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Abstract. The categorical equivalence of three different approaches to
roughness is discussed: the one based on the notion of abstract rough
approximation spaces, the second one based on the abstract topological
notions of interior and closure, and the third one based on a very weak
form of BZ lattice.
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1 Introduction

The main motivation of this paper is the unification of different abstract ap-
proaches to rough theory, under theoretical proofs of categorical equivalence of
the involved structures. Indeed, in literature one can found at least three differ-
ent points of view: the one based on the notion of rough approximation space
[1], the second essentially based on the topological notion of interior and closure
operations [2], and a third one based on two kinds of non usual complemen-
tations, the so–called BZ approach [3, 4]. We investigate under what conditions
these three approaches can be considered equivalent, and so from the applicative
point of view indistinguishable. For completeness let us quote another approach
based on modal–like operators of necessity and possibility [5, 6, 7] which is not
treated in the present paper and also rough mereology [8, 9] whose relationship
with the present work wil be analyzed in a forthcoming paper.

Now, let us explain the role of equivalence between structures exemplifying
the involved questions in the context of the well know  Lukasiewicz approach
to many–valued logic [10]. To this purpose, let us first consider the notion of
Wajsberg algebra (W algebra for short) introduced in 1931 by Wajsberg [11]
in order to give an algebraic axiomatization to  Lukasiewicz many valued logic.
In this axiomatization the primitive propositional connectives are implication
→ and negation −, giving rise to the structure 〈A,→, −, 1〉. Several years later
(1958), another algebraic approach to many–valued logic has been proposed by
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Chang in [12], with the notion of MV algebra 〈A,⊕, −, 0〉 which has, as primitive
operators, a truncated sum and a negation.

At a first glance these two seem to be quite different algebraic structures.
However it is possible to prove (see [13]) that they are categorically equivalent:
from any MV algebra it is possible to obtain a W algebra and vice versa.

This result assures that any theorem proved in one of the two structures
can be “translated” as a theorem of the second one: the algebras are categorical
equivalent. They are indistinguishable. It will be very misleading to “impose”
one of them as “better” with respect to the second one. One can prefer the
Wajsberg approach as the one nearer to the original language of  Lukasiewicz
logic, and this is a meta–theoretical (probably aesthetic) choice. But it is out
of doubt that any result obtained in the context of the Chang approach to MV
logic is also a result true in the Wajsberg– Lukasiewicz context, and vice versa.
For instance, the completeness theorem given by Chang in the context of MV
algebras is immediately translated as a completeness about Wajsberg algebras.

2 Equivalent Structures

2.1 Abstract Rough Approximation Spaces

The abstract approach to roughness introduced in [1] is based on a family of
“approximable” concepts, with associated two well defined subfamilies describing
“inner” and “outer” definable concepts respectively. In the formal description of
this situation imprecise (vague, unclassified) concepts, with the associated inner
and outer (precise, crisp, sharp) knowledge about them, are mathematically
realized by points of an abstract set.

In this context some criteria must be given in order to “approximate” any
vague concept by a pair consisting of a unique inner definable concept and a
unique outer definable concept. Since we want that these approximations are
the best possible inside the classes of corresponding definable concepts, it is
necessary to have also a criterium to state how an approximation is sufficiently
good. Abstractly, this is realized by a partial order relation ≤ on the set of all
approximable elements which mathematical describes the fact that an element
a is a better approximation of the element b, written a ≤ b.

Definition 2.1. An abstract approximation space is a system
A := 〈Σ, L(Σ), U(Σ)〉, where:

(1) 〈Σ,∧,∨, 0, 1〉 is a lattice with respect to the partial order relation a ≤ b

iff a = a ∧ b, bounded by the least element 0 and the greatest element 1.
Elements from Σ are interpreted as concepts, data, etc., and are said to be
approximable elements;

(2) L(Σ) and U(Σ) are bounded subposet of Σ (and thus 0, 1 ∈ L(Σ), U(Σ))
consisting, respectively, of all available lower (inner) and upper (outer) de-
finable elements;

This system must satisfy the following axioms:



(Ax1) For any approximable element a ∈ Σ, there exists one element i(a) s.t.
i(a) is an inner definable element (i(a) ∈ L(Σ)); i(a) is an inner definable
lower approximation of a (i(a) ≤ a); i(a) is the best lower approximation of a

by inner definable elements (let e ∈ L(Σ) be such that e ≤ a, then e ≤ i(a)).
(Ax2) For any approximable element a ∈ Σ, there exists one element o(a) s.t.

o(a) is an outer definable element (o(a) ∈ U(X)); o(a) is an outer definable
upper approximation of a (a ≤ o(a)); o(a) is the best upper approximation
of a by outer definable elements (let f ∈ U(X) be such that a ≤ f , then
o(a) ≤ f).

It is easy to prove that, for any approximable element a ∈ Σ, the inner de-
finable element i(a) ∈ L(Σ), whose existence is assured by (Ax1), is unique.
Thus, it is possible to introduce the mapping i : Σ 7→ L(Σ), called the inner
approximation mapping, associating with any approximable element a ∈ Σ its
lower (or inner) approximation: i(a) := max{α ∈ L(Σ) : α ≤ a}. Similarly,
for any approximable element a ∈ Σ, the outer definable element o(a) ∈ U(Σ),
whose existence is assured by (Ax2), is unique. Thus, it is possible to introduce
the mapping o : Σ 7→ U(Σ), called the outer approximation mapping, associat-
ing with any approximable element a ∈ Σ its upper (or outer) approximation:
o(a) := min{γ ∈ U(Σ) : a ≤ γ}.

The rough approximation of any approximable element a ∈ Σ is then the
inner–outer pair r(a) := (i(a), o(a)), with i(a) ≤ a ≤ o(a), which is the image of
the element a under the rough approximation mapping r : Σ 7→ L(Σ) × U(Σ).

We denote by LU(Σ) := L(Σ)∩U(Σ) the set of all innouter (simultaneously
inner and outer) definable elements. This set coincides with the collection of
“sharp” (or “crisp”, “exact”; also “definable,” if one adopts the original Pawlak
terminology) of Σ, that is, elements whose inner approximation is equal to the
outer one, i.e., i(x) = o(x). The rough approximation of any sharp element is
therefore the trivial one r(x) = (x, x).

2.2 Inner and outer approximation spaces

These being stated, in order to introduce the first categorical equivalence between
two abstract approaches to rough theory, let us premise the following definitions.

Definition 2.2. An interior de Morgan lattice is a system 〈Σ,∧,∨, ′, 0, 1〉 where

(IdM1) the structure 〈Σ,∧,∨, 0, 1〉 is a lattice, bounded by the least element 0
and the greatest element 1. The mapping ′ : Σ → Σ is a unary oper-
ation on Σ, called de Morgan complement, that satisfies the following
conditions for arbitrary a, b ∈ Σ:
(dM1) a = a′′ (dM2) (a ∨ b)′ = a′ ∧ b′.

(IdM2) The mapping o : Σ → Σ, that associates to any element a from Σ its
interior ao ∈ Σ, is an interior operation, i.e., it satisfies the followings:

(I1) 1o = 1 (normalized)

(I2) ao ≤ a (decreasing)



(I3) ao = aoo (idempotent)

(I4) (a ∧ b)o ≤ ao ∧ bo (sub–multiplicative)

Given an interior operator, the subset of open elements is defined as the collection
of elements which are equal to their interior O(Σ) = {a ∈ Σ : a = ao}.

Definition 2.3. A structure 〈Σ,∧,∨,′ ,∗ , 0, 1〉 is a closure de Morgan lattice iff

(CdM1) 〈Σ,∧,∨,′ 0, 1〉 is a De Morgan lattice;
(CdM2) The mapping ∗ : Σ → Σ, that associates to any element a from Σ its

closure a∗ ∈ Σ, is a closure operation, that is, it satisfies the properties:

(C1) 0∗ = 0 (normalized)

(C2) a ≤ a∗ (increasing)

(C3) a∗ = a∗∗ (idempotent)

(C4) a∗ ∨ b∗ ≤ (a ∨ b)∗ (sub–additive)

In a closure de Morgan lattice, the subset of closed elements is defined as the
collection of elements which are equal to their closure O(Σ) = {a ∈ Σ : a = a∗}.
Both the set of open and closed elements are not empty, since 0, 1 are at the
same time open and closed.

The notions of interior de Morgan lattice and closure de Morgan lattice are
strictly linked, since in any interior de Morgan lattice it is possible to define a
closure operator by the law ∀a ∈ Σ : a∗ := ((a′)o)′. Vice versa in any closure
de Morgan lattice an interior operator can be naturally induced by the law
∀a ∈ Σ : ao := ((a′)∗)′. Hence the de Morgan complement determines a duality
relation between the closure and the interior of any element a.

Theorem 2.1. (i) Suppose a rough approximation space A = 〈Σ, L(Σ), U(Σ)〉
and for arbitrary a ∈ Σ let us define ao := i(a) and a∗ := o(a). Then,
AN := 〈Σ, o, ∗ 〉 is a lattice equipped with an interior and a closure operations
such that O(Σ) = L(Σ) and C(Σ) = U(Σ).

(ii) Suppose a lattice equipped with an interior and a closure operations A =
〈Σ, o, ∗ 〉 and let us define L(Σ) := O(Σ) and U(Σ) := C(Σ). Then, AH :=
〈Σ, L(Σ), U(Σ)〉 is a rough approximation space in which for arbitrary a it
is i(a) = ao and o(a) = a∗.

(iii) Let A = 〈Σ, L(Σ), U(Σ)〉 be a rough approximation space. Then: ANH = A.
(iv) Let A = 〈Σ, o, ∗ 〉 be a lattice equipped with an interior and a closure oper-

ator. Then: AHN = A.

In this way we have shown the indistinguishability between the structure
〈Σ, L(Σ), U(Σ)〉 of rough approximation space based on the lattice Σ and sat-
isfying axioms (Ax1) and (Ax2), and the structure 〈Σ, o, ∗ 〉 based on the same
lattice Σ and equipped with an interior and a closure operation, satisfying condi-
tions (I1)-(I4) and (C1)–(C4) respectively. Clearly, the set of definable elements
LU(Σ) of a rough approximation space conincide with the set of clopen elements,
i.e., elements which are both closed and open.

Finally, let us note that in any interior (equiv., closure) de Morgan lattice,
we have both an interior and a closure operator, thus applying Theorem 2.1, it
is possible to define an equivalent rough approximation space.



2.3 Pre–Brouwer Zadeh lattice and interior–closure spaces

In this section, we want to investigate another structure based on two weak
form of negations and which turns out to be categorically equivalent to closure
de Morgan lattices (and hence to rough approximation spaces).

Definition 2.4. A system 〈Σ,∧,∨,′ ,∼ , 0, 1〉 is a pre Brouwer Zadeh (pBZ) lat-
tice iff

(BZ1) the substructure 〈Σ,∧,∨,′ , 0, 1〉 is a de Morgan lattice;
(BZ2) the unary operation ∼ satisfies the properties:

(i) 1 = 0∼

(ii) if a ≤ b then b∼ ≤ a∼ (contraposition)
(BZ3) the two complementations are linked by the following interconnection

rules:
(i) a∼ ≤ a′ (minimal interconnection)
(ii) a′∼ ≤ a′∼′∼ (weak interconnection)

Note that 1∼ = 0, indeed by minimal interconnection 1∼ ≤ 1′ = 0.
The properties of pre Brouwer Zadeh lattices allow one to define an interior

and a closure operator on a lattice structure. Indeed, we can see that any pre-BZ
lattice is equivalent to a closure (resp., interior) de Morgan lattice.

Theorem 2.2.

(i) Let T = 〈Σ,∧,∨, ′, ∼, 0, 1〉 be a pre BZ lattice. Let us introduce the
mapping ∗ : Σ 7→ Σ defined for every a ∈ Σ as a∗ := a∼ ′, then the
structure T C = 〈Σ,∧,∨, ′, ∗, 0, 1〉 is a closure de Morgan lattice.

(ii) Let T = 〈Σ,∧,∨, ′, ∗, 0, 1〉 be a closure de Morgan lattice. Let us intro-
duce the mapping ∼ : Σ 7→ Σ defined for every a ∈ Σ as a∼ := a∗ ′ then
the structure T B = 〈Σ,∧,∨, ′, ∼, 0, 1〉 is a pre BZ lattice.

(iii) If T = 〈Σ,∧,∨, ′, ∼, 0, 1〉 is a pre BZ lattice, then T = T CB.
(iv) If T = 〈Σ,∧,∨, ′, ∗, 0, 1〉 is a closure de Morgan lattice, then T = T BC.

By the result (i) of this theorem, and considering the equivalence between
interior and closure de Morgan lattices, in a pre BZ lattice the closure and interior
operator are defined for every element a ∈ Σ as a∗ = a∼′ and ao = a′ ∼ (with
a∼′ ≤ a ≤ a′ ∼). Thus, we have that pre BZ lattices are the weakest lattice
structure in which we are able to define an interior operator, and a closure
operator and consequently a rough approximation space.

Definition 2.5. A closure de Morgan lattice is said to be topological iff the clo-
sure operator satisfies the additive property: a∗∨b∗ = (a∨b)∗. Dually, an interior
de Morgan lattice is said to be topological iff the interior operator satisfies the
multiplicative property: ao ∧ bo = (a ∧ b)o.

The following three structures are equivalent among them

(1) pre–BZ lattice satisfying also the join de Morgan property (a∨b)∼ = a∼∧b∼;
(2) topological closure de Morgan lattices;
(3) topological interior de Morgan lattices.



3 Conclusion

We have shown a categorical equivalence among rough approximation spaces,
interior–closure spaces and preBZ lattices. The Pawlak approach to rough set
theory is a concrete example of these structures. Indeed, given a universe X

equipped with an equivalence relation R, one can obtain the rough approxi-
mation space 〈P(X), E(X), E(X)〉 where the power set of X , P(X), is the col-
lection of approximable elements and the exact elements E(X) are all subsets
of X which are set theoretical union of equivalence classes with respect to R,
plus the empty set. Trivially, axioms (Ax1) and (Ax2) are satisfied by the triple
〈P(X), E(X), E(X)〉 which in this way turns out to be a concrete model of rough
approximation space. Hence, all the results one can derive from the abstract en-
vironment sketched in section 2 are immediately true in the particular Pawlak
environment. Thus, we hope to have clarified that all the approaches of section 2
are equivalent among them, and can play the same role in the abstract approach
to roughness.
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