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Abstract. We provide a modular method for computing the splitting
field Kf of an integral polynomial f by suitable use of the byproduct of
computation of its Galois group Gf by p-adic Stauduhar’s method. This
method uses the knowledge of Gf with its action on the roots of f over
a p-adic number field, and it reduces the computation of Kf to solving
systems of linear equations modulo some powers of p and Hensel liftings.
We provide a careful treatment on reducing computational difficulty. We
examine the ability/practicality of the method by experiments on a real
computer and study its complexity.

1 Introduction

This paper is a continuation of Section 5.3 in [21], where, in order to compute the
splitting field of an integral polynomial f , the use of the approximations of its
roots was suggested. Here we give its details, show its practicality by experiments
and provide its complexity study. Moreover we give some techniques in order to
increase the feasibility of this new method.

To compute the Galois group Gf of a monic integral polynomial f , the ap-
proach of p-adic approximation is very practical (see [21, 9, 8]). In this approach,
one used the approximation of roots of f in a p-adic number field Qp (or one of
its extensions) in order to find integral roots of the relative resolvents used in
Stauduhar’s method (see [18]).

For computing the splitting field Kf , there are two approaches: one is con-
structing this field as a simple extension and the other, which is ours, as a
successive extension given by the splitting ideal. Constructing the splitting field
as a simple extension can be done by rather simpler computation, where the
minimal polynomial of a primitive element of Kf is constructed. (Using p-adic
approximations of all its conjugates, it can be computed efficiently.) But, in this
setting, if one wants to compute products and sums of several roots of f , i.e.
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one wants to do arithmetic operations in Kf
∼= Q[x1, ..., xn]/M, where each

variable corresponds each root of f and M is the splitting ideal generated by all
algebraic relations of roots of f , one have to compute the expressions of roots
with respect to the primitive element. On the other hand, in our approach, we
compute a Gröbner basis G of the splitting ideal M and hence, it is easy to
perform arithmetic operations in Q[x1, ..., xn]/M. Moreover, in general, expres-
sions by primitive elements tend to be suffered ”expression swell”, that is, huge
coefficients appear and those harm the efficiency. So, for our purpose, simple
extension does not seem suited.

In order to compute the splitting ideal M of a polynomial, there is a classical
approach due to Kronecker using algebraic factoring algorithms. But, as shown
in [2], it does not seem practical for polynomials having large Galois groups. Here,
to overcome the difficulty, we use the knowledge of certain algebraic structures:
the p-adic approximation of roots and the explicit action of the Galois group Gf .
For the computation of a Gröbner basis of M we compute a theoretical form of
our output with indeterminate coefficients representing the polynomials gener-
ating the basis. Then, we compute these polynomials by solving linear systems
modulo a power of p and Hensel liftings. For the theoretical form, there is a well
known dense generic one based on the knowledge of the degrees of the polyno-
mials (see [21, 4]). In Section 3, we show how a careful study on the symmetric
representation of Gf allows to produce a sparser theoretical form and how to
avoid the computation of polynomials in the basis. From this study we obtain,
for a given symmetric representation of Gf , a scheme for the computation of G.
In Section 4, we show how to compute the polynomials of G with linear algebra
and Hensel lifting and provide an effective test for an early detection strategy.
We emphasise that one can combine other methods for the computation of G
with the proposed scheme. For example we could combine sparse interpolations
strategy effectively (dense interpolation formulas are given in [6, 12]), this will
be study in a future work. We also note that it is possible to translate the results
presented in this article to polynomials over global fields.

2 Preliminaries

We provide necessary notions and summarize some results of [21].

2.1 Splitting field and Galois group over Q

Let f(x) be a monic square-free integral polynomial of degree n and α the set of
all its roots in an algebraic closure Q̄ of Q. The splitting field Kf of f is the exten-
sion field Q(α) obtained by adjoining α to Q. The group Gf of Q-automorphisms
of Kf acts faithfully on α, thus one can consider the permutation representation
Gf of this group. Fixing a numbering of the roots α = {α1, . . . , αn} of f , Gf is
viewed as a subgroup of Sn. The group Gf is called the Galois group of f .

To express Kf symbolically, the following epimorphism φ of Q-algebra is
considered:

Q[x1, . . . , xn] 3 xi 7−→ αi ∈ Kf



For simplicity, we write X = {x1, . . . , xn} and, more generally, for a subset E of
{1, . . . , n} we write XE = {xi : i ∈ E}. Then Kf is represented by the residue
class ring A of the polynomial ring Q[X] factored by the kernel M of φ. We call
M the splitting ideal of f associated with the assignment of the roots α1, . . . , αn.
In this setting, computing Kf means to compute a Gröbner basis G ofM (see [5]).
If we choose the lexicographic order ≺ on terms with x1 ≺ · · · ≺ xn, then the
reduced Gröbner basis of M coincides with the generating set {g1, g2, . . . , gn}
obtained by successive extensions, that is, for each i,

1. gi is a polynomial in x1, . . . , xi and monic with respect to xi, and
2. Q(α1, . . . , αi) ∼= Q[X{1,...,i}]/〈g1, . . . , gi〉, where 〈F 〉 denotes the ideal gener-

ated by an element or a set F . This implies that gi is an irreducible factor
of f(xi) over Q[X{1,...,i−1}]/〈g1, . . . , gi−1〉 such that gi(α1, . . . , αi) = 0.

Thus this reduced Gröbner basis can be obtained by “algebraic factoring meth-
ods” (see [2]) and is said to be a triangular basis (see [11, 6]). For a Gröbner
basis G ⊂ Q[X] and a polynomial P , let NF(P,G) denote the normal form of P
in Q[X] with respect to G (see [5]).

The group Sn acts naturally on Q[X] with xσ
i = xiσ for 1 6 i 6 n and σ ∈ Sn.

Thus Gf is the Q-automorphisms group of A denoted by AutQ(A) (see [2, 1]).
We use the following notation for groups: for a group G acting on a set S, the
stabilizer in G of an element or a subset A of S is denoted by StabG(A), i.e.
StabG(A) = {σ ∈ G : Aσ = A}. If G is the full symmetric group on S,
we simply write Stab(A) for StabG(A). We denote by StabG([a1, . . . , ak]) the
pointwise stabilizer of a subset A = {a1, . . . , ak} of S, i.e. StabG([a1, . . . , ak]) =
{σ ∈ G | aσ

i = ai, ∀i ∈ {1, . . . , k}}. The set of right cosets of H in G is denoted
by H\G and the set of all representatives of H\G by H\\G.

Definition 1. We call the ideal generated by t1+a1, . . . , tn+(−1)n−1an, where ti
is the i-th elementary symmetric function on X and f(x) = xn+a1x

n−1+· · ·+an,
the universal splitting ideal of f and denote it by M0. We call the residue class
ring Q[X]/M0 the universal splitting ring of f over Q and denote it by A0.

The reduced Gröbner basis of M0 is composed of the n Cauchy’s modules
of f (see [16]). Since Sn stabilizes M0, Sn also acts faithfully on A0, i.e. Sn ⊂
AutQ(A0). We have the following theorem (see [14, 3, 21] for details and other
references).

Theorem 1. There is a one-to-one correspondence between the set of all prim-
itive idempotents of A0 and the set of all prime divisors of M0. Let e be the
primitive element corresponding to the fixed prime divisor M. Then, Gf =
Stab(M) = Stab(e) and Mσ = {g ∈ Q[X] | geσ = 0 ∈ A0}. Moreover, we
have M0 = ∩σ∈Gf\\Sn

Mσ and A0 = ⊕σ∈Gf\\Sn
eσA0 = ⊕σ∈Gf\\Sn

Q[X]/Mσ.

2.2 Splitting field over p-adic number field

Now we consider the relation between the splitting ring over Q and that over
a p-adic field Qp. The n-tuple α = {α1, . . . , αn} and the splitting ideal M



associated with the assignment xi to αi are fixed. The primitive idempotent of
A corresponding to M is denoted by e. For a prime integer p, we denote by Z0

p

(resp. Zp) the localization of Z at p (resp. the completion of Z0
p). We denote by

πp the projection from Zp[X] to Fp[X] (the natural extension of the projection
from Z to Fp).

From now on, we fix a prime number p such that πp(f) is square-free. Let M̄0

denote the ideal πp(M0∩Z0
p[X]) in Fp[X] and G0 denotes the standard generating

set of M0. By construction, the Cauchy’s modules of f are polynomials with
integral coefficients and monic in their greatest monomial. Thus, the set πp(G0)
is a Gröbner basis of πp(M0 ∩ Z0

p[X]). Moreover, G0 is a Gröbner basis of the
universal splitting ideal Qp ⊗Q M0 of f as a polynomial with coefficients in Qp

and that of Zp[X]⊗Z0
p

(M0 ∩ Z0
p[X]) over Zp. The ideal Qp ⊗Q M0 is denoted

by M(∞)
0 . We denote Fp[X]/M̄0 by Ā0 and Qp[X]/M(∞)

0 by A(∞)
0 .

Theorem 2. We have the following assertions:
1. The projection πp gives a one-to-one correspondence between the set of all
primitive idempotents of A(∞)

0 and that of Ā0. Moreover, for each pair (ē, e(∞))
of corresponding primitive idempotents, Stab(ē) = Stab(e(∞)).
2. The idempotent e of A0 is also an idempotent of A(∞)

0 . Let ē be a component
of πp(e) and e(∞) the primitive idempotent of A(∞)

0 corresponding to ē. Then
Stab(e) contains Stab(ē)(= Stab(e(∞))) and Stab(πp(e)) = Stab(e). Moreover,
by letting S = Stab(ē)\\Stab(e), πp(e) =

∑
σ∈S ēσ and e =

∑
σ∈S e(∞)σ

.

Now we fix a component ē of πp(e) and its corresponding idempotent e(∞)

of A(∞)
0 . Let M̄ be the maximal ideal of Fp[X] corresponding to ē and M(∞)

the maximal ideal of Qp[X] corresponding to e(∞). Moreover, let G(∞) and Ḡ be
the reduced Gröbner basis of M(∞) and that of M̄ respectively.

Definition 2. Let G(∞) = {g(∞)
1 , . . . , g

(∞)
n }. For a positive integer k, we call the

set {g(∞)
1 mod pk+1, . . . , g

(∞)
n mod pk+1} the k-th approximation to G(∞) and

denote it by G(k). We note that G(0) = Ḡ.

We can lift Ḡ to G(∞) by Hensel construction. More precisely we have:

Theorem 3. The reduced Gröbner basis G(∞) of M(∞) with respect to ≺ is
contained in Zp[X], and Ḡ is lifted uniquely to G(∞) by Hensel construction.

Proof. Theorem 21 in [21] gives the result and a construction based on a linear
iteration Hensel lifting. Actually, its quadratic iteration version can be restated
for this construction (see [15]) �

3 The computation scheme

In this section, we propose a framework for the computation of a Gröbner basis
G = {g1, . . . , gn} of the splitting ideal M of f with indeterminate coefficients



strategy. We now assume the Galois group Gf of f is already computed as a
subgroup of Sn. We show how the knowledge of the symmetric representation
Gf can give a good theoretical form of G, and then we provide some techniques
which permit us to avoid computations of some gi.

3.1 The form of G

Since we compute polynomials gi with indeterminate coefficients strategy, we
need to know the potential terms which may appear in gi. The following allows
to deduce degi(gi), the degree in xi of gi, from Gf = Stab(M).

Proposition 1 (Theorem 5.3 [4]). The degree di of gi in xi is given by

di = |StabGf
([1, . . . , i− 1])|/|StabGf

([1, . . . , i])| .

Reciprocally, the next proposition gives the characterization of all the Gröbner
bases of M. Its proof is immediate (see [5]).

Proposition 2. Let G = {g1, . . . , gn} be a triangular set of polynomials of M
such that degi(gi) = di. Then, G is a Gröbner basis of M. Note that G is not
necessarily reduced but it is minimal (see [5]).

Thus, we want to compute such a triangular set G. A generic form for such a
Gröbner basis G can be retrieved from this: the terms of gi’s monomials are
potentially xki

i x
ki−1
i−1 · · ·xk1

1 with 0 6 kj < dj . In this case, the number of inde-
terminate coefficients is of the order of Gf which may be very large (this dense
form is considered in [12]). Clearly, the sparser the basis G is, the most efficient
the computation is, thus we are interested in finding a sparse one. For this task
we introduce a definition.

Definition 3. Let i be an integer in {1, . . . , n}. A subset E of {1, . . . , i} con-
taining i is said to be an i-relation if there exists a polynomial ri in Q[XE ] such
that

αdi
i + ri(α) = 0 and degi(ri) < di .

An i-relation corresponds to a potential gi in any G, for example, the sets
{1, . . . , i}, for i = 1, . . . , n, are the i-relations corresponding to the generic form
of G. The following proposition permits us to easily find an i-relation which may
be smaller. Its proof is immediate by considering a minimal polynomial of αi

(see [15]).

Proposition 3. Let i be an integer in {1, . . . , n} and m be the minimal inte-
ger in {1, . . . , i− 1} such that |StabGf

([1, . . . ,m])|/|StabGf
([1, . . . ,m, i])| = di .

Then, there exists an i-relation in {1, . . . ,m, i}.

If Ei is the maximal i-relation {1, . . . , i} then, as one can see above, it is easy
to identify the potential terms of the corresponding polynomial. The following
result, which is a consequence of classical Galois theory, gives us the way of doing
the same for more general i-relations:



Proposition 4. Let E = {e1 < e2 < · · · < es = i} be an i-relation. Then, there
exists a polynomial ri as in Definition 3 such that

degj(ri) < |StabGf
([e1, . . . , ej−1])|/|StabGf

([e1, . . . , ej ])|, ∀j ∈ {1, . . . , s} .

The preceding proposition provides a relation between an i-relation and the
maximal degree of each variable of the corresponding polynomial gi. We now
want to know the size of gi.

Definition 4. Let Ei = {e1 < e2 < · · · < es = i} be an i-relation. We define
the finite sequence d(Ei)e1 , . . . , d(Ei)es by

d(Ei)ej
= |StabGf

([e1, . . . , ej−1])|/|StabGf
([e1, . . . , ej ])|, ∀j ∈ {1, . . . , s} .

The degree of Ei is defined by
∏s

j=1 d(Ei)ej
and is denoted by D(Ei).

Given an i-relation Ei = {a < b < · · · < l = i}, then the number of terms
xka

a xkb

b · · ·xkl

l which potentially appear in the corresponding gi is D(Ei). There
might be different i-relations, so we give a partial order among all the i-relations.

Definition 5. Let i be an integer in {1, . . . , n}. An i-relation Ei is said to be
minimal if D(Ei) is minimal (among all the i-relation) and not any proper subset
of Ei is an i-relation.

We note that a minimal i-relation Ei = {e1 < e2 < · · · < es = i} verifies
d(Ei)ej

> 2 for all j, 1 6 j < s. Minimal i-relations for each i = 1, . . . , n
correspond to polynomials gi with a minimal number of coefficients and thus to
a Gröbner basis G which have a sparse form. Note that an i-relation satisfying
conditions of Proposition 3 may not be minimal.

3.2 Reducing the number of polynomials to compute

We assume that the symmetric representation of Gf and an i-relation Ei for each
i in {1, . . . , n} are known. Here we give techniques to avoid some computations
of elements of G. These techniques were already used in [13] with a partial
knowledge of Gf . However, since we know the exact symmetric representation
of Gf , we make use here of the whole power of these techniques.

Cauchy modules technique. Let G = {g1, . . . , gn} be a triangular Gröbner
basis of the ideal M with degi(gi) = di. Let O = {i1 < i2 < · · · < ik} be the
orbit of i under the action of StabGf

([1, . . . , i − 1]). Then i1 = i and k = di.
For a multivariate polynomial g, we denote by E(g, u) the multivariate poly-
nomial obtained by replacing the greatest variable in g by a newly introduced
indeterminate u. Then, the di (generalised) Cauchy modules of gi are defined
by: c1(gi) = gi,

c2(gi) =
E(c1, xi2)− E(c1, xi1)

(xi2 − xi1)
, · · · , cdi(gi) =

E(cdi−1, xidi
)− E(cdi−1, xidi−1)

(xidi
− xidi−1)

.

By construction, the following holds:



Lemma 1. The Cauchy module cj(gi) is a polynomial of Q[X{1,...,ij}] which is
monic as a polynomial in xij with degij (cj(gi)) = di − j + 1. Moreover, the
polynomial cj(gi) is in M.

As we know the symmetric representation of Gf we can know in advance if
cj(gi) has the same degree, in xij , as gij . In this case, in G, gij can be replaced
by cj(gi) and this set is still a Gröbner basis of M (see Proposition 2). So, in
the construction of G we avoid the computation of gij

.

Transporters technique. Here we use the fact that the group Gf is the sta-
bilizer of the ideal M. Let Ei = {e1 < e2 < · · · < es = i} be an i-relation and
j ∈ {i + 1, . . . , n}. A permutation σ ∈ Gf is said to be an (i, j)-transporter if it
satisfies:

σ(i) = j and j = max({σ(e) : e ∈ Ei})

Proposition 5. Let σ be an (i, j)-transporter and gi the polynomial correspond-
ing to Ei. Then, NF(gσ

i , {g1, . . . , gj−1}) is a multiple of gj as polynomials in
A = (Q[X{1,...,j−1}]/〈g1, . . . , gj−1〉)[xj ].

Proof. Since σ is an (i, j)-transporter, the polynomial NF(gσ
i , {g1, . . . , gj−1}) can

be viewed as a univariate polynomial h in xj over Q(α1, . . . , αj−1). Moreover,
since gσ

i ∈M, we have h(αj) = 0. Thus h is a multiple of the minimal polynomial
of αj over Q(α1, . . . , αj−1), hence h is a multiple of gi as a polynomial of A �

Corollary 1. With the same notations as in Proposition 5, if the degree dj is
equal to di then gσ

i can take the place of gj in G.

As for the Cauchy’s techniques, from the knowledge of an (i, j)-transporter
σ satisfying conditions of Corollary 1, we can avoid the computation of the
polynomial gj since it can be replaced by gσ

i .

4 Computing splitting fields by linear systems solving

In this section, we assume the knowledge of Gf with its action over approxima-
tions of the roots of f in Q̄p. Moreover, we assume that the computation scheme
attached to Gf is known, in particular we know a corresponding i-relation Ei

for each polynomial gi of G. We show how these knowledges can be used for the
computation of G by linear systems solving. We denote by Z(I) the algebraic
variety associated to an ideal I of Q[X] or Fp[X].

4.1 Computation by solving systems of linear equations

Here we compute g1, . . . , gn by a method of indeterminate coefficients. Assume
that the n-tuple α = (α1, . . . , αn) of roots of f lie in Z(M). Recall that Gf is
already presented as a sub-group of Sn and Stab(M(∞)) = AutFp

(Fp[X]/M̄) =
Gπp(f) ⊂ Gf . We denote |Gf | and |Gπp(f)| by N and N̄ , respectively.



Systems over the rationals. We fix an integer i ∈ {1, . . . , n}. Each coefficient
of gi is replaced with an indeterminate, for simplicity, the terms

∏
e∈Ei

xme
e ,

where 0 6 me < d(Ei)e, are sorted with respect to the lexicographic order
and denoted by t1, . . . , tD(Ei). Then, with indeterminates a

(i)
j , we have gi =

xdi
i +

∑D(Ei)
j=1 a

(i)
j tj . Since G is supposed to be a Gröbner basis ofM, the following

equation holds for i.

gi(γ) = 0 for every γ ∈ Z(M). (1)

Let Ei = {e1 < e2 < · · · < es} and γ = (γ1, . . . , γn) be an element of
Z(M). We denote by γ(Ei) the projection of γ on the indexes given by Ei

(i.e. (γe1 , . . . , γes
)) and Z(M)(Ei) = {γ(Ei) : γ ∈ Z(M)}. Thus, we have

|Z(M)(Ei)| = D(Ei). Let GEi
be the group StabGf

([e1, . . . , es]) and GEi
\\Gf =

{σ1, . . . , σD(Ei)}. Then, we have Z(M)(Ei) = {α(Ei)σ1 , . . . , α(Ei)σD(Ei)} and

gi(γ) = 0 for every γ ∈ Z(M)(Ei). (2)

The system (2) of equations becomes a linear system of D(Ei) equations and
D(Ei) variables with matrix representation −Vi = MiAi, where Ai = (a(i)

j ),
Vi = ((αdi

i )σr ) and Mi = (tc(α(Ei)σr ))r,c with (r, c) ∈ {1, . . . , D(Ei)}2. Since
the set {t1(α(Ei)), . . . , tD(Ei)(α(Ei))} is a Q-linear basis of Q({αe : e ∈ Ei}),
this system has a unique solution. Thus we can compute gi by solving the system
of linear equations if we already know the exact value of each root αi of f .

Systems over p-adic numbers. As we do not know the exact value of each
αi, we use the approximate value of roots of f in Q̄p. In the sequel we use the
same notations as Section 2. The ideal M may not be maximal if it is considered
as an ideal in Qp[X], more precisely we have:

Proposition 6. Let S be the transversal Stab(ē)\\Stab(e). Then Qp ⊗Q M =
∩σ∈S(M(∞))σ, and πp(M∩ Z0

p) = ∩σ∈S(M̄)σ.

Proof. Let e be the idempotent of A0 corresponding to M. As M = {h ∈
Q[X] | eg = 0 ∈ Q[X]/M0}, the first equation can be derived directly from
Theorem 1 (2) and Theorem 2 (2). The second equation can be also derived by
considering the projection πp �

By Proposition 6, we can reduce the system (2) to the following.

gi(γ) = 0 for every γ ∈ ∪σZ((M(∞))σ)(Ei), (3)

where σ ranges in S = Gπp(f)\\Gf . The system (3) consists of D(Ei) variables
and D(Ei) linear equations over Qp[X]/M(∞) and it is equivalent to

NF(gi, (G(∞))σ) = 0 for every σ ∈ GEi\\Gf . (4)

Moreover, replacing G(∞) with G(k), we have the following system which gi mod
pk+1 must satisfy.

NF(gi, (G(k))σ) ≡ 0 (mod pk+1) for every σ ∈ GEi\\Gf . (5)



The system (5) is considered as a system of D(Ei) variables and D(Ei) linear
equations with coefficients in (Z/pk+1Z)[X]/M(k). Especially, for the case k = 0,
the system (5) is translated to the following system which πp(gi) must satisfy: Fix
a zero ᾱ = (ᾱ1, . . . , ᾱn) in Z(M̄), and set πp(gi) = xdi

i +
∑D(Ei)

j=1 ā
(i)
j tj . Let Āi =

(ā(i)
j ), V̄i = ((αdi

i )σr ) and M̄i = (tc(ᾱ(Ei)σr ))r,c with (r, c) ∈ {1, . . . , D(Ei)}2.
Then we have the identity −V̄i = M̄iĀi.

Theorem 4. For each i, 1 6 i 6 n, the following holds.
1. The linear system corresponding to −V̄i = M̄iĀi has a unique solution over
Fp which gives πp(gi).
2. For a positive integer k, the system (5) has a unique solution which gives
the approximation gi mod pk+1. Moreover, we can construct gi mod pk+1 from
πp(gi) by Hensel lifting.

Proof. Consider the expansion of det(Mi) and that of disc(f), where we consider
each root αi as an indeterminate yi. Then, it can be shown that disc(f) =∏

j 6=k(yj − yk) and by discriminant composition formula (see [14]) there exist
integers ej,k such that det(Mi) =

∏
16j<k6n(yj − yk)ej,k . As πp(f) is square-

free, we conclude that det(M̄i) 6= 0 and so the linear system corresponding to
−V̄i = M̄iĀi has a unique solution and thus, the unique solution gives πp(gi).
We can show the second statement by the same argument and the fact that
det(M̄i) 6= 0. For the Hensel lifting we would like to apply the same construction
as in Theorem 3. Since the ring A = Fp[X]/πp(M∩Z0

p) is not a field, two cases
are possible when we compute the Bézout relation with the Extended Euclidean
Algorithm (EEA) with pseudo division in the first step of this lifting: At the
end of the EEA a gcd is computed and it is invertible, in this case the lifting
can continue; when EEA does not work, we can compute the Bézout relation
by other methods. In this second case, we may use combination of EEA over A
and Chinese Remainder Theorem or solving a system of linear equations derived
from this relation. One can see also [17] for a general study about Newton-Hensel
operator for general triangular sets �

Remark 1. At each step k, the Hensel lifting of a polynomial gi which corre-
sponds to an i-relation Ei = {e1 < · · · < es = i} can be done with two dif-
ferent points of view. The first one is to considerate gi as a univariate poly-
nomial with coefficients in the ring R2k = (Z/p2kZ)[X{1,...,i−1}]/〈g1, . . . , gi−1〉.
The second one is to see gi in the univariate polynomial ring with coefficients
in R′

2k = (Z/p2kZ)[XEi\{xi}]/〈g∗1 , . . . , g∗s−1〉 where the polynomials g∗j lying in
(Z/p2kZ)[X{e1,...,ej}] are the approximations of the polynomials which defines
the extensions Q(αe1), Q(αe1 , αe2), . . ., Q(αe1 , αe2 , . . . , αes

). ({g∗1 , . . . , g∗s−1, gi}
is the reduced Gröbner basis of the elimination ideal M∩Q[XEi

].) In the latter
case, we compute each g∗j by solving linear system and Hensel lifting in the same
manner as computation of gi, recursively from g∗1 to g∗s−1. We may also obtain
g∗j by transporter techniques by inspecting the action of Gf . In the former case,
at the end of the lifting procedure the Gröbner basis G is necessarily reduced,
but not in the latter case.



Theorem 4 gives two possible strategies (which can be mixed) for the com-
putation of Gk = {g1 mod pk+1, . . . , gn mod pk+1} a k-approximation of a trian-
gular Gröbner basis G of M:
1: By Hensel lifting, G(k) is constructed from G (see Theorem 3). From G(k) we
construct and solve the system 5 for each i, 1 6 i 6 n, the solutions are then Gk.
2: From G we construct and solve the systems 5 for each i, 1 6 i 6 n. The
solutions are G0 and we can construct Gk by Hensel lifting.

Now, assume Gk = {g1 mod pk+1, . . . , gn mod pk+1} is computed. Then we
convert each gi mod pk+1 to a polynomial over Q by the well-known rational
reconstruction technique. Let Bi be a bound on all absolute values of the nu-
merators and denominators of coefficients of gi. Then, as soon as 2B2

i < pk+1,
the polynomial converted from gi mod pk+1 coincides with gi (see [7]).

4.2 Estimation of the bound Bi

Here we give details on the bound Bi for the rational reconstruction. Since
coefficients of gi correspond to the solution of the system (2), by Cramer’s rule,
the denominator of each coefficient of gi divides det(Mi) and the numerator of
the j-th coefficient of gi divides det(M (j)

i ), where M
(j)
i is the matrix obtained

by replacing the j-th column with Vi.

Lemma 2. Let B0 be the maximum of the absolute values of roots αi’s of f in
C. Then, for each i, Bi can be computed from {d(Ei)e : e ∈ Ei} and B0.

Proof. We assume w.l.o.g. that the bound B0 is greater than 1. For each row
of M

(j)
i and each row of Mi, by replacing each αk with B0 and by denoting

d(Ei)e by de we can bound the square-norm of these rows by the integer B2
i =∏

e∈Ei
(1 + B2

0 + · · · + B
2(de−1)
0 ) + B2di

0 =
∏

e∈Ei

B2de
0 −1

B2
0−1

+ B2di
0 . Thus, as the

determinant of a matrix is bounded by the product of square-norms of its rows
(by the inequality of Hadamard), we can set Bi = BD(Ei)

i �

If B0 > 2, then we can set Bi as B
D(Ei)(

P
e∈Ei

d(Ei)e)

0 and, since
∑

e∈Ei
d(Ei)e 6∑

16k6i dk 6
∑

16k6i k, the bit size of Bi is bounded by O(n2D(Ei) log(B0)).
For the denominator, we can give a precise bound (see [10]).

Lemma 3. For each i, there is a positive integer Ci computed from the set of
degrees {d(Ei)e : e ∈ Ei} such that each d(f)Cigi belongs to Z[X].

Proof. By the discriminant identity given in the proof of Theorem 4, det(Mi) is
considered as a polynomial in each αi. Then estimating the degree of det(Mi) in
each αj , we can obtain a bound on the denominators of coefficients of gi. In fact,

the degree of det(Mi) in αj is bounded by Di =
D(Ei)(

P
e∈Ei

de)

n0
, where n0 = n if

f is irreducible over Q, and n0 = 1 otherwise. Then, from the shape of disc(f),
it can be shown easily that Ci = Di

2 satisfies the statement. Moreover, if f is
irreducible, we can set Ci = Di

2(n−1) �

The bound Bi given in Lemma 2 is in general very pessimistic. We will see
in Section 4.3 how the problem of pessimistic theoretical bound can be avoided.



4.3 Check of correctness and early detection

To improve the efficiency of the method, we can incorporate “early detection
strategy” which is widely used in computer algebra. As the bound Bi tends to
be large compared to the exact value, the technique is supposed to work very
well in our case.

Conversion at Early Stage. Assume that we have computed Gk, even though
pk+1 does not exceed the theoretical bound. Suppose that we have obtained the
first j−1 polynomials {g1, . . . , gj−1} of G. We want to test if the Hensel lifting is
enough for gj mod pk+1. Thus, we try to convert it to a candidate polynomial
over Q by rational reconstruction. Then we first check the following:
1. The conversion is done successfully for every coefficients of gi mod pk+1.
2. The denominator of each coefficient of a candidate polynomial divides a cer-
tain power of disc(f) (See Lemma 3).
If the conversion does not satisfy the criteria above then pk+1 is not sufficient to
afford the correct gj . Thus, we continue the lifting process again. If, in the con-
trary, the conversion, say hj , satisfy the criteria we have to prove that hj = gj

this is what we do now.

Correctness of Solution. Assume that we have a candidate polynomial hj for
the polynomial gj corresponding to the j-relation Ej . We can check if hj = gj

by the following theorem.

Theorem 5. We have hj = gj if and only if NF(cj(f), {g1, . . . , gj−1, hj}) = 0.

Proof. The only-if-part is clear, we have only to show the if-part. Let H be
the triangular set {g1, . . . , gj−1, hj}. By the hypothesis, the ideal 〈H〉 contains
{c1(f), . . . , cj(f)} which is the reduced Gröbner basis of the elimination ideal
M0∩Q[X{1,...,j}]. Thus, 〈H〉 is contained in a maximal ideal M′ of Q[X{1,...,j}],
which coincides with Mσ ∩Q[X{1,...,j}] for some σ ∈ Sn. But, comparing the di-
mensions of the residue class rings, it follows that 〈H〉 = M′ = Mσ∩Q[X{1,...,j}].
Seeing their stabilizers, σ is the identity and hj = fj �

By the similar manner and considering Q[XEj
], we have alternative test for

hj in the case where Hensel liftings are done over R′
2k, see Remark 1.

Theorem 6. Let h∗j , . . . , h
∗
s−1, hj be constructed polynomials by Hensel lifting

using R′
2k, where Ej = {e1, . . . , es−1, es = j}. We have hj = gj if and only if

NF(f(xem), {g∗1 , . . . , g∗s−1, hj}) = 0 for all m, 1 6 m 6 s.

5 Algorithms

Here we give a brief survey on the algorithms underlying of this method. We
first give an algorithm for the construction of a computation scheme, then we
give an algorithm for the computation of splitting ideals.



5.1 A database of computation schemes

Given a subgroup G of Sn the following algorithm computes a corresponding
computation scheme.
Algorithm 1: ComputationScheme(G)

Step 1 Compute the degrees degi(gi) for i = 1, . . . , n (see Proposition 1).
Step 2 Apply the Cauchy’s technique (see Lemma 1). Let I be the set of integers
corresponding to the indexes of the gi which cannot be obtained with this technique.
Step 3 For each integer i in I, compute a minimal i-relation and store it in E .
Step 4 Apply transporter technique on the i-relations in E . Let E be the set of
i-relations corresponding to the gi which must be computed.
Return E with the techniques for retrieving the other polynomials.

The set E depends only on the choice of the representative for G and on the
chosen i-relations in Step 3. This set represents all the linear systems which
are solved in our method. Thus, a measure of complexity is given by |E| =∑

E∈E D(E) and, in Algorithm 1, we compute E with minimal |E|.
Definition 6. For a given sub-group G of Sn, the minimal value of |E| is called
the c-size of G and is denoted by c(G).

A conjugate of G with minimal c-size is called c-minimal. In a conjugacy class
there may be a big difference, in term of c-size, between two of its representatives.
For example, in the conjugacy class of [24]S4 there are two representatives G1

and G2 with c(G1) = 8 and c(G2) = 632.

5.2 Algorithm for the computation of splitting fields

Assume that the computation scheme of Gf is pre-computed (w.l.o.g. we can
choose a representative of Gf which is c-minimal). We also suppose that all
transversals of groups needed in our algorithm are pre-computed.

Given the polynomial f of degree n, our method for computing a Gröbner
basis G = {g1, g2, . . . , gn} is describe with the following algorithm. We give only
the algorithm where early detections are used. One could use the theoretical
bounds by applying some minor modifications (fix the exponent of p, cancel the
early detection tests). A variant of Algorithm 2 is presented in [15].
Algorithm 2: SplittingIdeal(G(k0),Gf ,p)

Let I be the indexes of the gi we have to compute with linear systems.
for i = 1 to n do

if i ∈ I then
Construct/Solve S the linear system mod pk0+1 corresponding to Ei.
S1: try to convert the solution si of S to a rational polynomial hi

if the conversion of si above succeed and hi satisfies the correctness test
then The polynomial hi is gi.
else Apply an Hensel lifting to si and goto step S1.

else
Apply a Cauchy/Transporter technique in order to obtain gi from gj with j < i

end if
end for
Return G, Gf .



5.3 Complexity analysis

In this section, we study the complexity of Algorithm 2 focusing on effects of the
quantity c(G). We assume that a database containing a computation scheme of
a c-minimal representative of each conjugacy class is already known. For simpli-
fying our analysis and extracting its typical behavior related to c(G), we choose
liftings over R′

2k (see Remark 1) and consider a case where k0 = 0 in input and
EEA with pseudo division always works in the first step of the lifting. Also we
assume that N = 1, as this property is desired in efficient Galois group compu-
tation [9, 21], and log log(B0) is quite small compared with n for B0 defined in
Lemma 2.

Since we use the early detection strategy, the complexity of our algorithm also
depends on the size of the coefficients of the output G. Let Btrue be the maximum
of the absolute values of denominators and numerators of coefficients of g∗j and
gi appearing in the computation. By Lemma 2, the theoretical bound Bi on the
coefficients of gi can be also on those of g∗j . Thus, Btrue is supposed very much
smaller than B1, . . . , Bn. In the sequel, for each integer k > 0, we denote by
M(k) the cost of arithmetic over Z/pk+1Z as number of word operations. As
the size of necessary pk+1 tends to be huge, we may apply fast multiplication
techniques over Z/pk+1Z. On the other hand, as the size n which can be handled
here is not so large, we use ordinary techniques for polynomial multiplication.

We now sketch the complexity of each step of Algorithm 2 for computing one
polynomial gi with respect to the pre-computed i-relation Ei = {e1, . . . , es}. We
note that the number of iterations is bounded by O(log log(Btrue)).
Linear algebra: To compute a polynomial gi mod p with respect to the i-
relation Ei, we have to construct the matrix M̄i and solve −V̄i = M̄iĀi for Āi.
Under the assumption, the matrix M̄i is constructed directly as a matrix over
Fp, and its construction takes O(D(Ei)2M(0)) word operations. Then we solve
the resulted D(Ei)×D(Ei) linear system which requires O(D(Ei)ωM(0)) word
operations. (Here, ω represents a feasible matrix multiplication exponent and
2 6 ω 6 3, see [20].) Thus, in total, it takes O(D(Ei)ωM(0)) word operations.
Hensel lifting: At each step k, gi mod pk is lifted to gi mod p2k and this com-
putation is executed over R′

2k = (Z/p2kZ)[XEi
\ {xi}]/〈g∗1 , . . . , g∗s−1〉 (see Re-

mark 1). At this step, by using ordinary polynomial multiplication, it takes
O(n2) arithmetic operations over R′

2k, and hence it takes O(n2D(Ei)2M(2k−1))
word operations. At the first step of the lifting, we also compute s, t in R1[xi]
such that (Bézout relation) sπp(f(xi)) + t(gi mod p) = 1 by EEA, which takes
O(n2D(Ei)2M(0)) word operations. As we use quadratic Hensel construction,
the total cost is dominated by the same order for the final step, and thus, it
takes O(n2D(Ei)2M(log(Btrue))) word operations.
Rational reconstruction: As each coefficient a

(i)
j of gi mod p2k can be con-

verted to a rational number by EEA of a
(i)
j and p2k. By applying fast GCD

computation techniques [20], it takes O(M(log(Btrue)) log log(Btrue)) word op-
erations for each a

(i)
j , as we can use the same symbol M(log(Btrue)) for the cost

of one multiplication of integers of word size O(log(Btrue)). Then, in total, it



takes O(D(Ei)M(log(Btrue))(log log(Btrue))2) word operations. From the com-
puted bound in Lemma 2 for Btrue, log log(Btrue) = O(n log(n)) and the total
cost of rational reconstruction is dominated by the cost of Hensel construction.
Auxiliary computation: As the computation of gi is executed over R′

2k,
g∗1 , . . . , g∗i−1 must already computed. (Some can be easily converted from already
constructed gj , j < i.) Each g∗j is constructed by linear algebra and Hensel con-
struction in the same manner as gi, and it takes O(Dω

j M(0)+n2D2
j M(log(Btrue))

word operations, where Dj =
∏j

`=1 d(Ei)e`
. As Ei is set to be minimal, d(Ei)ej >

2 for each j < s and it follows easily that
∑s−1

`=1 n2D2
j = O(n2D(Ei)2) and∑s−1

`=1 Dω
j = O(D(Ei)ω). Hence the cost of auxiliary computation is dominated

by the cost of Hensel construction steps for gi.
Normal form computation: We use the same notation as in Auxiliary com-
putation. For the correctness of gi, normal forms of f(xe1), . . . , f(xes−1), f(xi)
with respect to {g∗1 , . . . , g∗s−1, gi} are computed. These computations can be ex-
ecuted via powers of xej

and so it takes O(log(n)D2
1 + · · · + log(n)D2

s−1) =
O(log(n)D(Ei)2) arithmetic operations over Z.

Thus, by summing the quantities above among all the polynomials gi, we
obtain the following result:

Theorem 7. Algorithm 2 with k0 = 0 takes

O(c(G)ωM(k0) + n2c(G)2M(log(Btrue)) + L)

word operations, where L is the total cost of normal form computations in cor-
rectness tests. Letting B′ be the maximum of absolute values of integers appearing
in normal form computations, L can be bounded by O(log(n)c(G)2M(log(B′))
log log(Btrue)). (When k0 is general we have almost the same result.) Moreover,
for cases where the word size of B′ is the almost same order as that of Btrue, the
above estimation can be simplified to O(c(G)ωM(k0) + n2c(G)2M(log(Btrue)).

As Btrue is a bound on coefficients of g∗j and gi, it might be greater than the
actual bound B on coefficients of gi’s. But, in many cases for computation of
successive extensions, the final element has coefficients of the maximal absolute
value. Thus, for representing actual behaviors of computation, it may be allowed
to use Btrue instead of B.

6 Experiments and remarks

We have implemented Algorithm 2 with the computer algebra system Magma
(version 2.11) in the case of an irreducible monic integral polynomial. We choose
Magma since it has all the functionalities needed (Galois group computation,
multivariate polynomial ring, permutation group). We have computed a database
of c-minimal representatives (with their computation scheme) of each conjugacy
class of transitive groups of degree up to 11. The experiments we made show
that this first implementation is already very efficient. Choice of the prime p:



By Tchebotarev’s density theorem, it is possible to compute a prime p such that
N = 1 and it may find among O(|Gf |) number of primes. In our implementation,
we choose the smallest such prime. One can see in the table that the time taken
by this procedure is not significant compared with the rest of the computation.
The power k0: In our implementation we take k0 = 10. In this case, none of
the tests presented in table need to be lifted after the linear resolution: the early
detection tests pass. We will investigate, in a future work, some other power k0

and compare the efficiency with the case where the Hensel lifting is needed.
Experiments timings: group |G| c(G) Tcheb. p Galois Matrix/Solve NF Total

6T12 60 60 + 60 0.13 929 0.06 0.22 / 0.17 0.04 0.66
6T13 72 12 0.11 619 0.03 0.01 / 0.01 0 0.18
6T14 120 120 0.15 1447 0.05 0.44 / 0.44 0.06 1.18
6T15 360 360 0.22 2437 0.0 3.69 / 6.51 0.21 10.79
7T5 168 42 0.19 1879 0.06 0.05 / 0.04 0.04 0.41
8T32 96 8 + 96 + 96 0.34 3413 0.13 0.55 / 0.59 0.14 1.870
8T33 96 96 + 32 0.23 2099 0.14 0.32 / 0.3 0.34 1.42
8T34 96 24 + 24 + 95 0.09 229 0.14 0.34 / 0.24 0.09 0.99
8T35 128 8 + 16 0.31 2909 0.06 0.01 / 0.01 0.01 0.45
8T36 168 168 + 168 0.06 211 0.14 1.78 / 1.59 1.63 5.360
8T37 168 168 + 168 0.31 2969 0.1 1.76 / 2.26 1.15 5.72
8T38 192 96 + 8 0.26 2503 0.1 0.29 / 0.29 0.05 1.09
8T39 192 8 + 192 0.16 947 0.06 1.14 / 1.44 0.2 3.11
8T41 192 24 + 96 0.4 4271 0.13 0.33 / 0.32 0.06 1.32
8T42 288 24 + 24 0.46 5051 0.1 0.05 / 0.02 0.02 0.71
8T43 336 336 0.29 3209 0.12 3.48 / 6.09 3.84 14.0
8T44 384 8 1.05 14071 0.06 0.01 / 0.01 0.05 1.24
8T45 576 24 + 576 0.36 3719 0.06 10.21 / 22.87 1.18 35.1
8T46 576 24 + 576 0.56 6269 0.1 10.25 / 23.72 1.1 36.14
8T47 1152 24 1.27 17299 0.05 0.03 / 0.02 0.0 1.44
8T48 1344 336 5.56 78497 0.08 3.56 / 8.56 20.33 38.3
9T21 162 54 + 54 0.59 6047 1.08 0.2 / 0.16 0.54 2.72
9T22 162 27 + 54 0.12 461 0.16 0.13 / 0.09 0.08 0.65
9T23 297 216 + 72 0.16 727 0.31 3.13 / 5.17 1.37 10.4
9T24 324 18 + 108 0.24 1801 1.07 0.4 / 0.38 2.23 4.45
9T25 324 27 + 324 0.16 953 1.03 3.41 / 5.49 0.33 10.63
9T26 432 72 0.98 10273 0.3 0.18 / 0.16 7.43 9.15
9T27 504 504 0.79 10103 0.42 7.98 / 18.6 105.49 133.64
9T28 648 27 0.33 3037 1.38 0.03 / 0.02 0.01 1.87
9T29 648 18 + 648 0.75 7883 0.43 13.17 / 38.74 1.44 55.21
9T31 1296 18 0.33 2801 1.0 0.01 / 0.01 0.03 1.53
9T32 1512 1512 + 1512 0.46 5167 0.27 142.17 / 608.1 1761.84 2523

We tested polynomials
from the database gal-
pols of Magma. We give,
for each example, the name
of the group G in Butler
and McKay’s nomencla-
ture, the order of G and
the integer c(G) (as the
sum of the i-relations de-
grees). The column
Tcheb. shows the timings
of computing a prime p
such that N = 1, the col-
umn p gives this prime.
The column Galois shows
the timings of comput-
ing the Galois group,
Matrix/Solve those for constructions and resolutions of the matrices respec-
tively, NF the timings for the normal forms computations and Total the total
timing of the procedure. The measurements were made on a personal computer
with a 1.5Ghtz Intel Pentium 4 and 512MB of memory running GNU/Linux. As
one can see, the size of c(G) and the size of pk0 heavily influenced the timings of
constructions and resolutions of matrices like Theorem 7 shows. When c(G) is
big, two cases are possible: few big matrices to compute or a lot of little matrices
to compute. The first case is more time consuming than the second. This is why
there are some differences between examples with same size of c(G) and pk0 (for
example, see the lines 8T37 and 6T15).

7 Conclusion and future works

We have presented a new method, with theoretical and practical aspects, for the
computation of the splitting field of a polynomial f where the knowledge of the
action of the Galois group over p-adic approximations of its roots is used.

We have introduced the notion of computation scheme. This new approach
seems a good way for efficient computation of splitting fields. This framework is
not limited to be used with linear systems solving. For example, we will study



the integration of sparse interpolation formulas (like the dense ones in [6, 12]) in
our algorithm. Also, it would be interesting to study the possibility of using this
approach in a dynamical strategy like the one of Magma (see [19]).
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