Skip to main content

Testing Equivalence of Ternary Cubics

  • Conference paper
Book cover Algorithmic Number Theory (ANTS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 4076))

Included in the following conference series:

Abstract

Let C be a smooth plane cubic curve with Jacobian E. We give a formula for the action of the 3-torsion of E on C, and explain how it is useful in studying the 3-Selmer group of an elliptic curve defined over a number field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. An, S.Y., Kim, S.Y., Marshall, D.C., Marshall, S.H., McCallum, W.G., Perlis, A.R.: Jacobians of genus one curves. J. Number Theory 90(2), 304–315 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  2. Cremona, J.E.: Algorithms for modular elliptic curves. Cambridge University Press, Cambridge (1997), See also: http://www.maths.nott.ac.uk/personal/jec/ftp/data

    MATH  Google Scholar 

  3. Cremona, J.E.: Classical invariants and 2-descent on elliptic curves. J. Symbolic Comput. 31(1-2), 71–87 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cremona, J.E., Fisher, T.A., O’Neil, C., Simon, D., Stoll, M.: Explicit n-descent on elliptic curves, I Algebra, II Geometry, III Algorithms (in preparation)

    Google Scholar 

  5. Cremona, J.E., Mazur, B.: Visualizing elements in the Shafarevich-Tate group. Experiment. Math. 9(1), 13–28 (2000)

    MATH  MathSciNet  Google Scholar 

  6. Djabri, Z., Schaefer, E.F., Smart, N.P.: Computing the p-Selmer group of an elliptic curve. Trans. Amer. Math. Soc. 352(12), 5583–5597 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Hilbert, D.: Theory of algebraic invariants. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  8. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system I: The user language. J. Symbolic Comput. 24, 235–265 (1997), See also: http://magma.maths.usyd.edu.au/magma/

    Article  MATH  MathSciNet  Google Scholar 

  9. O’Neil, C.: The period-index obstruction for elliptic curves. J. Number Theory 95(2), 329–339 (2002)

    MathSciNet  Google Scholar 

  10. Poonen, B.: An explicit algebraic family of genus-one curves violating the Hasse principle. J. Théor. Nombres Bordeaux 13(1), 263–274 (2001)

    MATH  MathSciNet  Google Scholar 

  11. Salmon, G.: A treatise on the higher plane curves, 3rd edn., Hodges, Foster and Figgis, Dublin (1879)

    Google Scholar 

  12. Schaefer, E.F., Stoll, M.: How to do a p-descent on an elliptic curve. Trans. Amer. Math. Soc. 356(3), 1209–1231 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  13. Serre, J.-P.: Abelian ℓ-adic representations and elliptic curves. McGill University lecture notes. W.A. Benjamin, Inc., New York-Amsterdam (1968)

    Google Scholar 

  14. Silverman, J.H.: The arithmetic of elliptic curves, vol. 106, Springer GTM, Heidelberg (1986)

    Google Scholar 

  15. Sturmfels, B.: Algorithms in invariant theory. Texts and Monographs in Symbolic Computation. Springer, Vienna (1993)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fisher, T. (2006). Testing Equivalence of Ternary Cubics. In: Hess, F., Pauli, S., Pohst, M. (eds) Algorithmic Number Theory. ANTS 2006. Lecture Notes in Computer Science, vol 4076. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11792086_24

Download citation

  • DOI: https://doi.org/10.1007/11792086_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36075-9

  • Online ISBN: 978-3-540-36076-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics