g. yes/no is not an appropriate answer to users. In
this example the user was asked to navigate through the page using the tab
key and if he got the welcome message. Most of the users will answer with ’yes’
or ’no’ but those who have e.g. technical difficulties would like to answer more
precisely. Therefore ’Other Options’ asks for the reason why the user was not
able to get the information propagated.

3 Amfortas - Test Case Evaluation Framework

The framework is a Java-based web application for evaluating accessibility test
suites. It covers the whole management process from creating and handling user
and testing profiles, to storing the test results in a database. Usually user eval-
uation processes are monitored by an agent, who in a first step presents a task
and then gathers information about the process and the result by asking relevant
questions. Obviously, this makes testing fairly expensive. The evaluation frame-
work should ease user testing procedures in a way that evaluators can proceed
testings by themselves without any human support.



3.1 Process Work-flow

The evaluation task starts with a recruitment procedure. The recruit is guided
through a series of questions in order to gather information about his personal
constitution (disability, age range, internet experience) and technical equipment
(assisitive technology, browser, device used to access web content). The answers
of the recruitment procedure determine one testing profile. The evaluator should
be able to set-up additional profiles, if for some reason the equipment changes
or he uses more than one set of equipment to access web content.

The administrator can view the status and profile of the registered partici-
pants. All participants with adequate profile will be granted access to the evalu-
ation framework by activating their accounts. The users then are able to access
the log-in area of the web-application, but cant start testing unless the test
profile is admitted to a particular test suite.

The testing process starts by activating the corresponding link in the web
application. The mapping algorithm first looks up the database, selects profile
information for the actual user and tries to match it with the TCDL description
files. The matches are stored in a pooling table, in blocks of 20 test cases (called
test run). Testing can be repeated as long as there are matching test cases
available. The evaluators are expected to have at least moderate English skills.
As all test cases are in English, the log-in area of the web-application is also kept
in English.

The framework guides the evaluator through all the allocated test cases. A
test case is finished when the user answers the question about the test case. The
answer is stored in the database.

After evaluating the test suite the data is extracted from the database for
later analysis.

3.2 System Architecture

Amfortas is built on top of the XML publishing framework Cocoon2. The core
of Cocoon’s object-oriented architecture is based on the Apache Avalon project.
The overall architectural view of Amfortas consists of three components: a Java
web server containing the application, a MySQL database and a resource con-
taining the test files and test description files. Usually, the files are provided via
a web interface, but any other providing mechanism, e.g. CVS, would also be
appropriate.

Due to Cocoon’s internal architecture, the evaluation framework is composed
out of 3rd party components, own components, Javascript files, XML files and
certain additional resources.

Database Layer: Instead of creating a custom persistency layer, we decided to
use Hibernate3. Hibernate not only provides a powerful and easy-to-use object-

2 http://cocoon.apache.org/
3 http://www.hibernate.org



relational bridge for Java applications, but also offers a rich query language to
retrieve objects from the database.

The evaluation framework uses 41 tables to store persistent data. Persistent
data is data needed to build up the application view, data to accomplish the map-
ping procedure, data to conduct application management procedures and data
which composes the evaluation result. The database model is straightforward:
it is actually a normalized view on the users personal condition and technical
equipment. Amfortas stores the mapping-related data for assisitive technologies,
user agents, devices and disability in different tables, which in the end are consol-
idated in the table test profiles. One entity set in test profile determines
one test profile.

Presentation Layer: The initial version of the user evaluation framework
presents a very simple and intuitive user interface, as it is going to be accessed
by users with a huge variety of interaction requirements. For later extension of
functionality a clear separation of content and presentation is needed.

Amfortas’ content has been completely authored in XML reusable entity doc-
uments. This process actually involves three sitemap components. If there is no
need for aggregation, a Cocoon generator simply loads XML from the file sys-
tem or web resource and generates SAX events which are handled by consecutive
XSLT transformers and finally a serializer (i.e. HTML for Browsers). In most
cases, an Cocoon aggregator is required which offers additional functionality by
aggregating more than one XML files (i.e. Header, Content and Footer) inside a
root element.

Amfortas’ public access area is implemented in the languages English and
Dutch, as the potential evaluators are recruited in England and Belgium. Co-
coon offers the i18n-Transformer component to implement internationalization
features. Language-dependent text is stored in an XML file and referenced by
the application through a unique key.

CForms - Forms are important for interaction but at the same time raise a lot
of accessibility issues. This is mainly due to the need for direct and responsive
interaction, which is usually implemented with client-side technologies - in most
cases Javascript - which may cause serious accessibility barriers. These problems
have been already addressed by W3C, which proposes the next generation of
web forms named XForms. XForms seems ideal for Amfortas’ forms implemen-
tation, but it’s not applicable as most user agents have not yet implemented
this technology. A good alternative that merits goods from both current and fu-
ture world are Cocoon forms (CForms). CForms are XML forms that introduce
the separation of the model (form model) and instance (form template) of the
form that can be implemented separately. The so-called form widgets can be
developed and include their own server-side validation. In Amfortas, the form
instances are controlled with Cocoon flow. A further advantage of this approach
is the ability to move to XForms by simply applying XSL transformation.



Application Logic While ’action components’ have been the dominant method
to encapsulate application logic in Cocoon, this position has been taken over by
the Control Flow. A flow script is implemented in Javascript notation. A con-
siderable part of application logic, like the recruitment process, the application
administration or the saving routine of the evaluation results is implemented
using flow scripts. Application logic which directly influences the view of web
application is implemented using the Cocoon JX-Transformer. Higher-level logic,
such as the mapping procedure, is implemented in Java classes.

Profile Mapping Only test cases marked with status ’accepted for end user eval-
uation’ are pooled. Each user request for new test cases triggers the mapping
algorithm. Mapping involves comparing TCDL disabilities and experience ele-
ments (i.e. user agents, assistive technologies and devices) with the user’s test
profile stored in Amfortas’ database. The mapping algorithm first filters out the
test cases that are ’done’ and those that the user has already evaluated. For
a test case to be allocated, the following conditions needs to be satisfied. For
disabilities, if in TCDL there is a disability, the test profile needs to have at
least one of them. For user agents, assistive technologies and devices, the test
profile must have all the types that appear in TCDL file. If the TCDL specifies
a product as well, the profiles need to have at least one of the specified products
for each type. Further, if minimum level and product version are also specified
these need to be equal or less than the profile’s one. Finally, for better matching,
a complementary grading mechanism is involved that enables a better selection
after sorting by grade and getting the required number designated by the test
suite configuration.

Test Presentation The test case evaluation is a cyclic process which can be
invoked as long as test cases can be allocated for the actual evaluator. The whole
test presentation is created within the Cocoon sitemap, by passing a number of
parameters from the Cocoon flow, for example, the URI of the actual test case
description file, the URI to the test file, and the scenario. The default sitemap
generator is used to fetch the test description file from the web resource and
page header, footer and navigation from the local file system. The standard
cocoon aggregator bundles these XML trees to a single XML tree which is handed
over to XSLT transformation and finally serialization. The result is an XHTML
page with user guidance information, a link to the test file and a question with
corresponding answer type (see Fig. ??.).

3.3 Application View

Fig. ??. shows the user interface for the evaluation process. The ’user guidance’
section (1) requests the evaluator to adjust special settings or behave in a certain
manner in order to complete the test. The question (2) is presented before the
link to the test file (3), to give a first idea what to mention when evaluating the
test file. Finally the answer section (4) presents one of the answer categories to
be replied. On submit, the answer with references to the accomplished test is
stored.



Fig. 3. Amfortas test case evaluation

4 Acknowledgements

This work has been undertaken in the framework of the project BenToWeb IST-
2-004275-STP funded by the IST Programme of the European Commission.

References

1. Petri, H., King, N., Gappa, H., Nordbrock, G., Velasco, C.: Large scale evalua-
tion of the accessibility of Web features. Computers Helping People with Special
Needs. 10th International Conference, ICCHP 2006, Linz, Austria, 12-14 July 2006,
Proceedings.

2. Strobbe, C., Herramhof, S., Vlachogiannis, E., Velasco, .C.: Test Case Description
Language (TCDL) - Test Case Metadata for Conformance Evaluation. Computers
Helping People with Special Needs. 10th International Conference, ICCHP 2006,
Linz, Austria, 12-14 July 2006, Proceedings.

3. Brajnik, G.: Comparing accessibility evaluation tools: A method for tool effec-
tiveness. Universal Access in the Information Society. Springer Verlag (2004), pp.
252-263.




