Skip to main content

LLL on the Average

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 4076))

Abstract

Despite their popularity, lattice reduction algorithms remain mysterious in many ways. It has been widely reported that they behave much more nicely than what was expected from the worst-case proved bounds, both in terms of the running time and the output quality. In this article, we investigate this puzzling statement by trying to model the average case of lattice reduction algorithms, starting with the celebrated Lenstra-Lenstra-Lovász algorithm (L3). We discuss what is meant by lattice reduction on the average, and we present extensive experiments on the average case behavior of L3, in order to give a clearer picture of the differences/similarities between the average and worst cases. Our work is intended to clarify the practical behavior of L3 and to raise theoretical questions on its average behavior.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In: Proc. of STOC 1996, pp. 99–108. ACM Press, New York (1996)

    Google Scholar 

  2. Ajtai, M.: Random lattices and a conjectured 0-1 law about their polynomial time computable properties. In: Proc. of FOCS 2002, pp. 13–39. IEEE, Los Alamitos (2002)

    Google Scholar 

  3. Ajtai, M.: The worst-case behavior of Schnorr’s algorithm approximating the shortest nonzero vector in a lattice. In: Proc. of STOC 2003, pp. 396–406. ACM Press, New York (2003)

    Google Scholar 

  4. Ajtai, M.: Generating Random Lattices According to the Invariant Distribution. Draft (2006)

    Google Scholar 

  5. Babai, L.: On Lovász lattice reduction and the nearest lattice point problem. Combinatorica 6, 1–13 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  6. Backes, W., Wetzel, S.: Heuristics on lattice reduction in practice. ACM Journal of Experimental Algorithms 7,1 (2002)

    Google Scholar 

  7. Batut, C., Belabas, K., Bernardi, D., Cohen, H., Olivier, M.: PARI/GP computer package version 2, Available at: http://pari.math.u-bordeaux.fr/

  8. Cassels, J.W.S.: Rational quadratic forms. London Mathematical Society Monographs, vol. 13. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], London (1978)

    MATH  Google Scholar 

  9. Cohen, H.: A Course in Computational Algebraic Number Theory, 2nd edn. Springer, Heidelberg (1995)

    Google Scholar 

  10. Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA vulnerabilities. Journal of Cryptology 10(4), 233–260 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  11. Goldreich, O., Goldwasser, S., Halevi, S.: Public-key cryptosystems from lattice reduction problems. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 112–131. Springer, Heidelberg (1997)

    Google Scholar 

  12. Goldstein, D., Mayer, A.: On the equidistribution of Hecke points. Forum Mathematicum 15, 165–189 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Golub, G., van Loan, C.: Matrix Computations. J. Hopkins Univ. Press (1996)

    Google Scholar 

  14. Groetschel, L., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization. Springer, Heidelberg (1988)

    MATH  Google Scholar 

  15. Hermite, C.: xtraits de lettres de M. Hermite à M. Jacobi sur différents objets de la théorie des nombres, deuxième lettre. Journal für die reine und angewandte Mathematik 40, 279–290 (1850)

    Article  Google Scholar 

  16. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU : a ring based public key cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  17. Koy, H., Schnorr, C.P.: Segment LLL-reduction of lattice bases with floating-point orthogonalization. In: Silverman, J.H. (ed.) CaLC 2001. LNCS, vol. 2146, pp. 81–96. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  18. Lenstra, A.K., Lenstra Jr., H.W., Lovász, L.: Factoring polynomials with rational coefficients. Mathematische Annalen 261, 513–534 (1982)

    Article  Google Scholar 

  19. Lenstra Jr., H.W.: Integer programming with a fixed number of variables. Technical report 81-03, Mathematisch Instituut, Universiteit van Amsterdam (1981)

    Google Scholar 

  20. Lenstra Jr., H.W.: Integer programming with a fixed number of variables. Mathematics of Operations Research 8(4), 538–548 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  21. Magma. The Magma computational algebra system for algebra, number theory and geometry, Available at: http://www.maths.usyd.edu.au:8000/u/magma/

  22. Micciancio, D., Goldwasser, S.: Complexity of lattice problems: a cryptographic perspective. Kluwer Academic Press, Dordrecht (2002)

    MATH  Google Scholar 

  23. Nguyen, P.Q., Stehlé, D.: Floating-point LLL revisited. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 215–233. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  24. Nguyen, P.Q., Stern, J.: The two faces of lattices in cryptology. In: Silverman, J.H. (ed.) CaLC 2001. LNCS, vol. 2146, pp. 146–180. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  25. Odlyzko, A.M.: The rise and fall of knapsack cryptosystems. In: Proc. of Cryptology and Computational Number Theory. In: Proc. of Symposia in Applied Mathematics, vol. 42, pp. 75–88. AMS (1989)

    Google Scholar 

  26. The SPACES Project. MPFR, a LGPL-library for multiple-precision floating-point computations with exact rounding, Available at: http://www.mpfr.org/

  27. Schnorr, C.P.: A hierarchy of polynomial lattice basis reduction algorithms. Theoretical Computer Science 53, 201–224 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  28. Schnorr, C.P.: A more efficient algorithm for lattice basis reduction. Journal of Algorithms 9(1), 47–62 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  29. Schnorr, C.P., Euchner, M.: Lattice basis reduction: improved practical algorithms and solving subset sum problems. Mathematics of Programming 66, 181–199 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  30. Shoup, V.: NTL, Number Theory Library, Available at: http://www.shoup.net/ntl/

  31. Siegel, C.L.: A mean value theorem in geometry of numbers. Annals of Mathematics 46(2), 340–347 (1945)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nguyen, P.Q., Stehlé, D. (2006). LLL on the Average. In: Hess, F., Pauli, S., Pohst, M. (eds) Algorithmic Number Theory. ANTS 2006. Lecture Notes in Computer Science, vol 4076. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11792086_18

Download citation

  • DOI: https://doi.org/10.1007/11792086_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36075-9

  • Online ISBN: 978-3-540-36076-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics