
Li, Xuan, King, Andy and Lu, Lunjin (2006) Collapsing Closures: 22nd International
Conference, ICLP 2006, Seattle, WA, USA, August 17-20, 2006. Proceedings.
 In: Etalle, Sandro and Truszczynski, Mirek, eds. Logic Programming. Lecture
Notes in Computer Science, 4079 . Springer, pp. 148-162. ISBN 978-3-540-36635-5.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/37601/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1007/11799573_13

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/37601/
https://doi.org/10.1007/11799573_13
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Collapsing Closures

Xuan Li1, Andy King2 and Lunjin Lu1

1 Oakland University, Rochester, MI 48309, USA
2 University of Kent, Canterbury, CT2 7NF, UK

Abstract. A description in the Jacobs and Langen domain is a set of
sharing groups where each sharing group is a set of program variables.
The presence of a sharing group in a description indicates that all the
variables in the group can be bound to terms that contain a common
variable. The expressiveness of the domain, alas, is compromised by its
intractability. Not only are descriptions potentially exponential in size,
but abstract unification is formulated in terms of an operation, called
closure under union, that is also exponential. This paper shows how
abstract unification can be reformulated so that closures can be collapsed
in two senses. Firstly, one closure operation can be folded into another
so as to reduce the total number of closures that need to be computed.
Secondly, the remaining closures can be applied to smaller descriptions.
Therefore, although the operation remains exponential, the overhead of
closure calculation is reduced. Experimental evaluation suggests that the
cost of analysis can be substantially reduced by collapsing closures.

1 Introduction

The philosophy of abstract interpretation is to simulate the behaviour of a pro-
gram without actually running it. This is accomplished by replacing each opera-
tion in the program with an abstract analogue that operates, not on the concrete
data, but a description of the data. The methodology applied in abstract inter-
pretation is first to focus on the data, that is, pin down the relationship between
the concrete data and a description, and then devise abstract operations that
preserve this relationship. This amounts to showing that if the input to the ab-
stract operation describes the input to the concrete operation, then the output of
the abstract operation faithfully describes the output of the concrete operation.
When this methodology is applied in logic programming, the focus is usually on
the operation of abstract unification since this is arguably the most complicated
domain operation. The projection operation, that merely removes information
from a description, is rarely a major concern.

In this paper, we revisit the projection operation of the classic set-sharing
domain and we argue that the complexity of the abstract unification (amgu)
operation can be curbed by the careful application of a reformulated projection
operation. The computational problem at the heart of amgu is the closure under
union operation [14] that operates on sharing abstractions which are constructed
from sets of sharing groups. Each sharing group is, in turn, a set of program vari-
ables. Closure under union operation repeatedly unions together sets of sharing

groups, drawn from a given sharing abstraction, until no new sharing group can
be obtained. This operation is inherently exponential, hence the interest in dif-
ferent, and possibly more tractable, encodings of set-sharing [8, 10]. However,
even the most creative and beautiful set-sharing encoding proposed thus far [8],
does not entirely finesse the complexity of closure under union; closure under
union simply manifests itself in the form of a different (and equally non-trivial)
closure operator [18].

Our work was motivated by the observation that often a set-sharing analysis
will calculate a series of closures that involve variables that appear in the body
of a clause, only for these variables to be later eliminated when the resulting set-
sharing description is restricted to those variables that occur in the head. It seems
somewhat unsatisfactory that information — which is often expensive to derive
— is simply thrown away. Ideally, closure operations should only be applied to
variables that appear within the head of a clause. This paper shows that this ideal
can be realised by reformulating abstract unification so that it can be applied in
a two stage process: a phase that precedes projection (of quadratic complexity)
and a phase that is applied after projection (of exponential complexity). This
tactic collapses closure calculations in two important respects. Firstly, it reduces
the number of variables that participate in closure calculations since there are
typically fewer variables in the head of the clause than the whole of the clause.
This is important because the cost of closure is related to the number of sharing
groups that it operates over and this, in turn, is exponential in the number of
variables in scope. Secondly, it turns out that when closure calculation is applied
after projection, then the closures that arise from different unifications in the
body of a clause, frequently collapse to a single closure operation. Thus, not
only is the complexity of each closure operation lessened, but the total number
of closure operations is also reduced.

The paper is structured as follows: Section 2 introduces the key ideas with a
familiar example. Section 3 reports the main correctness results (the proofs them-
selves are given in the technical report [15]). Section 4 details the experimental
evaluation. Section 5 reviews the related work and finally Section 6 concludes.

2 Motivating example

This section illustrates the basic ideas behind the analysis in relation to a familiar
example — the append program that is listed below:

append(Xs,Ys,Zs) :- Xs = [], Ys = Zs.
append(Xs,Ys,Zs) :- Xs = [X|Vs], Zs = [X|Ws], append(Vs,Ys,Ws).

The behaviour of the program can be captured with a T -operator that is sensitive
to aliasing between the arguments of atoms [4, 11]. Such an operator can be
iteratively applied to obtain the following series of interpretations:

2

I0 = ∅
I1 = {append(Xs, Y s, Zs) :- θ1} where θ1 = {Xs "→ [], Y s "→ Zs}
I2 = {append(Xs, Y s, Zs) :- θ2} ∪ I1 where θ2 = {Xs "→ [X], Zs "→ [X|Y s]}
I3 = {append(Xs, Y s, Zs) :- θ3} ∪ I2 where

θ3 = {Xs "→ [X, Y], Zs "→ [X, Y |Y s]}
...

Ii = {append(Xs, Y s, Zs) :- θi} ∪ Ii−1 where
θi = {Xs "→ [X1, . . . , Xi−1], Zs "→ [X1, . . . , Xi−1|Y s]}

Each interpretation Ii is a set of atoms each of which is constrained by a substi-
tution. The limit of the sequence (and the least fixpoint of the T operator) is the
interpretation I = {append(Xs, Y s, Zs) :- θi | i ∈ N} which is an infinite set. It
therefore follows that I cannot be finitely computed by applying iteration.

2.1 Set-sharing abstract domain

The analysis problem is to finitely compute a set-sharing abstraction of the
limit I. To apply abstract interpretation to this problem, it is necessary to de-
tail how a substitution, and more generally a set of substitutions, can be de-
scribed by a set-sharing abstraction. A set-sharing abstraction for a substitution
θ is constructed from a set of sharing groups: one sharing group occ(θ, y) for
each variable y ∈ V drawn from the universe of variables V . The sharing group
occ(θ, y) is defined by occ(θ, y) = {x ∈ V | y ∈ var(θ(x))} and therefore contains
exactly those variables which are bound by θ to terms that contain the variable
y. In the particular case of θ3 it follows that:

occ(θ3, Xs) = ∅
occ(θ3, Y s) = {Y s, Zs}
occ(θ3, Zs) = ∅

occ(θ3, X) = {X, Xs, Zs}
occ(θ3, Y) = {Y, Xs, Zs}
occ(θ3, y) = {y} where y &∈ {Xs, Y s, Zs, X, Y }

Since the number of sharing groups for any θ is itself infinite, the abstraction
map αX (θ) is parameterised by a set of program variables X and defined so that
αX (θ) = {occ(θ, y) ∩ X | y ∈ V}. If X is finite, it follows that αX (θ) is finite.
For example, if X = {Xs, Y s, Zs} then αX (θ3) = {∅, {Xs, Zs}, {Y s, Zs}}. The
abstraction map αX (θ3) still records useful information: it shows that Xs and
Zs can share, and similarly that Y s and Zs can share.

The domain construction is completed by lifting αX to subsets of Sub where
Sub is the computational domain of substitutions. This is achieved by defin-
ing αX : ℘(Sub) → SharingX where SharingX = ℘(℘(X)) and αX (Θ) =
∪θ∈ΘαX (θ). The concretisation map γX : SharingX → ℘(Sub) specifies which
substitutions are represented by a set-sharing abstraction and is defined thus
γX (S) = {θ ∈ Sub | αX (θ) ⊆ S}. (Note that an alternative definition for this
domain is SharingX = {S | ∅ ∈ S ∧ S ⊆ ℘(X)} since for any θ ∈ Sub there
always exists y ∈ V such that occ(θ, y) ∩ X = ∅, whence ∅ ∈ αX (θ).)

3

2.2 Set-sharing domain operations

The concretisation mapping γX pins down the meaning of a set-sharing ab-
straction and thereby provides a criteria for constructing and then judging the
correctness of an abstract version of the T operator. Successive interpretations
Ji generated by this operator are deemed to be correct iff for each constrained
atom append(Xs, Y s, Zs) :- θ ∈ Ii there exists append(Xs, Y s, Zs) :-S ∈ Ji

such that θ ∈ γX (S). To illustrate the problems of tractability in this operator
(that stem from closure under union), the discussion focusses on the computation
of the interpretation J3; the preceding iterates are listed below:

J0 = ∅
J1 = {append(Xs, Y s, Zs) :-SJ1} where SJ1 = {∅, {Y s, Zs}}
J2 = {append(Xs, Y s, Zs) :-SJ2} ∪ J1 where

SJ2 = {∅, {Xs, Zs}, {Xs, Y s, Zs}, {Y s, Zs}}
J3 = J2

Note that {Xs, Y s, Zs} ∈ SJ2 but {Xs, Y s, Zs} &∈ αX (θi) for any i ∈ N. This is
symptomatic of the imprecision incurred by working in an abstract rather than
the concrete setting. Notice too that the absence of the sharing group {Xs, Y s}
from SJ2 asserts that Xs and Y s can only share if there is sharing between Xs
and Zs and likewise sharing between Y s and Zs.

A single application of the abstract T operator takes, as input, an inter-
pretation Ji and produces, as output, an interpretation Ji+1. Ji+1 is obtained
as the union of the two interpretations: one interpretation generated by each
clause in the program acting on Ji. Applying the first and second clauses to
J2 yield {append(Xs, Y s, Zs) :-SJ1} and {append(Xs, Y s, Zs) :-SJ2} respec-
tively which, when combined, give J3 = J2. To illustrate how these interpreta-
tions are computed, consider the application of the second clause.

Computation is initiated with a set-sharing abstraction for the identity sub-
stitution ε with X assigned to the variables of the clause X = {V s, Ws, X, Xs,
Y s, Zs}. This initial description is S0 = αX (ε) = {∅, {V s}, {Ws}, {X}, {Xs},
{Y s}, {Zs}}. Next, S0 is progressively instantiated by firstly, simulating the uni-
fication Xs = [X|V s] with input S0 to obtain output S1; then secondly, solving
Zs = [X|Ws] in the presence of S1 to give S2; then thirdly, adding the bindings
imposed by the body atom append(V s, Y s, Ws) to S2 to obtain a description
that characterises the whole clause. Each of these steps is outlined below:

– The abstract unification operation S1 = amgu(Xs, [X|V s], S0) of Jacobs
and Langen [14] provides a way of simulating concrete unification with set-
sharing abstractions. The algorithm satisfies the correctness criteria that if
θ0 ∈ γX (S0) and δ ∈ mgu(θ0(X), θ0([X|V s])) then θ1 = δ ◦ θ0 ∈ γX (S1)
where mgu(t1, t2) denotes the set of most general unifiers for the terms t1
and t2. The algorithm is formulated in terms of three auxiliary operations:
relevance operation rel(o, S) where o is any syntactic object, the cross union
T1 + T2 of two descriptions T1 and T2, and closure under union cl(S). The
relevance mapping is defined by rel(o, S) = {G ∈ S | var(o) ∩ G &= ∅}

4

where var(o) is the set of variables contained in the syntactic object o. The
mapping rel(o, S) thus returns those sharing groups G of S which share a
variable with o. Cross union is defined by T1 + T2 = {G ∪H | G ∈ T1 ∧ H ∈
T2} and thus computes the union of all the pairs of sharing groups in the
cross-product T1 × T2. The closure cl(S) is defined as the least superset
of S satisfies the closure property that if G ∈ cl(S) and H ∈ cl(S) then
G ∪ H ∈ cl(S). With these operations in place, abstract unification can be
defined thus amgu(t1, t2, S) = (S\(T1∪T2))∪cl(T1+T2) where Ti = rel(ti, S).
(This definition is actually a reformulation [10] of the classic definition [14]
that is better suited to illustrate our purposes). In the particular case of
S1 = amgu(Xs, [X|V s], S0) it follows that:

T1 = rel(Xs, S0) = {{Xs}}
T2 = rel([X|V s], S0) = {{V s}, {X}}

T1 + T2 = {{V s, Xs}, {X, Xs}}
cl(T1 + T2) = {{V s, Xs}, {V s, X, Xs}, {X, Xs}}

and hence S1 = {∅, {V s, Xs}, {V s, X, Xs}, {Ws}, {X, Xs}, {Y s}, {Zs}}.
– Repeating this process for S2 = amgu(Zs, [X|Ws], S1) yields S2 = {∅,

{V s, Ws, X, Xs, Zs}, {V s, X, Xs, Zs}, {V s, Xs}, {Ws, X, Xs, Zs},
{Ws, Zs}, {X, Xs, Zs}, {Y s}}.

– Next, the bindings imposed by the body atom append(V s, Y s, Ws) need to
be added to S2. The technical problem is that these bindings are recorded in
J2, not in terms of append(V s, Y s, Ws), but in terms of a renaming of the
atom, that is, append(Xs, Y s, Zs). (This problem manifests itself because,
in theory, interpretations are defined as sets of constrained atoms where each
constrained atom represents a set of constrained atoms that are equivalent
under variable renaming [4, 11].) This problem is resolved, in practise, by
extending S2 to give S3 = S2 ∪ {{Xs, Zs}, {Y s, Zs}, {Xs, Y s, Zs}} where
Xs, Y s and Zs are fresh variables. Then a series of abstract unifications
are applied which are interleaved with projection operations to incremen-
tally remove the freshly introduced variables. This strategy proceeds thus:
S4 = amgu(V s, Xs, S3), S5 = S4 ! (X \ {Xs}), S6 = amgu(Y s, Y s, S5),
S7 = S6 ! (X \ {Y s}), S8 = amgu(Ws, Zs, S7) and S9 = S8 ! (X \ {Zs}).
The projection operation ! is defined S ! Y = {G ∩ Y | G ∈ S} and
eliminates all variables from S other than those drawn from Y . Projection
preserves correctness since γX (S) ⊆ γX (S ! Y). This strategy computes the
following descriptions for S4, . . . , S9:

S4 = {∅, {Xs, Y s, Zs, V s, Ws, X, Xs, Zs}, {Xs, Y s, Zs, V s, X, Xs, Zs},
{Xs, Y s, Zs, V s, Xs}, {Xs, Zs, V s, Ws, X, Xs, Zs},
{Xs, Zs, V s, X, Xs, Zs}, {Xs, Zs, V s, Xs}, {Y s, Zs},
{Ws, X, Xs, Zs}, {Ws, Zs}, {X, Xs, Zs}, {Y s}}

S5 = {∅, {Y s, Zs, V s, Ws, X, Xs, Zs}, {Y s, Zs, V s, X, Xs, Zs},
{Y s, Zs, V s, xs}, {Zs, V s, Ws, X, Xs, Zs}
{Zs, V s, X, Xs, Zs}, {Zs, V s, Xs}, {Y s, Zs},
{Ws, X, Xs, Zs}, {Ws, Zs}, {X, Xs, Zs}, {Y s}}

5

...
S8 = {∅, {Zs, V s, Ws, X, Xs, Y s, Zs}, {Zs, V s, Ws, Xs, Y s, Zs},

{Zs, V s, Ws, X, Xs, Zs}, {Zs, V s, Ws, Xs, Zs},
{Zs, Ws, X, Xs, Y s, Zs}, {Zs, Ws, Y s, Zs}, {X, Xs, Zs}}

S9 = {∅, {V s, Ws, X, Xs, Y s, Zs}, {V s, Ws, Xs, Y s, Zs},
{V s, Ws, X, Xs, Zs}, {V s, Ws, Xs, Zs},
{Ws, X, Xs, Y s, Zs}, {Ws, Y s, Zs}, {X, Xs, Zs}}

It should be noted that in these steps, abstract matching can be substi-
tuted for abstract unification. This can improve both the precision and the
efficiency [13] but does not reduce the overall number of closures.

The description S9 expresses the bindings imposed on the variables of the
whole clause as a result of the unification and the body atom. The restriction
S10 = S9 ! {Xs, Y s, Zs} = {∅, {Xs, Zs}, {Xs, Y s, Zs}, {Y s, Zs}} then de-
scribes these bindings solely in term of the variables in the head. Since S10

coincides with SJ2 it follows that a fixpoint has been reached and therefore J2

faithfully describes the limit interpretation I. The observation that motivated
this work is that this application of the abstract T operator alone, requires 5
closure calculations to compute S1, S2, S4, S6 and S8 each of which are non-
trivial descriptions that are defined over at least 6 variables. Yet the objective
is merely to compute S10 which is necessarily defined over just 3 variables.

2.3 Reformulating set-sharing domain operations

One solution to the problem of calculating closures is to not compute them im-
mediately, but defer evaluation until a more propitious moment, that is, when the
descriptions contain less variables. Consider again the definition amgu(t1, t2, S) =
(S\(T1∪T2))∪cl(T1+T2). Instead of computing cl(T1+T2), the strategy is to tag
all the groups within T1+T2 with an identifier — a unique number — that iden-
tifies those groups that participate in a particular closure. The tags are retained
until head projection whereupon they are used to activate closure calculation.
Then the tags are discarded. This idea leads to an abstract unification operator
that is defined amgu′(t1, t2, n, S) = (S \(T1∪T2))∪tag(T1+′T2, n) where the de-
scriptions S, T1, T2 are enriched with tagging information and n is a new tag that
distinguishes those groups generated from T1 +′ T2. Formally, descriptions are
drawn from a domain Sharing′X = ℘(℘(X) × ℘(N)) since, in general, a sharing
group can own several tags. (Elements of this domain are only used for inter-
mediate calculations and the infinite nature of Sharing′X does not compromise
termination.) The tagging operation tag(S, n) inserts a tag n into each group in
S and thus tag(S, n) = {〈G, N∪{n}〉 | 〈G, N〉 ∈ S}. Over this new domain, cross
union is redefined T1 +′ T2 = {〈G ∪ H, N ∪ M〉 | 〈G, N〉 ∈ T1 ∧ 〈H, M〉 ∈ T2}.
Note that rel can be used without adaption.

Now reconsider the computation of J3 using the second clause. The initial
description is again S′

0 = {∅, {V s}, {Ws}, {X}, {Xs}, {Y s}, {Zs}} but with

6

the interpretation that an untagged group G is actually syntactic sugar for a
pair 〈G, ∅〉 that is equipped with an empty set of tags. Then S′

0 ∈ Sharing′X .
Each application of abstract unification is required to introduce a fresh identifier
and these are chosen to be 1 and 2 when computing S′

1 and S′
2. Computation

unfolds as follows:

– Applying S′
1 = amgu′(Xs, [X|V s], 1, S′

0) it follows that:

T1 = rel(Xs, S′
0) = {{Xs}}

T2 = rel([X|V s], S′
0) = {{V s}, {X}}

T1 +′ T2 = {{V s, Xs}, {X, Xs}}
tag(T1 +′ T2, 1) = {〈{V s, Xs}, {1}〉, 〈{X, Xs}, {1}〉}

hence S′
1 = {∅, 〈{V s, Xs}, {1}〉, {Ws}, 〈{X, Xs}, {1}〉, {Y s}, {Zs}}.

– Repeating this strategy for S′
2 = amgu′(Zs, [X|Ws], 2, S′

1) yields:

T1 = rel(Zs, S′
1) = {{Zs}}

T2 = rel([X|Ws], S′
1) = {{Ws}, 〈{X, Xs}, {1}〉}

T1 +′ T2 = {{Ws, Zs}, 〈{X, Xs, Zs}, {1}〉}
tag(T1 +′ T2, 2) = {〈{Ws, Zs}, {2}〉, 〈{X, Xs, Zs}, {1, 2}〉}

thus S′
2 = {∅, 〈{V s, Xs}, {1}〉, 〈{Ws, Zs}, {2}〉, 〈{X, Xs, Zs}, {1, 2}〉, {Y s}}.

The identifiers 1 and 2 indicate which groups participate in which closures.
The group {X, Xs, Zs} is tagged with {1, 2} since it is involved in both
closures. Note that, unlike before, |S′

2| < |S′
1| < |S′

0|.
– The bindings from the body atom are added by again extending S′

2 to
S′

3 = S′
2 ∪ {{Xs, Zs}, {Y s, Zs}, {Xs, Y s, Zs}}. The interwoven unifica-

tion and projection steps are modified by introducing fresh identifers and
by redefining projection so that S !′ Y = {〈G ∩ Y, N〉 | 〈G, N〉 ∈ S}. Hence
S′

4 = amgu′(V s, Xs, 3, S′
3), S′

5 = S′
4 !′ (X \ Xs), S′

6 = amgu(Y s, Y s, 4, S′
5),

S′
7 = S′

6 !′ (X \ Y s), S′
8 = amgu′(Ws, Zs, 5, S′

7) and S′
9 = S′

8 !′ (X \ Zs)
which generates the following sequence of descriptions:

S′
4 = {∅, 〈{Xs, Zs, V s, Xs}, {1, 3}〉, 〈{Xs, Y s, Zs, V s, Xs}, {1, 3}〉,

{Y s, Zs}, 〈{Ws, Zs}, {2}〉, 〈{X, Xs, Zs}, {1, 2}〉, {Y s}}
S′

5 = {∅, 〈{Zs, V s, Xs}, {1, 3}〉, 〈{Y s, Zs, V s, Xs}, {1, 3}〉,
{Y s, Zs}, 〈{Ws, Zs}, {2}〉, 〈{X, Xs, Zs}, {1, 2}〉, {Y s}}

S′
6 = {∅, 〈{Zs, V s, Xs}, {1, 3}〉, 〈{Y s, Zs, V s, Xs, Y s}, {1, 3, 4}〉,

〈{Y s, Zs, Y s}, {4}〉, 〈{Ws, Zs}, {2}〉, 〈{X, Xs, Zs}, {1, 2}〉}
S′

7 = {∅, 〈{Zs, V s, Xs}, {1, 3}〉, 〈{Zs, V s, Xs, Y s}, {1, 3, 4}〉,
〈{Zs, Y s}, {4}〉, 〈{Ws, Zs}, {2}〉, 〈{X, Xs, Zs}, {1, 2}〉}

S′
8 = {∅, 〈{Zs, V s, Xs, Ws, Zs}, {1, 2, 3, 5}〉, 〈{Zs, Y s, Ws, Zs}, {2, 4, 5}〉,

〈{Zs, V s, Xs, Y s, Ws, Zs}, {1, 2, 3, 4, 5}〉, 〈{X, Xs, Zs}, {1, 2}〉}
S′

9 = {∅, 〈{V s, Xs, Ws, Zs}, {1, 2, 3, 5}〉, 〈{Y s, Ws, Zs}, {2, 4, 5}〉,
〈{V s, Xs, Y s, Ws, Zs}, {1, 2, 3, 4, 5}〉, 〈{X, Xs, Zs}, {1, 2}〉}

Computing S′
10 = S′

9 !′ X \ {Xs, Y s, Zs} restricts S′
9 to those variables in the

head of the clause which yields the description S′
10 = {∅, 〈{Xs, Zs}, {1, 2, 3, 5}〉,

〈{Xs, Zs}, {1, 2, 3, 4, 5}〉, 〈{Y s, Zs}, {2, 4, 5}〉, 〈{Xs, Zs}, {1, 2}〉}. Now, only the
pending closures remain to be evaluated.

7

2.4 Evaluating pending closures

The pending closures can be activated by applying a closure operation cl(S, i)
for each identifier i contained within S. The operation cl(S, i) is a form of closure
under union that is sensitive to i in the sense that it only merges two pairs 〈G, I〉
and 〈H, J〉 when both I and J contain the identifier i. The merge of these pairs is
defined as 〈G∪H, I∪J〉 so that merge combines both the sharing groups and the
tagging sets. Like classic closure, cl(S, i) performs repeatedly merging until no
new element can be generated. To express this process, cl(S, i) is formulated in
terms of clK(S) = S∪{〈G∪H, I∪J〉 | {〈G, I〉, 〈H, J〉} ⊆ S∧I∩J∩K &= ∅} where
K ⊆ N. Then cl(S, i) can be defined as the limit of a sequence cl(S, i) = ∪∞

j=0Sj

where S0 = S, Sj = cl{i}(Sj−1). For instance, continuing with the example
S′

10 = {∅, 〈{Xs, Zs}, {1, 2, 3, 5}〉, 〈{Xs, Zs}, {1, 2, 3, 4, 5}〉, 〈{Y s, Zs}, {2, 4, 5}〉,
〈{Xs, Zs}, {1, 2}〉}, then cl{4}(S′

10) = S′
10 ∪ {〈{Xs, Y s, Zs}, {1, 2, 3, 4, 5}〉}. In

fact, in this case, no further applications of cl{4} are required for before conver-
gence is obtained and cl(S′

10, 4) = cl{4}(S′
10). In general, cl(S, i) will only need

to be applied a finite number of times before convergence is reached.
Applying the closure operator cl(S, i) is sufficient to evaluate the closure that

is delimited by i; a single application of cl(S, i) is not sufficient to active all the
pending closures. Therefore cl(S, i) is itself iteratively applied by computing the
sequence of descriptions T0 = S and Ti = cl(Ti−1, i) that culminates in Tn where
n is understood to be the maximal identifier of S. Henceforth, let cl′(S) = Tn.
Returning to the running example, cl′(S′

10) = {∅, 〈{Xs, Y s, Zs}, {1, 2, 4, 5}〉,
{Xs, Y s, Zs}, {1, 2, 3, 4, 5}〉, 〈{Xs, Zs}, {1, 2, 3, 5}〉, 〈{Xs, Zs}, {1, 2, 3, 4, 5}〉,
〈{Y s, Zs}, {2, 4, 5}〉, 〈{Xs, Zs}, {1, 2}〉}.

2.5 Collapsing closures: the duplicated group rule

The remaining tags can be eliminated with untag(S) = {G | 〈G, N〉 ∈ S}. Com-
posing and then applying these two operations to S′

10 gives untag(cl′(S′
10)) =

{{Xs, Y s, Zs}, {Xs, Zs}, {Y s, Zs}} as desired. Although this is an advance —
closure calculations have been collapsed to range over the variables of the head
rather than the clause — it does not exploit the fact that the closure calculations
for different identifiers can be collapsed into a single computation.

To see this, observe that S′
10 contains three pairs 〈G, N1〉, 〈G, N2〉 and 〈G, N3〉

where G = {Xs, Zs}, N1 = {1, 2}, N2 = {1, 2, 3, 5} and N2 = {1, 2, 3, 4, 5}. The
pairs 〈G, N1〉 and 〈G, N2〉 are redundant since N1 ⊆ N3 and N2 ⊆ N3. Removing
these pairs from S′

10 yields the description S′
11 = {∅, 〈{Xs, Zs}, {1, 2, 3, 4, 5}〉,

〈{Y s, Zs}, {2, 4, 5}〉} which compromises neither correctness nor precision since
untag(cl′(S′

10)) = untag(cl′(S′
11)). Actually, the underlying principle is not that

of eliminating a pair that shares a common group with another pair whose iden-
tifiers subsume it, but rather that all pairs which share a common group can
merged into single pair. In this particular case of S′

10, the three pairs can be
combined into the single pair 〈G, N1 ∪ N2 ∪ N3〉 that subsumes them all; S′

10

merely illustrates the special case of when N1 ∪ N2 ∪ N3 = N3. In general, if
{〈G, N〉, 〈G, M〉} ⊆ S, N∩M &= ∅ and S′ = (S \{〈G, N〉, 〈G, M〉})∪{〈G, N∪M〉}

8

then untag(cl′(S)) = untag(cl′(S′)). Henceforth this equivalence will be referred
to as the duplicated group rule.

2.6 Collapsing closures: the uniqueness rule

Further reductions can be applied. Since the identifiers 1 and 3 occur in just one
pair, it follows that these identifiers can be immediately removed from S′

11 to
obtain S′

12 = {∅, 〈{Xs, Zs}, {2, 4, 5}〉, 〈{Y s, Zs}, {2, 4, 5}〉} whilst preserving the
relationship untag(cl′(S′

10)) = untag(cl′(S′
12)). This strategy of removing those

identifiers that occur singly will henceforth be called the uniqueness rule.

2.7 Collapsing closures: the covering rule

Moreover, identifier 2 always occurs within a set of identifiers that also contains
4. In this sense 4 is said to cover 2. The value of this concept is that if one
identifier is covered by another, then the first identifier is redundant. Since 5
covers both 2 and 4, then both 2 and 4 are redundant and can be removed from
S′

12 to obtain S′
13 = {∅, 〈{Xs, Zs}, {5}〉, 〈{Y s, Zs}, {5}〉} whilst again preserv-

ing untag(cl′(S′
10)) = untag(cl′(S′

13)). This form of reduction will be called the
covering rule. The key point is that by applying these three rules S′

10 can be sim-
plified to S′

13 which only requires one application cl(S′
13, 5) followed by untag to

evaluate the remaining closure. This results in untag(cl(S′
13, 5)) = {∅, {Xs, Zs},

{Y s, Zs}, {Xs, Y s, Zs}} as required; the same result as classic set-sharing is
derived but with a significant reduction in closure calculation.

3 Equivalence results

This section reports some new equivalence results which show that neither clo-
sure collapsing nor delaying closure evaluation incur a precision loss over classic
set-sharing. The results are summarised in sections 3.1 and 3.2 respectively.

3.1 Equivalence rules for collapsing closures

The closure operator cl′(S) applies cl(S, i) for each identifier i to evaluate each
pending closure in turn. This offers a sequential model for computing cl′(S). The
following result provides an alternative parallel model for closure evaluation.

Proposition 1. cl′(S) = ∪∞
i=0Si where S0 = S and Si+1 = clN(Si).

The force of this result is twofold. Firstly, it can save passing over S multiply,
once for each identifier. Secondly, it provides a way for arguing correctness of the
three collapsing rules. For pedagogical reasons, these rules were introduced in
terms of the sequential model of cl′(S) evaluation, yet they are still applicable in
the parallel setting. This is because the cost of closure calculation is dominated
by the cost of the underlying set operations and therefore any reduction in the
number or size of these sets is useful. For completeness, the rules are formally
stated below, complete with a counter-example which illustrates the need for the
M ∩ N &= ∅ condition in the duplicated group rule.

9

Proposition 2 (duplicated group rule). Suppose 〈G, M〉 ∈ S, 〈G, N〉 ∈ S
and M ∩ N &= ∅. Then untag(cl′(S)) = untag(cl′(S′)) where:

S′ = (S \ {〈G, M〉, 〈G, N〉}) ∪ {〈G, M ∪ N〉}

Example 1. The following values of S and S′ illustrate the necessity of the
N ∩ M &= ∅ condition in the duplicated group rule. This condition bars the pairs
〈{y}, {1}〉 and 〈{y}, {2}〉 within S from being merged to obtain S′. Merging
looses equivalence since {x, y, z} ∈ untag(cl′(S′

3)) but {x, y, z} &∈ untag(cl′(S3)).

S = {〈{x}, {1}〉, 〈{y}, {1}〉, 〈{y}, {2}〉, 〈{z}, {2}〉}
S1 = cl(S, 1) = {〈{x}, {1}〉, 〈{x, y}, {1}〉, 〈{y}, {1}〉, 〈{y}, {2}〉, 〈{z}, {2}〉}

S2 = cl(S1, 2) = {〈{x}, {1}〉, 〈{x, y}, {1}〉, 〈{y}, {1}〉, 〈{y}, {2}〉, 〈{y, z}, {2}〉,
〈{z}, {2}〉}

S3 = untag(S2) = {{x}, {x, y}, {y}, {y, z}, {z}}

S′ = {〈{x}, {1}〉, 〈{y}, {1, 2}〉, 〈{z}, {2}〉}
S′

1 = cl(S′, 1) = {〈{x}, {1}〉, 〈{x, y}, {1, 2}〉, 〈{y}, {1, 2}〉, 〈{z}, {2}〉}
S′

2 = cl(S′
2, 2) = {〈{x}, {1}〉, 〈{x, y}, {1, 2}〉, 〈{x, y, z}, {1, 2}〉, 〈{y}, {1, 2}〉,

〈{y, z}, {1, 2}〉, 〈{z}, {2}〉}
S′

3 = untag(S′
2) = {{x}, {x, y}, {x, y, z}, {y}, {y, z}, {z}}

Proposition 3 (uniqueness rule). Suppose 〈G, N〉 is the only element of S
for which n ∈ N . Then untag(cl′(S)) = untag(cl′(S′)) where:

S′ = (S \ {〈G, N〉}) ∪ {〈G, N \ {n}〉}

Proposition 4 (covering rule). Suppose that n &= m and that if n ∈ N and
〈G, N〉 ∈ S then m ∈ N . Then untag(cl′(S)) = untag(cl′(S′)) where:

S′ = {〈G, N \ {n}〉 | 〈G, N〉 ∈ S}

3.2 Equivalence of pending closures

This paper proposes the general strategy of delaying closure evaluation until
a time when the pending closures can be evaluated over fewer variables. This
technique of procrastination is founded on lemma 1. The first result stated in the
lemma explains how amgu′ is basically a reformulation of amgu that postpones
the closure calculation (providing its input is closed); in the amgu closure arises
within the operator whereas in the amgu′ closure is applied after the operator.
The second result states a circumstance in which a closure can be avoided; that
it is not necessary to apply amgu′ to an S′ that is closed, ie. it is not necessary
to compute cl′(S′), providing that the result of the amgu′ is then closed. The
strength of these two results is that they can be composed to show that only one
single closure need be applied at the end of a sequence of amgu′ applications.
This leads to the main result — theorem 1 — which is stated immediately after
the lemma. The condition in the lemma on i asserts that i is a fresh tag.

10

Lemma 1. Suppose that i &∈ I for all 〈G, I〉 ∈ S′. Then
– if cl′(S′) = S′ then untag(cl(amgu′(s, t, i, S′), i)) = amgu(s, t, untag(S′))
– cl′(amgu′(s, t, i, S′)) = cl′(amgu′(s, t, i, cl′(S′)))

Example 2. Let t = f(y, z) and S′ = {〈{v}, {1}〉, 〈{x}, ∅〉, 〈{y}, {1}〉, 〈{z}, ∅〉}.
Then cl′(S′) = {〈{v}, {1}〉, 〈{v, y}, {1}〉, 〈{x}, ∅〉, 〈{y}, {1}〉, 〈{z}, ∅〉} and

amgu(x, t, untag(cl′(S′))) = {{v}, {v, x, y}, {v, x, y, z}, {x, y}, {x, y, z}, {x, z}}
amgu′(x, t, 2, cl′(S′)) = {〈{v}, {1}〉, 〈{v, x, y}, {1, 2}〉,

〈{x, y}, {1, 2}〉, 〈{x, z}, {2}〉}
cl(amgu′(x, t, 2, cl′(S′)), 2) = {〈{v}, {1}〉, 〈{v, x, y}, {1, 2}〉, 〈{v, x, y, z}, {1, 2}〉,

〈{x, y}, {1, 2}〉, 〈{x, y, z}, {1, 2}〉, 〈{x, z}, {2}〉}
cl′(amgu′(x, t, 2, cl′(S′))) = {〈{v}, {1}〉, 〈{v, x, y}, {1, 2}〉, 〈{v, x, y, z}, {1, 2}〉,

〈{x, y}, {1, 2}〉, 〈{x, y, z}, {1, 2}〉, 〈{x, z}, {2}〉}
amgu′(x, t, 2, S′) = {〈{v}, {1}〉, 〈{x, y}, {1, 2}〉, 〈{x, z}, {2}〉}

cl′(amgu′(x, t, 2, S′)) = {〈{v}, {1}〉, 〈{v, x, y}, {1, 2}〉, 〈{v, x, y, z}, {1, 2}〉,
〈{x, y}, {1, 2}〉, 〈{x, y, z}, {1, 2}〉, 〈{x, z}, {2}〉}

Theorem 1. Let s1 = t1, . . . , sn = tn be a sequence of syntactic equations and

S0 = S Si = amgu(si, ti, Si−1)
S′

0 = {〈G, ∅〉 | G ∈ S} S′
i = amgu′(si, ti, i, S′

i−1)

Then untag(cl′(S′
n)) = Sn.

Example 3. Consider the equations s1 = t1 and s2 = t2 where (s1 = t1) =
(w = f(x, y)) and (s2 = t2) = (x = z), S0 = αX (ε) and X = {w, x, y, z}. Then

S0 = {{w}, {x}, {y}, {z}} S′
0 = {〈{w},∅〉, 〈{x},∅〉, 〈{y},∅〉, 〈{z},∅〉}

S1 = {{w, x}, {w, y}, {w, x, y}, {z}} S′
1 = {〈{w, x},{1}〉, 〈{w, y},{1}〉, 〈{z},∅〉}

S2 = {{w, x, y, z}, {w, x, z}, {w, y}} S′
2 = {〈{w, x, z},{1, 2}〉, 〈{w, y},{1}〉}

Therefore cl′(S′
2) = {〈{w, x, y, z}, {1, 2}〉, 〈{w, x, z}, {1, 2}〉, 〈{w, y}, {1}〉} and

untag(cl′(S′
2)) = {{w, x, y, z}, {w, x, z}, {w, y}} = S2 as theorem 1 predicts.

Theorem 1 can be taken further to obtain corollary 1 by exploiting the prop-
erty that projection !′ distributes over closure cl′. The force of this result — that
is formally stated in proposition 5 — is that if the set of variables Y is smaller
than var(S′) then cl′(S′ !′ Y) is cheaper to compute than cl′(S′) ! Y .

Proposition 5. cl′(S′) !′ Y = cl′(S′ !′ Y) where Y ⊆ V
Corollary 1. Let s1 = t1, . . . , sn = tn be a sequence of syntactic equations and

S0 = S Si = amgu(si, ti, Si−1)
S′

0 = {〈G, ∅〉 | G ∈ S} S′
i = amgu′(si, ti, i, S′

i−1)

Then untag(cl′(S′
n !′ Y ′)) = Sn ! Y .

Example 4. Continuing with example 3, suppose that the objective is to compute
S2 ! Y where Y = {x, y}. The corollary asserts S2 ! Y = untag(cl′(S′

2 !′ Y)) and
cl′({〈{x},{1, 2}〉, 〈{y},{1}〉}) = {〈{x},{1, 2}〉, 〈{x, y},{1, 2}〉, 〈{y},{1}〉} whence
untag(cl′(S′

2 !′ Y)) = {{x}, {x, y}, {y}}. Indeed, from example 3 it can be seen
that S2 ! Y = {{x}, {x, y}, {y}}.

11

4 Implementation

In order to assess the usefulness of collapsing closures, both classic set-
sharing [14] and set-sharing with closure collapsing have been implemented in
Sicstus 3.8.6. To obtain a credible comparison, both techniques were imple-
mented, wherever possible, with the same data-structures and code. Both forms
of set-sharing were integrated into a goal-independent (bottom-up) fixpoint en-
gine and a goal-dependent (bottom-up) analyser that applied a magic transform
[12] to collect call and answer patterns. Both frameworks track set-sharing alone,
ie., they do not trace sharing as one component of a product domain [9]. This
was partly to isolate the impact of collapsing on set-sharing from the effect of
other domains (quantifying these interactions even for more conventional forms
of sharing is a long study within itself [3]) and partly as an experiment in worst-
case sharing. The rationale was that if closure collapsing had little impact in this
scenario, then it would not warrant investigating how the technique can be com-
posed with other domains. Both frameworks also computed strongly connected
components (SCCs) of the call-graph so as to stratify the fixpoint into a series
of fixpoints that stabilise on one SCC before moving onto another [12].

Table 1 summaries the four analysis combinations — goal-dependent versus
goal-independent and classic set-sharing versus set-sharing with collapsing —
for the series of common benchmark programs. As a sanity check of the theory,
success patterns derived by two forms of goal-independent analysis were verified
to be equivalent; likewise the call and answer patterns computed with collapsing
coincided exactly with those generated by classic set-sharing. The column labeled
T indicates the time in milliseconds required to compute the fixpoint on 2.4 GHz
PC equipped with 512 MBytes running Windows XP. The variance in timings
between different runs of all analyses was found to be negligible. For set-sharing
with collapsing, the timings were generated using sequential closure evaluation.
The dashed columns indicate that a timeout was exceeded. The column labeled
N records the total number of closure operations that were required (closures
over one group are counted as zero). The column labeled S reports the average
number of sharing groups that participate in a closure calculation and the column
labeled M gives the maximal number of groups that participated in a closure.

The T columns suggest that collapsing closures is potentially useful, though
actual speedup will depend on the actual implementation, the overarching fix-
point framework and the underlying machine. The N , S and M columns present
a more abstract view of closure collapsing and suggest that the speedup stems
from reduced sharing groups manipulation; both the number of closures are re-
duced (due to the three simplification rules) and the complexity of each closure
is reduced (closures are applied to fewer and smaller sharing groups). Interest-
ingly, collapsing is not uniformly faster as is witnessed, by browse and conman,
for goal-independent and goal-dependent analysis. This is because S is very small
for these programs (2 or 3) even without collapsing. Therefore the overhead of
manipulating data-structures that are sets of pairs of sets (rather than merely
sets of sets) is not repaid by a commensurate reduction in closure calculation.

12

goal-independent goal-dependent
collapsed classic collapsed classic

file T N S M T N S M T N S M T N S M
8puzzle 47 31 7 12 2281 77 83 255 78 1 2 2 78 3 2 2

ann 2734 200 6 69 11661 806 14 336 5564 615 3 12 5812 2916 7 33
asm 172 247 2 9 140 563 4 42 937 500 5 148 20701 2299 10 484

boyer 31 110 2 7 47 233 3 64 218 251 4 27 453 740 5 112
browse 32 43 2 4 16 132 2 7 62 52 3 7 31 206 3 8

conman 1187 32 2 3 1235 136 3 8 1906 93 2 4 1813 326 2 16
crip 438 132 8 113 6766 946 15 216 5093 560 8 258 25483 3917 14 304

cry mult 5907 39 4 13 6219 201 6 32 12500 48 2 7 13016 460 9 32
cs r 2687 149 25 274 – – – – 516 32 2 8 3250 204 37 240

disj r 110 45 9 25 8500 321 24 240 219 16 2 3 94 105 2 6
dnf 2 0 0 0 2 28 2 3 31 6 2 2 16 44 2 3

draw 78 28 2 5 281 192 2 6 172 9 2 2 78 25 2 3
ga 203 47 11 50 672 141 12 187 1422 105 12 212 11966 348 15 580

gauss 16 13 3 7 15 81 3 26 47 27 5 17 94 190 5 88
kalah 78 62 3 11 250 204 8 84 141 7 2 6 109 25 7 63

life 516 33 3 7 547 114 6 32 1532 18 3 9 1500 77 3 14
lookup 2 7 2 4 2 34 4 8 15 8 3 4 2 52 3 8
matrix 8 12 2 5 3 54 2 12 63 67 3 21 63 265 4 48
math 31 45 3 6 31 216 3 12 46 43 3 10 31 210 3 24
maze 10 9 2 3 8 14 2 3 31 1 2 2 15 3 2 2

nbody 938 93 3 18 7344 267 18 1022 5641 489 6 94 – – – –
peep 125 333 3 15 329 619 5 108 5077 1576 6 44 17174 3752 10 704
peg 16 7 3 5 63 62 10 75 15 2 4 5 31 49 8 24

plan 62 73 4 26 300 193 8 108 249 178 4 18 499 769 6 112
press 266 293 5 28 641 801 7 70 1937 1184 5 45 6156 4137 8 168
qsort 15 2 3 4 16 12 2 6 16 1 2 2 16 42 2 5

queens 2 2 3 4 2 18 2 6 16 0 0 0 16 0 0 0
robot 63 49 2 10 63 179 4 24 265 203 4 19 281 669 5 32
ronp 47 35 7 31 640 185 13 87 297 137 10 32 2438 660 15 96

rotate 2 4 3 4 2 18 2 6 16 19 5 8 16 82 4 16
shape 31 8 9 14 328 77 28 64 63 32 6 14 672 220 21 64

tictactoe 63 54 6 9 12796 96 100 510 94 1 2 2 62 2 2 2
treeorder 32 28 6 17 469 102 11 120 734 154 8 87 14157 628 17 360

tsp 219 76 3 68 1156 239 10 88 407 253 2 18 187 628 3 28
yasmm 4614 9 3 8 – – – – 19716 40 9 24 – – – –

Table 1. Classic set-sharing versus set-sharing with collapsing

However, if S is large — which happens more often in goal-independent analysis
— then the speedup from collapsing closures can be considerable. For exam-
ple, collapsing requires only 63 milliseconds for tictactoe for goal-independent
analysis. Although these results are promising, they are not conclusive and fu-
ture work will quantify the impact of parallel closure evaluation and investigate
collapsing in the context of combined domains [9] and other frameworks [5, 7].

13

5 Related work

Independence information has many applications in logic programming that in-
clude occurs-check reduction [19], automatic parallelisation [17] and finite-tree
analysis [1]. Set-sharing analysis [14], as opposed to pair-sharing analysis [19],
has particularly attracted much attention. This is because researchers have been
repeatedly drawn to the algebraic properties of the domain since these offer
tantalising opportunities for implementation. For example, Bagnara et al. [2]
observe that set-sharing is redundant when the objective is to detect pairs of
independent variables. A sharing group G is redundant with respect to a set-
sharing abstraction S iff S contains the pair sharing information that G encodes.
The value of redundancy is that it reduces the complexity of abstract unification
to a quadratic operation. As a response to this work, Bueno et al. [6] argue that
the redundancy assumption is not always valid. Our work adds to this debate
by showing the closures are not always as expensive as one might expect.

Another thread of promising work is in representing set-sharing with Boolean
functions [10]. In this approach, closure under union is reformulated as a closure
operator that maps one function to the smallest function that contains it which
can be represented as conjunction of propositional Horn clauses. This operator,
though elegant, is non-trivial [18]. Nevertheless, this encoding is advantageous
since ROBDDs [18] provide a canonical representation for Boolean functions
which enables memoisation to be applied to avoid repeated closure calculation.

The most commonly deployed tactic for reducing the number of closure cal-
culations is to combine set-sharing with other abstract domains [3, 9] that can
be used to determine whether closure calculation is actually unnecessary. This
is not merely a computational tactic, but also a way to improve precision. Al-
though it seems straightforward to integrate groundness with closure collapsing,
future work will address the issue of how to fuse linearity [3, 9] with this tactic.

The work reported in this paper is hinted at by a recent paper of the au-
thors [16] that endeavors to compute closures in an entirely lazy fashion. Each
unevaluated closure is represented by a clique — a set of program variables —
that augments a standard set-sharing abstractions. Alas, the advantage of this
approach is compromised by the way cliques interact with projection operation
to loose precision. By way of contrast, this paper shows that projection is a
catalyst for collapsing closures which leads to a simpler tactic for avoiding work.

6 Conclusions

Two issues govern the efficiency of set-sharing analysis: the number of sharing
groups that participate in each closure operation and the total number of closures
that are applied. This paper proposes a new tactic for reducing the overhead
of closure calculation based on postponing closures until a propitious moment
when they can be applied on less variables. This collapses the size of closures
whilst collapsing one closure calculation into another. The resulting analysis is
as precise as classic set-sharing analysis.

14

Acknowledgments This work was funded by NSF grants CCR-0131862 and INT-
0327760, EPSRC grant EP/C015517 and the Royal Society grant 2005/R4-JP.

References

1. R. Bagnara, R. Gori, P. Hill, and E. Zaffanella. Finite-Tree Analysis for Constraint
Logic-Based Languages. Information and Computation, 193(2):84–116, 2004.

2. R. Bagnara, P. Hill, and E. Zaffanella. Set-Sharing is Redundant for Pair-Sharing.
Theoretical Computer Science, 277(1-2):3–46, 2002.

3. R. Bagnara, E. Zaffanella, and P. Hill. Enhanced Sharing Analysis Techniques: A
Comprehensive Evaluation. Theory and Practice of Logic Programming, 5, 2005.

4. A. Bossi, M. Gabbrielli, G. Levi, and M. Martelli. The s-Semantics Approach:
Theory and Applications. The Journal of Logic Programming, 19:149–197, 1994.

5. M. Bruynooghe. A Practical Framework for the Abstract Interpretation of Logic
Programs. The Journal of Logic Programming, 10(2):91–124, 1991.

6. F. Bueno and M. Garćıa de la Banda. Set-Sharing Is Not Always Redundant for
Pair-Sharing. In Symposium on Functional and Logic Programming, volume 2998
of LNCS, pages 117–131. Springer-Verlag, 2004.

7. M. Codish. Efficient Goal Directed Bottom-Up Evaluation of Logic Programs. The
Journal of Logic Programming, 38(3):355–370, 1999.

8. M. Codish, V. Lagoon, and F. Bueno. An Algebraic Approach to Sharing Analysis
of Logic Programs. The Journal of Logic Programming, 42(2):111–149, 2000.

9. M. Codish, A. Mulkers, M. Bruynooghe, M. Garćıa de la Banda, and
M. Hermenegildo. Improving Abstract Interpretations by Combining Domains.
ACM TOPLAS, 17(1):28–44, 1995.

10. M. Codish, H. Søndergaard, and P. Stuckey. Sharing and Groundness Dependencies
in Logic Programs. ACM TOPLAS, 21(5):948–976, 1999.

11. M. Falaschi, G. Levi, C. Palamidessi, and M. Martelli. Declarative Modeling
of the Operational Behavior of Logic Languages. Theoretical Computer Science,
69(3):289–318, 1989.

12. J. Gallagher. A Bottom-Up Analysis Toolkit. Technical Report 95-016, Depart-
ment of Computer Science, University of Bristol, 1995. (Invited paper at WAILL).

13. W. Hans and S. Winkler. Aliasing and Groundness Analysis of Logic Programs
through Abstract Interpretation and its Safety. Technical Report Nr. 92-27, RWTH
Aachen, Lehrstuhl für Informatik II Ahornstraße 55, W-5100 Aachen, 1992.

14. D. Jacobs and A. Langen. Static Analysis of Logic Programs for Independent
And-Parallelism. The Journal of Logic Programming, 13(2&3):291–314, 1992.

15. X. Li, A. King, and L. Lu. Correctness of Closure Collapsing. Technical Report
2-06, University of Kent, 2006. http://www.cs.kent.ac.uk/pubs/2006/2370.

16. X. Li, A. King, and L. Lu. Lazy Set-Sharing. In Symposium on Functional and
Logic Programming, volume 3945 of LNCS, pages 177–191. Springer-Verlag, 2006.

17. K. Muthukumar and M. Hermenegildo. Compile-Time Derivation of Variable De-
pendency Using Abstract Interpretation. The Journal of Logic Programming, 13(2-
3):315–347, 1992.

18. P. Schachte and H. Søndergaard. Closure Operators for ROBDDs. In Verification,
Model Checking and Abstract Interpretation, volume 3855 of LNCS, pages 1–16.
Springer-Verlag, 2006.

19. H. Søndergaard. An Application of Abstract Interpretation of Logic Programs:
Occur Check Reduction. In European Symposium on Programming, volume 213 of
LNCS, pages 327–338. Springer-Verlag, 1986.

15

