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Abstract

The composition of logic programs out of clauses has been studied
semantically, but not the composition of a single clause out of its com-
ponents. Structurally, a logic program can be regarded as a sentence in
clausal form. In his procedural interpretation of logic programs, Kowalski
has shown that a positive Horn clause can be viewed as a procedure in the
programming sense. This interpretation suggests a composition operator
for logic programs, the one where a clause results from composing a head
with a body. In this paper we give more detail to the procedural interpre-
tation by giving an algebraic characterization of Kowalski’s composition.
In addition, we give algebraic characterizations of the composition of goals
in a procedure body and for the composition of the predicate symbol with
the argument tuple within a goal. A starting point for the semantic opera-
tor corresponding to composition of goals is provided by Tarski’s cylindric
algebra semantics for first-order predicate logic. Tarski’s construction is
briefly reviewed and suitably modified. The additional semantic operators
are shown to be correct with respect to the fixpoint semantics of the logic
program as a whole.

1 Introduction

This paper concerns the semantics of the part of Prolog that remains
when the built-in predicates have been removed and when unification
is enhanced by the occurs check. Let us call this part “pure Prolog”.
It can be regarded as the result of Kowalski’s procedural interpretation
of positive Horn clauses [15, 14, 9]. The semantics of pure Prolog has
been given by proof theory, by model-theory, and by a fixpoint method
[24, 17, 2]. All three approaches follow the syntax of clausal form. As
a result, the procedural interpretation has been ignored. The purpose of
the present paper is to remedy this defect.

One of the symptoms of the current deficiency in the semantics of
Prolog is that procedures can only be recognized in an informal way.
As it stands, the procedural interpretation does not provide procedure-
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valued expressions that can be substituted for the procedure symbol in a
procedure call. Procedures are not “first-class citizens” the way functions
can be in functional programming [22].

Compositional semantics does provide this possibility. According to
this method, programs are expressions, consisting, if composite, of an
operation and its operand(s). The value of the composite expression is the
result of the operation on the values of its operands. The method is taken
for granted when doing school-room sums: the value of (4÷ 2)× (1+1) is
4 because the value of 4÷ 2 and 1 + 1 are both 2 and because 2× 2 = 4.
In the late sixties Landin [16] and Scott and Strachey [21] applied the
method to expressions that are programs.

In logic programming, compositional semantics seems to have been
used only for elucidating how the union of two logic programs affects the
definition of a predicate [7, 5]. In this paper we identify the compositions
that occur within a clause and give a compositional semantics for these.

There are several advantages to a compositional semantics for a pro-
gramming language. One such advantage is shared with denotational se-
mantics (which is, among other things, compositional): that it can guide
implementation [20]. The Warren Abstract Machine [25, 1] is an inge-
niously optimized theorem-prover. It is notoriously unsuited to logic pro-
grams where some relations are relations in the sense of, and of the size
typical in, relational databases. The compositional semantics presented
here decomposes logic programs down to single procedure symbols, which
take relations as value. This accommodates relations that are not defined
in the logic program itself.

Another advantage of compositional semantics is that it forces a lan-
guage to be modular. For example, in a functional language with composi-
tional semantics E0E1 is the result of applying the value of E0, which must
be a function, to the value of E1, which may or may not be a function.
The result can be a function, but need not be.

Compositionality requires that the value of E0E1 does not change
when E0 is replaced by a different expression with the same value. This
forces modularity in the sense that names of auxiliary functions occurring
in E0 do not affect its value, hence are local. Compositional semantics
endows logic programs with the same property. The value of a procedure
call p(t0, . . . , tn−1) is obtained by an operation on the value of p (which
is a relation) and the argument tuple 〈t0, . . . , tn−1〉. Again, the result
depends on the value of the relational expression substituted for p, not on
the expression itself.

Contributions of this paper When one attempts a compositional
semantics for the procedural interpretation of logic, it becomes apparent
that it needs development beyond Kowalski’s original formulation. This
is done in Section 3.

Section 4 contains no contributions. It needs to be included because
cylindric set algebras are a compositional semantics for first-order predi-
cate logic and hence are a candidate for compositional semantics for the
procedural interpretation of logic. This section includes enough to show
why these algebras are not suitable. We do find, however, an interesting
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connection between the tables introduced here and the cylinders of Tarski
(see Theorem 2).

Tables, their operations and some of their properties are described
in Section 5. This is the basis on which the compositional semantics of
Section 6 rests. Implications for modularity are discussed in Section 7.

2 Notation and terminology

In this section we collect terminology and notation that may differ between
authors.

2.1 General terminology

Definition 1 (tuple, function, index set, type, restriction, subtuple)
A tuple is a function t that maps every index i to t(i), which is called the
tuple’s component at i.

A function is a triple consisting a set that is its domain, a set that is
its co-domain, and a mapping that associates with every element of the
domain a unique element of the co-domain.

If the function is a tuple, then the domain is usually called “index set”.
The set of all functions with domain S and co-domain T is denoted

S → T . This set is often referred to as the type of the functions belonging
to it.

Let f be a function in S → T and let S′ be a subset of S. f ↓ S′ is
the restriction of f to S′. It has S′ as domain, T as co-domain and its
mapping associates f(x) ∈ T with every x ∈ S′.

If t is a tuple with index set I and if I ′ is a subset of I, then t ↓ I ′ is
the subtuple of t defined by I ′.

Definition 2 (relation) A relation with index set I and co-domain T
is a set of tuples that have I as index set and T as co-domain. An n-
ary relation is a relation that has as index set the set {0, . . . , n− 1} of
integers.

Note that a relation need not be an n-ary relation for any n. Indeed, any
set can be the index set of a relation.

Definition 3 (projection, cylindrification) Let r be a relation that
has I as index set. Let I ′ be a subset of I. The projection πI′(r) of r on
I ′ is {t ↓ I ′ | t ∈ r}.

The cylinder in I on a relation r′ with index set I ′ is denoted π−1

I (r′)
and is the greatest relation with index set I and co-domain T that has r′

as its projection on I ′; that is

π−1

I (r′) = ∪{ρ | πI′(ρ) = r′ and ρ has index set I and co-domain T}

2.2 Mathematical objects arising in connection

with the semantics of logic programs

To serve as semantic objects, three basic objects are defined independently
of another; all three are mutually disjoint sets:
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• H, an Herbrand universe

• V, a set of variables

• P , a set of predicate symbols, also called “procedure symbols”

From the three basic objects the following are derived:

• TV , the set of terms that contain no function symbols or constants
other than those occurring in H and no variables other than those
occurring in a subset V of V. We write T for TV .

• Substitutions, each of which is a tuple of type V → TV , for some
subset V of V. If θ is a substitution and θ(x) = t, then we say that
θ substitutes t for x. We may equate θ with the set {x = t | θ(x) =
t and x ∈ V } of term equations.

• Term equations are equations of the form t0 = t1, where t0 and t1 are
terms belonging to T . A set of term equations is said to be in solved
form if every left-hand side is a variable, and if all these variables
are different, and if all variables in the right-hand sides also occur
as a left-hand side. If a set of term equations has a solution, then it
has a solution in solved form.

We will not distinguish between term equations in solved form, sub-
stitutions, and tuples of elements of T with a subset of V as index
set.

• Relations consisting of tuples of elements of H that are indexed by
{0, . . . , n− 1}. To distinguish these from the next item, we refer to
them as integer-indexed relations.

• Relations consisting of tuples of elements of H that are indexed by
a subset V of V that is characteristic of the relation. We refer to
these as variable-indexed relations.

• The Herbrand base, which is the set of ground atoms.

• Herbrand interpretations, which are subsets of the Herbrand base.

• Relational interpretations, which are tuples of integer-indexed rela-
tions indexed by P .

2.3 Compositional semantics

Compositional semantics assigns the valueM(E) to the expression E. We
are interested in expressions that are programs. In this case the value is
the behaviour of the program. As “value” and “behaviour” do not match
very well, we often use “meaning” instead of “value” as a more neutral
term. It also happens to fit well with “semantics”.

Compositionality of the semantics means that if E is composed of
subexpressions E0 and E1, then M(E) is the result of an operation on
M(E0) andM(E1). An illustrative example [21] is found in the composi-
tional semantics of binary numerals. It specifies how integers are assigned
as meanings to binary numerals:

M(0) = 0;M(1) = 1;M(N0) = 2M(N);M(N1) = 2M(N) + 1
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3 The procedural interpretation of posi-

tive Horn clauses

3.1 The original procedural interpretation

Kowalski [15] gives the procedural interpretation of Horn clauses as fol-
lows:

A Horn clause B ← A1, . . . , Am, with m ≥ 0, is interpreted
as a procedure whose body {A1, . . . , Am} is a set of procedure
calls Ai. Top-down derivations are computations. Genera-
tion of a new goal statement from an old one by matching
the selected procedure call with the name B of a procedure
B ← A1, . . . , Am is a procedure invocation.

A logic program consists of a set of Horn clause procedures and
is activated by an initial goal statement.

Its semantics can be given as:

The ground substitution θ is a result of activating program P
with goal G if P ∪{Gθ} is false in all Herbrand interpretations.

For a more general characterization, see [6, 17, 2].

3.2 A complete procedural interpretation

The procedural interpretation of logic can be formalized by expressing it as
a procedural syntax. Kowalski proposed, in effect, B ← A0, . . . , Am−1 as
an alternative syntax for {B,¬A0, . . . ,¬Am−1}. To make the procedural
interpretation not only formal, but also to complete it, we propose the
syntax in Definition 4.

Definition 4 (procedural program) 1. A procedural program is a
tuple of procedures with index set P1.

2. A n-ary procedure is a set of n-ary clauses.

3. An n-ary clause is a pair consisting of a parameter tuple of order n
and a procedure body.

4. A procedure body is a set of procedure calls.

5. A procedure call is a pair consisting of an n-ary procedure symbol
and an argument tuple of order n.

6. A parameter tuple of order n and an argument tuple of order n are
both n-tuples of terms.

Let us consider as example a set P = {app,mem} of procedure symbols
and the procedural program in Figure 1; let us call is p. As p is a tuple
with P as index set, and as a tuple is a function, p can be specified by
p(app) = {(nil,y,y) :- {}, (u.x,y,u.z) :- {app(x,y,z)}}

p(mem) = {(x,y) :- {app(u,x.v,y)}}

1The procedure symbols in P index only one procedure. This differs from Prolog where

predicate symbols include an arity.
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app(nil,y,y). {app{(nil,y,y) :- {}

app(u.x,y,u.z) :- app(x,y,z). ,(u.x,y,u.z) :- {app(x,y,z)}

}

mem(x,y) :- app(u,x.v,y). ,mem{(x,y) :- {app(u,x.v,y)}}

}

Figure 1: A Prolog program (left) and an equivalent procedural program (right).

By itself, Definition 4 defines some procedural language. It is only of
interest in so far as it is related to clausal logic. Similarly, the relational
interpretations for procedural programs need to be related to Herbrand
interpretations. Hence the following definition.

Definition 5 (correspondence between logic and procedural programs)
An Herbrand interpretation I and a relational interpretation R correspond
to each other (I ∼ R) iff the following holds:
R(p) = {〈a0, . . . , an−1〉 | p(a0, . . . , an−1) ∈ I} for all p ∈ P and
I = {p(a0, . . . , an−1) | p ∈ P and 〈a0, . . . , an−1〉 ∈ R(p)}

Let S be a sentence consisting positive Horn clauses (for which we
assume Kowalski’s notation). Let P be a procedural program. S and P
correspond to each other (S ∼ P ) iff the following holds:
P (p) = {partuple :- body | p(partuple)← body ∈ S} for all p ∈ P and
S = {p(partuple)← body | ∃p ∈ P such that partuple :- body ∈ P (p)}.

Each of the syntactical rules of Definition 4 specifies that a certain type
of expression is composed of sub-expressions. Compositional semantics
then assigns to each of syntactical rules a semantical rule that specifies the
corresponding operation on meanings of the constituent sub-expressions.

The next section introduces the mathematical objects that are suitable
meanings. Section 6 describes the semantical rules.

Before starting on this we give an informal idea of what is involved.
Let us work through the items in Definition 4, starting at the bottom.

Rule 5 Consider the atoms p(x, v, w) and p(u,w, y). Although both involve
the same relation p, they are different calls and have different mean-
ings. These meanings are the result of a binary operation with the
relation p and the tuple of arguments as operands.

The meaning of the entire call can be viewed as a selection from the
tuples that constitute relation p. The selection is specified by the
argument tuple, and selects the tuples from the relation that match
the argument tuple. Each such match takes the form of a substitu-
tion for the variables in the argument tuple. Therefore the result of
the operation, which we call filtering, is a set of such substitutions.

As such sets are best presented in tabular form, we call the result
of the the filtering operation on a relation and an argument tuple a
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table (see Definition 6).

Rule 4 We define the product operation on tables (see Definition 8) by means
of which procedure bodies obtain values. These values are tables.
Theorem 2 shows how product is related to the semantic counterpart
of conjunction in Tarski’s cylindric set algebra.

Rule 3 The meaning of a clause is the n-ary relation that results from an
operation on the meanings of the constituents of the clause: the
parameter tuple and the body. As a parameter tuple has itself as
meaning, we define an operation, which we call projection, on a
parameter tuple of order n and a table (see Definition 11). The
operation yields an n-ary relation.

This completes the preview of the novel semantic operations: filtering,
product, and projection. The remaining operations, those arising from
Rules 1 and 2, will not require any explanation beyond the following few
lines. In Rule 2, a procedure symbol is combined with a set of clauses. As
the meaning of a clause is an n-ary relation, a set of such clauses denotes
the union of these relations, that is, an n-ary relation again. Rule 2 merely
creates a pair consisting of a procedure symbol and a relation.

Rule 1 combines into a set a number of procedures, each of which
is a pair of a procedure symbol and a relation. The semantic object
corresponding to a program is therefore a tuple of procedures indexed by
P , the set of procedure symbols.

4 Compositional semantics for logic

Though there does not seem to exist any compositional semantics for the
procedural interpretation of logic, one does exist for logic that is parsed
in the conventional way. It is called algebraic logic, so named by Halmos
[10]. Algebraic logic is what would be called compositional semantics if it
would concern a programming language2. Therefore, algebraic logic is a
good starting point for a compositional semantics of logic programs.

Algebraic logic assigns elements of an algebra as meanings to formulas
of logic; it assigns operations of the algebra as meaning to the connectives
that compose logical formulas. A better known alternative to the meaning
algebras used by Halmos are the cylindric set algebras of Tarski [11, 23]
of which we give a brief sketch here. Tarski’s approach is based on the
algebraic interpretation of propositional logic due to Boole [3].

4.1 Propositional logic and Boolean algebra

In general, a Boolean algebra is any algebra that satisfies certain defining
axioms. A Boolean set algebra is a special case. It is described as the
tuple 〈S,∪,∩,∼, ∅, U〉 where S is a set of subsets of U that contains ∅ and

2This comparison does not do justice to algebraic logic. The translation of logic to algebra

is only the first step in algebraic logic. The goal is to use substantial results in algebra to

obtain, by mere translation, important results in logic that had so far only been proved in an

ad hoc manner.
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U and is closed under union, intersection, and complementation (here
denoted as ∼).

A special case of a Boolean set algebra is the one where U is the
Cartesian product Dn, for some given non-empty set D. Recall that the
Cartesian product Dn is the set of all n-tuples of elements of D.

In the Boolean set algebra, we choose U = D0 = {〈〉} and S =
{{}, {〈〉}}. As a result, the algebra has two elements: {} and {〈〉}. Boolean
addition, multiplication, and complementation then become set union, set
intersection, and set complement, respectively. Let M be the mapping
from propositional formulas to the elements of the Boolean algebra. We
have thatM(p0∨p1) =M(p0)∪M(p1),M(p0∧p1) =M(p0)∩M(p1), and
M(¬p) = ∼M(p) when we defineM(true) = {〈〉} andM(false) = {}.

4.2 Predicate logic and cylindric set algebra

Tarski sought an algebra that would do for first-order predicate logic what
Boolean algebra does for propositional logic. The result was cylindric set
algebra [23, 11].

In model theory, formulas correspond to relations. If this intuitively
attractive feature is to be retained, a puzzle needs to be solved. Consider
M(p(x, y) ∧ p(y, z)). As the formula has three free variables, this should
be a ternary relation. As conjunction means the same in predicate logic
as in propositional logic, this ternary relation should be the result of set
intersection. But the arguments of the set intersection are derived from
binary predicates.

Another part of the puzzle is that p(x, y) and p(y, z) should both
denote binary relations, but these should be different and cannot both be
the relation denoted by p.

Tarski solved these conundrums by mapping every formula to a relation
consisting tuples indexed by all the variables in the language. He assumed
a countable infinity of variables in the language, in a given order. In this
way he could identify each variable with a natural number. Thus this
meaning algebra has as elements relations that are subsets of the Cartesian
product Dω .

The choice of the two 0-ary relations on D for the two elements of
the Boolean algebra for propositional logic is now clear: the number of
variables in a propositional formula is 0.

A first-order predicate logic formula without free variables is either
true or false. It is mapped accordingly to the full or empty ω-ary relation
over D; that is, to Dω or ∅. At first sight it might seem right to map
a formula F [x0, . . . , xn−1] with free variables x0, . . . , xn−1 to the relation
that consists of all the tuples 〈a0, . . . , an−1〉 such that F [a0, . . . , an−1] is
true. By mapping instead this formula to the cylinder on this relation with
respect to all variables, Tarski ensured thatM(p0∨p1) =M(p0)∪M(p1)
and M(p0 ∧ p1) = M(p0) ∩M(p1), just as in the case of propositional
logic.

Going back to the above puzzle, we see thatM(p(x, y)) andM(p(y, z))
are not binary relations but ω-ary relations that are cylinders on a binary
relation. Though the binary relation denoted by p in these formulas is the
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same, the cylinders on M(p(x, y)) and M(p(y, z)) are different. In this
wayM(p(x, y)) ∩M(p(y, z)) is a cylinder on a ternary relation.

Thus Tarski devised a compositional semantics for first-order predicate
logic. He simplified the language to contain as connectives only conjunc-
tion, disjunction, and negation. The presence of the negation connective
makes it possible to do with a single quantifier, the existential one. There
are no function symbols. An atomic formula can be of the form x = y.

For this language a suitable algebra for a compositional semantics is
the cylindric set algebra 〈S,∪,∩,∼, ∅, Dω , Ck, δi,j〉 for all natural numbers
i, j, and k. This algebra is a Boolean algebra (for the first six items). In
addition, there are δi,j , the i, j diagonal relations: the subsets of Dω

consisting of the tuples where the elements indexed by i and j are equal.
The specification of cylindric set algebras also includes for all k ∈ ω the
cylindrification operations Ck, which are defined by Ckr being the subset
of Dω consisting of the tuples that differ from a tuple in r in at most the
k-th component.

S is the set that contains ∅, Dω, as well as all the diagonal relations
δi,j and that is closed under the Boolean operations as well as under Ck.

4.3 Cylindric set algebra for the compositional

semantics of procedural programs?

Cylindric set algebra interprets formulas as relations; relations are a suit-
able model for the procedures of a procedure-oriented language. These
facts might suggest that cylindric set algebras be used for a compositional
semantics for the procedural interpretation of logic.

The following are reasons not to do so.

• Tarski’s choice of language for first-order predicate logic is no more
procedure-oriented than clausal form is.

• Tarski’s semantics does not specify by what operation, for example,
the binary relation M(p(x, y, x)) arises from the ternary relation p
and the argument tuple 〈x, y, x〉. That is, his compositionality stops
short of the atomic formula.

Accordingly, we create an independent alternative, centered around the
concept of table. Surprisingly, one of the operations on tables reflects the
way Tarski uses cylinders to algebraize conjunction.

5 Tables

Some of the semantic objects for the procedural programs of Definition 4
are familiar; they have been introduced in Section 2. This section is
devoted to the one novel type of semantic object.

Definition 6 (table) A table on a subset V of V is a set of tuples each
of which has type V → TV . If the set of tuples is empty, then we have
the null table, which we write as ⊥. If V is empty and the set of tuples
is not, then the table is the unit table, which we write as ⊤.
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As there is only one function of type {} → TV for any subset V of V, we
have that ⊤ = {〈〉}.

To every table there corresponds a unique variable-indexed relation,
which we call the result of grounding the table.

Definition 7 (grounding, table equivalence) Let t be a table with tu-
ples of type V → TV . Γ(t), the result of grounding t, is the variable-
indexed relation consisting of the tuples of type V →H each of which is a
ground instance of a tuple in t.

Tables t0 and t1 are equivalent if Γ(t0) = Γ(t1).

In this section we define and discuss the product, filtering, and projec-
tion operations. These operations are adapted from [12], where filtering
is called “application”.

5.1 Product

As we will see, compositional semantics assigns tables as values to the calls
in a procedure body as well as to the body itself. The co-occurrence of
calls in a body corresponds to the product operation of the corresponding
tables. An example will be given in Section 6.1.

Definition 8 (product) Let τ0 and τ1 be tables consisting of tuples with
index sets V0 and V1, respectively. The product τ0 ∗ τ1 of these tables is
defined as a table with V0 ∪ V1 as index set. The product table τ0 ∗ τ1
contains a tuple t if and only if there is a tuple t0 in τ0 and a tuple t1
in τ1 such that the set of equations t0 ∪ t1 is solvable and has t as solved
form.

Theorem 1 • Product is commutative and associative.

• The null table ⊥ is an absorbing element: ⊥ ∗ τ = τ ∗ ⊥ = ⊥ for all
tables τ .

• The top table ⊤ is a unit: ⊤ ∗ τ = τ ∗ ⊤ = τ for all tables t.

• τ ∗ τ and τ are equivalent.

Commutativity and associativity give the obvious meaning to ∗S,
where S is a set of tables, assuming that ∗{} = ⊤.

Definition 9 (cylinder on table) The cylinder π−1(T ) on a table T
with index set V ∈ V is a table where V is the index set and where every
tuple t′ is obtained from a tuple t in T by defining t′(v) = t(v) for every
v ∈ V and t′(v) = v for every v ∈ V \ V .

This definition of “cylinder” is independent of Tarski’s notion, which is
the one in Definition 3. The two notions are connected as follows.

Lemma 1 Let T be a table with index set V , a subset of V. We have that
Γ(π−1(T )) = π−1(Γ(T )). The first occurrence of π−1 is the cylindrifica-
tion on tables from Definition 9; the second one is Tarski’s cylindrification
on relations as in Definition 3.
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The distinguishing feature of Tarski’s use of cylindric set algebra as se-
mantics for first-order predicate logic is that conjunction in logic simply
translates to intersection in the algebra. And this is the case even though
the conjunction may be between two formulas with sets V0 and V1 of free
variables. There is no restriction on these sets: they may be disjoint, one
may be a subset of the other, or neither may be the case. Tarski’s device
works because the intersection is not between relations with V0 and V1 as
index sets, but between cylinders on these relations in the set of all vari-
ables. This crucial idea reappears in the product of tables defined here.
The connection is made apparent by the following theorem.

Theorem 2 Let τi be a table with set Vi of variables, for i ∈ {0, 1}.
Γ(τ0 ∗ τ1) = πV0∪V1

(π−1

V
(Γ(τ0)) ∩ π−1

V
(Γ(τ1))).

5.2 Filtering: from relations to tables

Just as in a functional programming language a function is applied to
the n-tuple of its arguments, we think of the combination of a procedure
symbol with its argument tuple as an binary operation. Consider therefore
a call consisting of a procedure symbol and an argument tuple of order n.
The procedure symbol has as value an integer-indexed relation of order
n. It combines with the argument tuple to produce a table. This is the
operation we call filtering. An example of this operation can be found in
Section 6.1.

Definition 10 (filtering) Let p be an integer-indexed relation of order n
and let t be an n-tuple of terms with V as set of variables. The result of the
filtering p : t is a table where V is the index set of the tuples. For every
tuple 〈a0, . . . , an−1〉 in p for which the set {t0 = a0, . . . , tn−1 = an−1}
equations is solvable, the table contains a tuple which is the solved form
of these equations.

In functional programming, an expression E0E1 can denote function ap-
plication. Here E0 is an expression that evaluates to a function, and it
is this function that is applied. Filtering is the relational counterpart: in
p : t the first operand p has a relation as value; it is filtered by the tuple
t; the result is a table.

5.3 Projection: from tables to integer-indexed re-

lations

Finally, a clause is a contribution to a procedure, which is an integer-
indexed relation of order n. This relation, which is the clause’s value,
is somehow produced by a combination of the parameter tuple of the
clause and the table that is the value of its body. We call this operation
projection. An example of this operation can be found in Section 6.1.

Definition 11 (projection) Let T be a table consisting of tuples whose
index set is a subset V of V . The result of projecting T on an n-tuple of
terms, denoted 〈t0, . . . , tn−1〉/T , is an integer-indexed relation consisting
of n-tuples of ground terms. The relation contains such a tuple if and only
if it is a ground instance of 〈t0θ, . . . , tn−1θ〉, for some θ in T .
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6 Compositional semantics

The operations of product, filtering, and projection are intended to be the
semantical counterparts of the way in which procedural programs are put
together syntactically. But so far only the intention exists.

The definition below formalizes this intention. It defines the meaning
M(P ) of a procedural program P as a tuple with index set P of integer-
indexed relations. This meaning depends on a relational interpretation I
(Definition 5) that assigns relations to the procedure symbols in P . We
indicate this dependence by a subscript, as inMI .

Definition 12 gives the compositional semantics for procedural pro-
grams. As Definition 5 shows, a procedural program is just another way
of writing a set of positive Horn clauses. The semantics of these has been
defined in three equivalent ways: model-theoretically, proof-theoretically,
and by means of fixpoints. The main theorem (3) of this paper relates
the compositional semantics of procedural programs to the established
semantics of the corresponding clausal sentences.

Definition 12 1. For every procedural program prog,MI(prog) is the
tuple with index set P such that for every prsym ∈ P the prsym-
component is MI(prog(prsym)).

2. For every procedure proc, MI(proc) = ∪{MI(clause) | clause ∈
proc}

3. For every clause with pars as parameter tuple and B as body,
MI(pars :- B) = pars/MI(B) (use of projection)

4. For every procedure body B, we have MI(B) = ∗{MI(call) | call ∈
B} (use of table product)

5. For every call with prsym as procedure symbol and args as argument
tuple, MI(prsym args) =MI(prsym) : args (use of filtering)

6. For every prsym ∈ P we have that MI(prsym) = I(prsym)

Here the numbering follows that of the syntactical rules of Definition 4.

Theorem 3 Let I be a relational interpretation and I ′ the corresponding
(Definition 5) Herbrand interpretation. Let P be a procedural program
and P ′ the corresponding (Definition 5) set of positive Horn clauses. We
have

TP ′(I ′) ∼MI(P ),

where T is the immediate-consequence operator for logic programs.

We only know a cumbersome, though straightforward, proof of this
theorem.

T has a unique least fixpoint [24, 17, 2]. The partial order among Her-
brand interpretations (set inclusion) translates according to the correspon-
dence in Definition 5 to a partial order among relational interpretations
(component-wise inclusion). Hence there is, for each procedural program
P , a unique least relational interpretation I such that I =MI(P ).

Definition 13 M(P ) =MIm (P ) where Im is the least relational inter-
pretation I such that I =MI(P ).
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Theorem 4 Let P ′ be a logic program and let P be the corresponding
procedural program. Then we have lfp(TP ′) ∼M(P ).

This relates the compositional semantics of procedural programs to the
mutually equivalent least fixpoint, proof-theoretical, and model-theoretical
semantics of logic programs.

6.1 An example

Consider the procedural program clause
(f(y),z) :- {p(x,f(y)), p(f(x),z)}.

HereM(p) is an integer-indexed relation with {0, 1} as index set. Let us

assume thatM(p) =
0 a f(a) f(a) f(b)

1 f(b) b f(b) f(a)
. Here the four

2-tuples, indexed by {0, 1}, are displayed vertically.
The value of a call is a table; that is, a variable-indexed relation.

M(p(x, f(y))) =M(p) : 〈x, f(y)〉 =
x a f(a) f(b)

y b b a
.

Similarly,M(p(f(x), z)) =M(p) : 〈f(x), z〉 =
x a a b

z b f(b) f(a)
.

The value of the body is the product of the above two tables:

M(p(x, f(y)), p(f(x), z)) =M(p(x, f(y)))∗M(p(f(x), z)) =

x a a

y b b

z b f(b)
.

Finally, the meaning of the entire clause
(f(y),z) :- {p(x,f(y)), p(f(x),z)}

is obtained by projection:

〈f(y), z〉/M(p(x, f(y)), p(f(x), z)) =
0 f(b) f(b)

1 b f(b)
.

7 Implications for modularity

Suppose P and P ′ are procedural programs with the same Herbrand uni-
verse. If p(t0, . . . , tn−1) is a call in P , then the meaning of p is (M(P ))(p).
But p is a special case of an expression that has an n-ary integer-indexed
relation as value. Such an expression could also be (M(P ′))(p′) if p′ is
a procedure symbol in P ′ paired with an n-ary procedure. The value of
this expression is a set of n-tuples of ground terms. This value is inde-
pendent of the procedure symbols occurring in P ′. Hence these symbols
are “encapsulated” in the expression (M(P ′))(p′).

The module mechanism at work in this way is a natural one in the
sense of being an unavoidable consequence of the compositionality of the
semantics.

8 Related work

Modules for logic programs can be obtained via proof theory [19, 18].
An entirely different approach is to base it on decompositions of the
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immediate-consequence operator as done by Brogi et al. [4]. It is baf-
fling that the various approaches to modularity are so difficult to relate.
Several more are mentioned by Brogi et al. [4], who also seem at a loss in
relating them to their own work.

Additional details about the operations on tables and relations, there
called “table-relation algebra”, can be found in [12, 13].

9 Concluding remarks

The procedural programs of Definition 4 are the result of the desire to
give a procedural interpretation not only of an entire clause, but also of
the composition of head and body within a clause as well as of the com-
positions that can be recognized in the body. Thus procedural programs
are but another way of parsing a set of positive Horn clauses.

But suppose that in 1972 one had never heard of clausal logic and that
the motivation was to characterize in what way languages with procedures,
such as Algol, are of a higher level than their predecessors. A higher
level of programming in such languages is achieved by using procedure
calls as much as possible. That suggests the ultimate altitude in level of
programming: procedure bodies contain procedure calls only.

What about data structures for a pure procedural language? Just as
Lisp simplified by standardizing all data structures to lists, one could make
a similar choice by standardizing on trees. In this way a pure procedure-
oriented language would arise that coincides with the procedural programs
of Definition 4.

Functional programming languages have an obvious semantics in the
form of functions as defined in mathematics. The semantics of Algol-like
languages is defined in terms of transitions between computational states.
These transitions are specified directly or indirectly in terms of assign-
ments. In this way one might think that procedure-oriented program-
ming languages are of inherently lower level than functional programming
languages.

It is not necessary to specify procedures in terms of state transitions. A
procedure is more directly specified as the set of all possible combinations
of values of the arguments of a call. That is, as a set of tuples of the same
arity, which is a relation.

In this way the procedural programs of Defintion 4 become as high-
level as functional programs and obtain a semantics that is as mathemat-
ical.

One might argue that this gives procedural programs a significance
that extends beyond logic programming. For example, they may be a
way to describe Colmerauer’s view [8] that Prolog is not necessarily a
logic programming language. In the procedural interpretation described
here, the Herbrand universe can be replaced by a sufficiently similar data
structure, such as the rational trees.
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