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Nominal logic is an extension of first-order logic which provides a simple foundation for formalizing
and reasoning about abstract syntax modulo consistent renaming of bound names (that is, α-
equivalence). This article investigates logic programming based on nominal logic. This technique
is especially well-suited for prototyping type systems, proof theories, operational semantics rules,
and other formal systems in which bound names are present. In many cases, nominal logic
programs are essentially literal translations of “paper” specifications. As such, nominal logic
programming provides an executable specification language for prototyping, communicating, and
experimenting with formal systems.

We describe some typical nominal logic programs, and develop the model-theoretic, proof-
theoretic, and operational semantics of such programs. Besides being of interest for ensuring the
correct behavior of implementations, these results provide a rigorous foundation for techniques for
analysis and reasoning about nominal logic programs, as we illustrate via two examples.
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2 · J. Cheney and C. Urban

Declarative Programming enables one to concentrate on
the essentials of a problem, without getting bogged down
in too much operational detail.

David Warren in [Sterling and Shapiro 1994]

1. INTRODUCTION

As stated by Warren the ideal of logic programming is that all the programmer
needs to do is describe the problem suitably, and let the computer deal with the
search for solutions. Thus, logic programming languages such as Prolog are very
well-suited to problem solving situations in which a problem can be formulated as a
set of inference rules describing a solution. All the programmer has to do is describe
the problem and ask the system to search for solutions.
Unfortunately, for some problems this ideal is not achievable in Prolog, the most

well-known logic programming language, even in areas where this language is re-
garded as superior. Consider for example the usual three inference rules by which
the type-system for lambda-terms is specified:

x : T ∈ Γ
Γ ⊲ x : T

Γ ⊲M : T → T ′ Γ ⊲ N : T
Γ ⊲ MN : T ′

{x : T } ∪ Γ ⊲ M : T ′

Γ ⊲ λx.M : T → T ′

In the third rule it is often implicitly assumed that x is a variable not already present
in Γ. Inferring a type for the termM has in the context Γ should fit Prolog’s declar-
ative programming paradigm very well. However, a direct, näive implementation
of such typing rules, as for example given in [Mitchell 2003, Page 489]:

mem(X, [X |T ]).
mem(X, [Y |T ]) :− mem(X,T ).

type(G, var(X), T ) :− mem((X,T ), G).
type(G, app(M,N), T ) :− type(G,M, arr(S, T )), type(G,N, S).
type(G, lam(X,M), arr(S, T )) :− type([(X,S)|G],M, T ).

behaves incorrectly on terms in which a lambda-bound name “shadows” another
binding occurrence of a name. For example, typechecking the lambda-term λx.λx.(x x)
via the query

?– type([], lam(x, lam(x, app(var(x), var(x)))), U)

yields two answers, both incorrect: U = T → (T → S) → S and U = (T → S) →
T → S. This problem can be fixed by judicious use of the “cut” pruning operator,
or by defining a gensym predicate, defining capture-avoiding substitution, and per-
forming explicit α-renaming (see [Clocksin and Mellish 2003]), but both solutions
rely on nonlogical, nondeclarative features of Prolog. Thus, one loses declarative-
ness and becomes “bogged down in operational detail” almost immediately even
for the simplest problems involving name-binding.
The problems with the näive implementation stem from the lack of support for

names, name-binding and alpha-equivalence in Prolog. A number of techniques for
incorporating such support into logic programming languages have been investi-
gated, including higher-order logic programming [Nadathur and Miller 1998], Qu-
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Nominal Logic Programming · 3

Prolog [Staples et al. 1996], and logic programming with binding algebras [Hamana
2001].
Of these approaches, higher-order logic programming may be the most convenient

and compelling. For example, the typechecking relation can be implemented in
λProlog as follows:

tc (app E1 E2) U :− tc E1 (arr T U), tc E2 T.
tc (lam (λx.E x)) (arr T U) :− Πx. tc x T ⇒ tc (E x)U.

Here, meta-language variables and λ-bindings are used to represent object-language
variables and bindings; object language application and lambda-abstraction are
represented using constants app : exp→ exp→ exp and lam : (exp→ exp) → exp.
Moreover, local parameters (introduced using the universal quantifier, written Π)
and local assumptions (introduced using the implication subgoal ⇒) are used to
represent the scope restrictions on the local variable and its type assumption. Thus,
the meta-language’s context is used to implement locally-scoped parameters and
hypotheses of the object language.
This is a very elegant technique for programming and reasoning about program-

ming languages. Unfortunately, there are some situations in which higher-order
encodings are no simpler than first-order equivalents; sometimes, the use of higher-
order features even obstructs natural-seeming programming techniques. As a case
in point, consider a simplistic closure conversion translation, which eliminates local
parameters from lambda-calculus expressions:

C[[x,Γ ⊢ x]]e = π1(e)
C[[y,Γ ⊢ x]]e = C[[Γ ⊢ x]](π2(e)) (x 6= y)
C[[Γ ⊢ t1t2]]e = let c = C[[Γ ⊢ t1]]e in (π1(c)) (C[[Γ ⊢ t2]]e, π2(c)) (c 6∈ FV (e))
C[[Γ ⊢ λx.t]]e = (λy.C[[x,Γ ⊢ t]]y, e) (x, y /∈ Γ)

One can clearly implement this translation using explicit name-generation and sub-
stitution in Prolog; since names are just ground atoms, the inequality test in the
second defining equation is definable as Prolog’s built-in inequality predicate. But
if we use higher-order abstract syntax, there is no need to perform explicit renaming
or name-generation, but the fact that object-language variables “disappear” makes
it difficult to provide correct behavior. For example, the following higher-order
logic program solves this problem for the lam : (exp → exp) → exp representation
of the lambda calculus. It is the simplest solution we have been able to develop.

cconv (X :: G) X Env (pi1 Env) :− isV ar X.
cconv (Y :: G) X Env T :− member X G, cconv G X (pi2 Env) T.
cconv G (app T U) Env (let T ′ (λc.app (pi1 c) (pair U ′ (pi2(c)))))

:− cconv G T Env T ′, cconv G U Env U ′.
cconv G (lam(λx.T x)) Env (pair (lam(λy.T y)) Env)

:− Πx. isV ar x⇒ Πy. cconv (x :: G) (T x) y (T ′ y)

In order to be able to distinguish variables of type exp from other terms, we need
to add local hypotheses isV ar x whenever we traverse a λ. In the second clause,
we exploit the fact that for well-formed terms, X and Y are distinct variables and
Y appears first in the context if and only if X appears later in the context.
While higher-order techniques have many advantages for implementing formal
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4 · J. Cheney and C. Urban

systems involving binding and substitution, they do not appear well suited to sit-
uations where “low-level” access to names as first-class data is required. While it
is clearly a matter of taste whether the higher-order implementation of cconv is
tolerable, it is indisputable that the higher-order implementation of cconv departs
significantly from what one would write on paper. Instead it is sometimes necessary
to translate between the informal syntactic definitions people seem to find intuitive
and the formal notations which the language provides. Because of this impedance
mismatch, in neither first-order nor higher-order logic programming is it always
possible to simply “concentrate on the essentials of a problem” involving names
and binding.
In this paper, we investigate a new approach in which both of the above examples

(and a wide variety of other programs) can be implemented easily and (we argue)
intuitively. Our approach is based on nominal logic, an extension of first-order
logic introduced by Pitts [2003], and based on the novel approach to abstract syn-
tax developed by Gabbay and Pitts [2002]. In essence, nominal logic axiomatizes an
inexhaustible collection of names x, y and provides a first-order axiomatization of
a name-binding operation 〈x〉t (called abstraction) in terms of two primitive opera-
tions, swapping ((a b) · t) and freshness (a # t). In addition, nominal logic includes
a novel quantified formula Na.φ (“for fresh a, φ holds”) which quantifies over fresh
names.
In nominal logic, names and binding are abstract data types admitting only swap-

ping, binding, and operations for equality and freshness testing. Name-abstractions
〈x〉t are considered equal up to α-equivalence, defined in terms of swapping and
freshness. For example, object variables x and lambdas λx.t can be encoded
as nominal terms var(x) and abstractions lam(〈x〉t) where var : id → exp and
lam : 〈id〉exp→ exp. We can obtain a correct implementation of the type relation
above by replacing the third clause with

type(G, lam(〈x〉E), arrT y(T, U)) :− x # G, type((x, T ) :: G,E,U).

which we observe corresponds closely to the third inference rule (reading lam(〈x〉E)
as λx.E, x 6∈ FV (Γ) as x # G, and {x:τ}∪Γ as (x, T ) :: G). We revisit this example
and the closure conversion function in Section 2.
We refer to this approach to programming with names and binding modulo α-

equivalence as nominal abstract syntax. This approach provides built-in α-equivalence
and fresh name generation, while retaining a clear declarative interpretation. Names
are sufficiently abstract that the low-level details of name generation can be hid-
den from the programmer, yet still sufficiently concrete that there is no difficulty
working with open terms, freshness constraints, or inequalities among names pre-
cisely as is done “on paper”. Nominal abstract syntax and nominal logic make
possible a distinctive new style of meta-programming, which we call nominal logic
programming.
Unlike some previous approaches (particularly higher-order logic programming

and Qu-Prolog), capture-avoiding substitution is not “built-in”; however, this is
not as serious a problem as it might seem, since substitution can be defined declar-
atively in nominal logic. There is no obstacle to adding a built-in capture-avoiding
substitution operator, but it is not needed for defining α-equivalence, so there is
also no reason why this complex operation has to be built into the language defi-
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Nominal Logic Programming · 5

nition. We feel this is an advantage, not a disadvantage; moreover, the additional
effort that needs to be expended on implementing substitution could be avoided
using other techniques such as generic programming [Cheney 2005c] which are of
independent interest.
In this paper, we describe a particular implementation of nominal logic program-

ming, called αProlog. We also investigate the semantics of nominal logic programs
and discuss applications of these results.

—We first (Section 2) illustrate nominal logic programming via several examples
written in αProlog, drawing on familiar examples based on the λ-calculus and
π-calculus. The aim of these examples is to show that, in contrast to all other
known approaches, αProlog programs can be used to encode calculi correctly yet
without essential alterations to their paper representations. Thus, αProlog can
be used as a lightweight prototyping tool by researchers developing new systems,
or by students learning about existing systems.

—We next (Section 3) provide a summary of nominal abstract syntax and nominal
logic needed for the rest of the paper. We introduce the domain of nominal terms,
which plays a similar role to ordinary first-order terms in Prolog or lambda-
terms in λProlog, and then review the semantics of term models of nominal logic
(previously developed in [Cheney 2006a]).

—Section 4 develops the semantics of nominal logic programs. This is crucial for
justifying our claim that the notation and concepts of nominal logic match our
intuition, and that nominal logic programs capture the informal meaning we
assign to them. Using the foundations introduced in Section 3, we provide a
model-theoretic semantics of nominal logic programs following Lloyd [1987]. We
also introduce a proof-theoretic semantics via a variation of the proof-theoretic
semantics of CLP, investigated by Darlington and Guo [1994] and Leach et al.
[2001]. Finally, we present an operational semantics that models the low-level
proof search behavior of an interpreter more directly. We prove appropriate
soundness and completeness results relating these definitions along the way.

—In Section 5, we consider some applications of the semantics to issues arising
in an implementation such as αProlog. We verify the correctness of a standard
“elaboration” transformation and an optimization which permits us to avoid hav-
ing to solve expensive, NP-complete nominal constraint solving problems during
execution. This result supersedes a similar result of Urban and Cheney [2005].

—Section 6 presents a detailed comparison of our work with previous techniques
for incorporating support for name-binding into programming languages and Sec-
tion 7 concludes.

In order to streamline the exposition, many routine cases in proofs in the body
of the paper have been omitted. Complete proofs are available in appendices.

2. PROGRAMMING IN αPROLOG

2.1 Syntax

Before presenting examples, we sketch the syntax which is used for declarations of
constants, function symbols, types and type abbreviations, clause declarations, and
queries in this paper. We also mention some other standard conveniences provided
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6 · J. Cheney and C. Urban

Terms t, u ::= X | c | f(~t) | a | 〈a〉t | (a b) · t | i | ’c’ | [] | t :: t′ | [t1, . . . , tn|t′] | (t, t′)
Constructor types τ, ν ::= tid ~σ | σ → τ
Types σ ::= α | τ | 〈ν〉σ | int | char | list σ | σ × σ′ | σ → σ | o
Basic Kinds κ0 ::= name type | type
Kinds κ ::= κ0 | κ0 → κ

Atomic formulas A ::= p(~t) | f(~t) = u
Goals G ::= A | a # t | t ≈ u | G,G′ | G;G′ | ∃X:σ.G | Na:ν.G
Declarations D ::= tid : κ | defid :: σ | type tid ~α = σ | conid : τ | A :− G

Fig. 1. Syntax summary

by the αProlog implementation such as polymorphism, definite clause grammars
and defined function symbols.
The syntax we shall employ is outlined in Figure 1. To improve readability, the

syntax employed in the paper differs from the ASCII syntax employed in the current
implementation. The nominal terms used in αProlog include standard first-order
variables X , constants c, and function symbols f ; also, we have new syntax for
names a, name-abstractions 〈a〉t, and swappings (a b) · t.
Names and name-abstractions are used to represent syntax with bound names in

αProlog. The unification algorithm used by αProlog solves equations modulo an
equational theory that equates terms modulo α-renaming of names bound using ab-
straction. Swappings are a technical device (similar to explicit substitutions [Abadi
et al. 1991; Dowek et al. 1998]) which are needed in constraint solving. We will
present the details of the equational theory in Section 3.
αProlog also contains standard built-in types for pairing, lists, integers, and

characters. Note that [t1, . . . , tn|t
′] is a standard Prolog notation for matching

against an initial segment of a list; it is equivalent to t1 :: · · · :: tn :: t′.
User-defined types, including name types, can be introduced using declarations

such as

tid : type. ntid : name type.

Also, using functional kinds, we can introduce new type constructors used for user-
defined parameterized types. For example, list could be declared as

list : type → type.

Similarly, abstraction 〈ν〉σ could be declared as

〈−〉− : name type → type → type.

Only first-order kinds are supported in the current implementation.
Type abbreviations (possibly with parameters) can be introduced using the syn-

tax

type tid α1 · · · αn = σ(α1, . . . , αn).

Likewise, uninterpreted constants and function symbols (which we call (term)
constructors) are declared using a similar notation:

conid : τ.

here τ is a “constructor type”, that is, either a user-defined type constructor ap-
plication tid ~σ or a function type returning a constructor type. These restrictions
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Nominal Logic Programming · 7

ensure that user-defined term constructors cannot be added to built-in types, in-
cluding name-types, lists and products. Constants and function symbols must
return a user-defined data type; so, there can be no constants, function symbols,
or other user-defined terms in a name type, only name-constants.
Interpreted function and predicate symbols can be defined using the syntax

defid :: σ

for example,

p :: σ × σ → o f :: σ → σ

introduce constants for a binary relation p on type σ and a unary function f on
type σ. There is no restriction on the return types of defined symbols.

As in Prolog, programs are defined using Horn clauses A :− G where A is an
atomic formula and G is a goal formula. Atomic formulas include user-defined
predicates p(~t) as well as equations f(~t) = u; in either case p or f must be a defined
symbol of appropriate type, not a constructor.
Goal formulas G can be built up out of atomic formulas A, freshness constraints

a # t, equations t ≈ u, conjunctions G,G′, disjunctions G;G′, existential quantifi-
cation ∃X.G, or N-quantification Na.G. The freshness constraint a # t holds if the
name a does not appear free (that is, outside an abstraction) in t; equality t ≈ u
between nominal terms is modulo α-renaming of name-abstractions. For example,
〈a〉(a, b) ≈ 〈c〉(c, b) 6≈ 〈b〉(b, b).
As usual in logic programming, we interpret a program clause A :− G with free

variables ~X as an implicitly quantified, closed formula ∀ ~X.G⇒ A. Moreover, if the
program clause contains free names~a, they are interpreted as implicitly N-quantified
outside of the scope of the universally-quantified variables:

N~a.∀ ~X.G⇒ A

Standard extensions. The current implementation of αProlog provides a goal
not(G) that searches for a derivation of G, fails if one is found and succeeds oth-
erwise; a “cut” goal ! that prunes alternative choice points for the current subgoal,
and “guard” goal G → G1|G2 which attempts to solve G, proceeds to G1 if suc-
cessful, and proceeds to G2 if not. These are standard, though each can damage
declarative transparency and they are not considered in the semantics. αProlog
also provides support for definite clause grammars, a simple, yet powerful pars-
ing mechanism; as in Prolog, definite clause grammars are provided as a source to
source translation.
Polymorphism. αProlog permits type variables in declarations, which are

treated polymorphically, following previous work on polymorphic typing in logic
programming [Mycroft and O’Keefe 1984; Hanus 1991]. Polymorphic type checking
is performed in the standard way by generating equational constraints and solving
them using unification. As observed by Hanus, handling general polymorphism
in logic programming may require performing typechecking at run-time. To avoid
this, the current implementation αProlog rules out “non-parametric” polymorphic
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8 · J. Cheney and C. Urban

program clauses that specialize type variables. For example, the second clause in

head :: α× list α→ o.
head(X,X :: L).
head(1, 1 :: L).

works only for α = int, not for arbitrary α, so is ruled out.
A simple subkinding system is used to assign either kind type or name type to

type variables. In combination with the subkinding needed to relate name-types and
ordinary types; however, we consider only the semantics of monomorphic programs.
Function definitions. As in other Prolog-like languages, it is often convenient

to have a notation for writing predicates which are easier written as functions. For
example, the functional definition

append :: list α× list α→ list α.
append([],M) = M.
append(X :: L,M) = X :: append(L,M).

can be viewed as an abbreviation for the relational definition

appendp :: list α× list α× list α→ o.
appendp([],M,M).
appendp(X :: L,M,X :: N) :− appendp(L,M,N).

Using notation for functional definitions can considerably simplify a program.
It is a standard exercise in logic to translate a theory with both defined functions

and relation symbols to a logically equivalent, purely relational theory; essentially,
wherever we encounter an occurrence of the defined function, we replace it with a
variable that is appropriately constrained by a corresponding relation. Concretely,
this means that a goal such as

append(append([1], X), [2]) ≈ Y

is translated first to

∃Z.appendp([1], X, Z), append(Z, [2]) ≈ Y

and then to

∃Z.appendp([1], X, Z), ∃W.appendp(Z, [2],W ),W ≈ Y

This technique for implementing functions in logic programming is called flatten-
ing [Hanus 1994]. More sophisticated techniques such as narrowing that have been
investigated in functional logic programming could also be used; however, doing so
will require extending equational unification techniques to nominal logic.

2.2 The λ-calculus and variants

The prototypical example of a language with variable binding is the λ-calculus.
In αProlog, the syntax of λ-terms may be described with the following type and
constructor declarations:

id : name type. exp : type.
var : id→ exp. app : exp× exp→ exp. lam : 〈id〉exp→ exp.

ACM Journal Name, Vol. V, No. N, Month 20YY.



Nominal Logic Programming · 9

Terms e ::= x | λx.e | e e′

Types τ ::= b | τ → τ ′

Contexts Γ ::= · | Γ, x:τ

x{e/x} = e
y{e/x} = y (x 6= y)

(e1 e2){e/x} = e1{e/x} e2{e/x}
(λy.e′){e/x} = λy.e′{e/x} (y 6∈ FV (x, e))

x:τ ∈ Γ

Γ ⊢ x : τ

Γ ⊢ e : τ → τ ′ Γ ⊢ e′ : τ

Γ ⊢ e e′ : τ ′
Γ, x:τ ⊢ e : τ ′ (x 6∈ Dom(Γ))

Γ ⊢ λx.t : τ → τ ′

Fig. 2. Lambda-calculus: syntax, substitution, and typing

We make the simplifying assumption that the variables of object λ-terms are con-
stants of type id. Then we can translate λ-terms as follows:

pxq = var(x) pe1 e2q = app(pe1q, pe2q) pλx.eq = lam(〈x〉peq)

It is not difficult to verify (using the semantic techniques we present in Section 4)
that the encoding function p·q is a bijection between (open) λ-terms modulo α-
equivalence and nominal terms of type exp, i.e. e ≡α e

′ if and only if peq ≈ pe′q.
Similarly,

x 6∈ FV (e) ⇐⇒ x # peq

pe{x/y, y/x}q = (x y) · peq

These properties help ensure the adequacy of this nominal abstract syntax encoding.

Example 2.1 Typechecking and inference. First, for comparison with higher-order
encodings, we consider the problem of typechecking λ-terms. The syntax of types
can be encoded as follows:

tid : name type. ty : type. varTy : tid→ ty. arrTy : ty × ty → ty.

We define contexts ctx as lists of pairs of identifiers and types, and the 3-ary relation
typ relating a context, term, and type:

type ctx = list (id× ty).
tc :: ctx× exp× ty → o.
tc(C, var(X), T ) :− mem((X,T ), C).
tc(C, app(E1, E2), T

′) :− tc(C,E1, arrT y(T, T
′)), tc(C,E2, T ).

tc(C, lam(〈x〉E), arrT y(T, T ′)) :− x # C, tc([(x, T )|C], E, T ′).

The predicate mem :: α× [α] → o is the usual predicate for testing list membership
(x : τ ∈ Γ). The side-condition x 6∈ Dom(Γ) is translated to the freshness constraint
x # C. Given that the constraint x 6∈ Dom(Γ) is often left implicit in informal
presentations of the inference rules for λ-term typing, the αProlog version of these
rules is about as close to a “paper” presentation as one can get.
Consider the query ?– tc([], lam(〈x〉lam(〈y〉var(x))), T ). We can reduce this goal

by backchaining against the suitably freshened rule

tc(C1, lam(〈x1〉E1), arr(T1, U1)) :− x1 # C1, tc([(x1, T1)|C1], E1, U1)

which unifies with the goal with [C1 = [], E1 = lam(〈y〉var(x1)), T = arr(T1, U1)].
This yields subgoal x1 # [], tc([(x1, T1)|C1], E1, U1). The first conjunct is trivially
valid since C1 is a constant. The second is solved by backchaining against the third
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10 · J. Cheney and C. Urban

typ-rule again, producing unifier [C2 = [(x1, T1)], E2 = var(x1), U1 = arr(T2, U2)]
and subgoal x2 # [(x1, T1)], tc([(x2, T2), (x1, T1)], var(x1), U2). The freshness subgoal
reduces to the constraint x2 # T1, and the typ subgoal can be solved by backchaining
against

tc(C3, var(X3), T3) :− mem((X3, T3), C3)

using unifier [C3 = [(x2, T2), (x1, T1)], X3 = x1, T3 = U2]. Finally, the remaining sub-
goal mem((x1, U2), [(x2, T2), (x1, T1)]) clearly has most general solution [U2 = T1].
Solving for T , we have T = arr(T1, U1) = arr(T1, arr(T2, U2)) = arr(T1, arr(T2, T1)).
This solution corresponds to the principal type of λx.λy.x.
There are no other possible solutions.

Example 2.2 Capture-avoiding substitution. Although capture-avoiding substitu-
tion is not a built-in operator in αProlog, it is easy to define via the clauses:

subst :: exp× exp× id→ exp.
subst(var(X), E,X) = E.
subst(var(Y ), E,X) = var(Y )

:− X # Y.
subst(app(E1, E2), E,X) = app(subst(E1, E,X), subst(E2, E,X)).
subst(lam(〈y〉E′), E,X) = lam(〈y〉subst(E′, E,X))

:− y # (X,E).

Note the two freshness side-conditions: the constraint X # Y prevents the first
and second clauses from overlapping; the constraint y # (X,E) ensures capture-
avoidance, by restricting the application of the fourth clause to when y is fresh for
X and E. Despite these side-conditions, this definition is total and deterministic.
Determinism is immediate: no two clauses overlap. Totality follows because, by
nominal logic’s freshness principle, the bound name y in lam(〈y〉E′) can always be
renamed to a fresh z chosen so that z # (X,E). It is straightforward to prove (using
the semantics we will provide in Section 4) that subst(ptq, pt′q, x) coincides with
the traditional capture-avoiding substitution on λ-terms t[t′/x]; that is, pt[t′/x]q =
subst(ptq, pt′q, x).
Consider the goal ?– X = subst(lam(〈x〉var(y)), var(x), y). The substitution

on the right-hand side is in danger of capturing the free variable var(x). How is
capture avoided in αProlog? First, recall that function definitions are translated to
a flattened clausal form in αProlog, so we must solve the equivalent goal

substp(lam(〈x〉var(y)), var(x), y, X)

subject to an appropriately translated definition of substp. The freshened, flattened
clause

substp(lam(〈y1〉E
′
1), E1, X1, lam(y1, E

′′
1 )) :− y1 # E1, substp(E

′
1, E1, X1, E

′′
1 )

unifies with substitution

[E′
1 = var(y), X1 = y, E1 = var(x), X = lam(〈y1〉E

′′
1 )].

The freshness constraint y1 # var(x) guarantees that var(x) cannot be captured.
It is easily verified, so the goal reduces to substp(var(y), var(x), y, E′′

1 ). Using
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type ctx = list id.
cconv :: ctx× exp× exp→ exp.
cconv([X|G], var(X), Env) = pi1(Env).
cconv([X|G], var(Y ), Env) = cconv(G, var(y), pi2(Env))

:− X # Y.
cconv(G, app(E1, E2), Env) = let(cconv(G, E1, Env), 〈c〉

app(pi1(var(c)),
pair(cconv(G,E2, Env), pi2(var(c)))))

:− c # Env.
cconv(G, lam(〈x〉E), Env) = pair(lam(〈y〉cconv([x|G], E, var(y))), Env)

:− x # G, y # G.

Fig. 3. Untyped closure conversion in αProlog

the freshened rule substp(var(X2), E2, X2, E2) with unifying substitution [X2 =
y, E2 = var(x), E′′

1 = var(x)], we obtain the solution X = lam(〈y1〉var(x)).

2.2.1 Units, pairs and closure conversion. We can easily add syntax for unit
and pair types and terms and let-bindings as follows:

unitT y : ty
pairT y : ty × ty → ty

unit : exp
pair : exp× exp→ exp
pi1 : exp→ exp
pi2 : exp→ exp

let : exp× 〈id〉exp → exp

With this addition, it is also possible to define a closure conversion translation
from well-formed λ-terms to terms in which all subexpressions of function type
are closed (that is, contain no references to variables declared outside the enclosing
function scope). Closed functions can be lifted to the top level, so closure conversion
is an important step in generating intermediate code in compilers for functional
languages.
A simple closure conversion translation can be defined informally as follows:

C[[x,Γ ⊢ x]]e = π1(e)
C[[y,Γ ⊢ x]]e = C[[Γ ⊢ x]](π2(e)) (x 6= y)
C[[Γ ⊢ t1t2]]e = let c = C[[Γ ⊢ t1]]e in (π1(c)) (C[[Γ ⊢ t2]]e, π2(c)) (c 6∈ FV (e))
C[[Γ ⊢ λx.t]]e = (λy.C[[x,Γ ⊢ t]]y, e) (x, y /∈ Γ)

Figure 3 shows how to implement this translation in αProlog.

2.2.2 Typed closure conversion. The translation in Figure 3 is “untyped” in
the sense that the type of the output term depends on both the input type and
the current context. Minamide et al. [1996] investigated typed closure conversion
algorithms that employ existential types to provide a uniform type translation. To
provide a simple form of such a translation, we need to add existential types and
corresponding terms to the language:

existsT y : 〈tid〉ty → ty.

pack : ty × exp→ exp.
unpack : exp× 〈tid〉〈id〉exp → exp.
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tyT :: ty → ty.
tyT (varTy(A)) = varTy(A).
tyT (arrTy(T, U)) = existsTy(〈a〉pairTy(arrTy(pairTy(tyT (T ), varTy(a)), tyT (U)),

varTy(a)))
:− a # (T, U).

ctxT :: ctx→ ty.
ctxT ([]) = unitTy.
ctxT ([(X, T )|G]) = pairTy(tyT (T ), ctxT (G)).

type ctx = list (id × ty).
tcconv :: ctx× exp× ty × exp→ exp.
tcconv([(X, T )|G], var(X), T, Env) = pi1(Env).
tcconv([(X, T )|G], var(Y ), U,Env) = tcconv(G, var(y), U, pi2(Env))

:− X # Y.
tcconv(G, app(E1, E2), U, Env) = unpack(tcconv(G,E1, arrTy(T, U), Env), 〈a〉〈c〉

app(pi1(var(c)),
pair(tcconv(G,E2, T,Env), pi2(var(c)))))

:− c # Env.
tcconv(G, lam(〈x〉E), arrTy(T, U), Env) = pack(ctxT (G),

pair(lam(〈y〉
tcconv([(x, T )|G], E,U, var(y))), Env))

:− x # G, y # G.

Fig. 4. Typed closure conversion in αProlog

We also need to redesign the tc judgment to include both a type and term envi-
ronment. This is entirely straightforward. Once this is done, we can implement a
simple typed closure conversion

C[[x:τ,Γ ⊢ x : τ ]]e = π1(e)
C[[y:τ ′,Γ ⊢ x : τ ]]e = C[[Γ ⊢ x : τ ]](π2(e)) (x 6= y)
C[[Γ ⊢ t1t2 : τ ′]]e = unpack [α, c] = C[[Γ ⊢ t1 : τ → τ ′]]e

in (π1(c)) 〈C[[Γ ⊢ t2 : τ ]]e, π2(c)〉 (c 6∈ FV (e))
C[[Γ ⊢ λx.t : τ → τ ′]]e = pack[T [[Γ]], 〈λy.C[[x:τ,Γ ⊢ t : τ ′]]y, e〉] (x, y /∈ Γ)

where the type translation (used in the third case) is defined as

T [[α]] = α

T [[τ1 → τ2]] = ∃α.(T [[τ1]]× α→ T [[τ2]])× α

T [[·]] = unit

T [[x:τ,Γ]] = T [[τ ]]× T [[Γ]]

as shown in Figure 4. Again, this is a straightforward translation from the informal
version.

2.2.3 Extending to the λµ-calculus. The λµ-calculus, introduced by Parigot
[1992], extends the λ-calculus with continuations α; terms may be “named” by con-
tinuations ([α]e) and continuations may be introduced with µ-binding (µα.e). Intu-
itively, λµ-terms are proof terms for classical natural deduction, and µ-abstractions
represent proofs by double negation. In addition to capture-avoiding substitution
of terms for variables, the λµ-calculus introduces a capture-avoiding replacement
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Terms, Types, and Contexts

e ::= x | (e e′) | λx.e | [α]e | µα.e
τ ::= b | τ → τ ′ | ⊥
Γ ::= · | Γ, x : τ | Γ, α : τ

Replacement Operation

x{e/α} = x
(e1 e2){e/α} = (e1{e/α} e2{e/α})
(λy.e′){e/α} = λy.e′{e/α}
([α]e′){e/α} = [α](e′{e/α} e)
([β]e′){e/α} = [β](e′{e/α}) (β 6= α)
(µβ.e′){e/α} = µβ.e′{e/α} (β 6∈ FN(e, α))

Some Typing-Rules

α:τ ∈ ∆ Γ ⊢ e : τ | ∆

Γ ⊢ [α]e : ⊥ | ∆

Γ ⊢ e1 : ⊥ | ∆ Γ ⊢ e2 : τ | ∆

Γ ⊢ (e1 e2) : ⊥ | ∆

Γ ⊢ e : ⊥ | ∆, α:τ (α 6∈ Dom(∆))

Γ ⊢ µα.e : τ | ∆

Fig. 5. A variant of Parigot’s λµ-calculus.

operator e′{e/α} which replaces each occurrence of the pattern [α]e0 in e′ with
[α](e0 e). We give a variant of the λµ-calculus in Figure 5.
We may extend the λ-calculus encoding with a new name-type con for continu-

ations and term constructors for λµ-terms:

con : name type pass : (con, exp) → exp mu : 〈con〉exp → exp

and encoding p[α]tq = pass(α, ptq) and pµα.tq = mu(〈α〉ptq). Again, it is easy to
show that ground exp-terms are in bijective correspondence with λµ-terms, that
freshness captures the concept of free variables/names, and that swapping is equiv-
alent to bijective renaming.
The standard approach to typechecking λµ-terms is to use two contexts, Γ and ∆,

for variable- and continuation-bindings respectively. The typechecking rules from
the previous section may be adapted by adding ∆-contexts and adding new rules
for the new syntax cases:

tc :: list (id× ty)× exp× ty × list (con× ty) → o
tc(G, pass(X,E), bot,D) :− mem((X,T ), D), tc(C,E, T,D).
tc(G, app(E,E′), bot,D) :− tc(C,E, bot,D), tc(C,E′, T,D).
tc(G,mu(〈a〉E), T,D) :− a # D, tc(G,E, bot, [(a, T )|D]).

The following query illustrates the typechecking for the term λx.µα.(x (λy.[α]y))
whose principal type corresponds to the classical double negation law.

?– tc([], lam(〈x〉mu(〈a〉app(var(x), lam(〈y〉pass(a, var(y)))))), T, []).
T = arr(arr(arr(T ′ , bot), bot), T ′)

Capture-avoiding substitution can be extended to λµ-terms easily. For replace-
ment, we show the interesting cases for continuation applications and µ-abstractions:

repl :: exp× exp× con → exp.
repl(pass(A,E′), E,A) = pass(A, app(repl(E′, E,A), E)).
repl(pass(B,E′), E,A) = pass(B, repl(E′, E,A)) :− A # B.
repl(mu(〈b〉E′), E,A) = mu(〈b〉repl(E′, E,A)) :− b # (A,E).

This approach seems quite different in flavor from a third-order HOAS encoding
of the λµ-calculus due to Abel [2001]. There, µα.t is (essentially) encoded as
mu(λpαq.ptq), where mu : ((exp A → exp bot) → exp bot) → exp A, and exp A is
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Process terms p ::= 0 | τ.p | p|q | p + q | x(y).p | xy.p | [x = y]p | [x 6= y]p | (x)p
Actions a ::= τ | x(y) | xy | x(y)

chan : name type.
proc : type.
ina : proc.

tau : proc→ proc.
par : proc× proc→ proc.
sum : proc× proc→ proc.
in : chan× 〈chan〉proc→ proc.
out : chan× chan× proc→ proc.
match : chan× chan× proc→ proc.
mismatch : chan× chan× proc→ proc.
res : 〈chan〉proc→ proc.

act : type.
tau a : act.
in a : chan× chan→ act.
fout a : chan× chan→ act.
bout a : chan× chan→ act.

Fig. 6. The π-calculus: syntax and αProlog declarations

the type of terms of type A. Continuations are encoded as variables pαq : exp A→
exp ⊥ and named terms [α]t are encoded as applications pαq ptq. This encoding
appears to let us define the β-reduction associated with µ elegantly as app(mu(λx :
(exp A→ exp bot).F x))T →β F (λy.y u). However, this encoding is not adequate,
because there are terms of type exp A→ exp ⊥ other than variables; for example,
if A = ⊥, the identity function inhabits this type. This means that further work
is needed to restrict the encoding and recover adequacy, so it is more difficult to
implement correct programs for such an encoding. Instead, Abel investigated an
alternative second-order encoding which seems essentially the same as ours, and
does not take advantage of built-in substitution for the replacement operation.

2.3 The π-calculus

The π-calculus is a calculus of concurrent, mobile processes. Its syntax (following
Milner et al. [1992]) is described by the grammar rules shown in Figure 6. The
symbols x, y, . . . are channel names. The inactive process 0 is inert. The τ.p process
performs a silent action τ and then does p. Parallel composition is denoted p|q and
nondeterministic choice by p + q. The process x(y).p inputs a channel name from
x, binds it to y, and then does p. The process xy.p outputs y to x and then does
p. The match operator [x = y]p is p provided x = y, but is inactive if x 6= y. The
restriction operator (y)p restricts y to p. Parenthesized names (e.g. y in x(y).p and
(y)p) are binding, and fn(p), bn(p) and n(p) denote the sets of free, bound, and all
names occurring in p. Capture-avoiding renaming is written t{x/y}.
Milner et al.’s original operational semantics (shown in Figure 6, symmetric cases

omitted) is a labeled transition system with relation p
a

−→ q indicating “p steps
to q by performing action a”. Actions τ , xy, x(y), x(y) are referred to as silent,
free output, input, and bound output actions respectively; the first two are called
free and the second two are called bound actions. For an action a, n(a) is the set
of all names appearing in a, and bn(a) is empty if a is a free action and is {y} if
a is a bound action x(y) or x(y). Processes and actions can be encoded using the
declarations shown in Figure 6.
Much of the complexity of the rules is due to the need to handle scope extrusion,
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τ.p
τ

−→ p

p
a

−→ p′ bn(a) ∩ fn(q) = ∅

p|q
a

−→ p′|q

p
xy
−→ p′ q

x(z)
−→ q′

p|q
τ

−→ p′|q′{y/z}

p
a

−→ p′

p+ q
a

−→ p′ xy.p
xy
−→ p

w /∈ fn((z)p)

x(z).p
x(w)
−→ p{w/z}

p
a

−→ p′

[x = x]p
a

−→ p′

(x 6= y) p
a

−→ p′

[x 6= y]p
a

−→ p′

p
x(w)
−→ p′ q

x(w)
−→ q′

p|q
τ

−→ (w)(p′|q′)

p
a

−→ p′ y /∈ n(a)

(y)p
a

−→ (y)p′

p
xy
−→ p′ y 6= x w /∈ fn((y)p)

(y)p
x(w)
−→ p′{w/y}

ren p :: proc× chan× chan→ proc. (* definition omitted *)
safe :: act× pr → o. (* tests bn(A) ∩ fn(P ) = ∅ *)
safe(tau a, P ).
safe(fout a(X, Y ), P ).
safe(bout a(X, Y ), P ) :− Y # P.
safe(in a(X, Y ), P ) :− Y # P.

step :: pr × act × pr → o. (* encodes p
a

−→ p′ *)
step(tau(P ), tau a, P ).
step(par(P,Q), A, par(P ′, Q)) :− step(P,A, P ′), safe(A,Q).
step(par(P,Q), tau a, par(P ′, ren p(Q′, Y, Z))) :− step(P, fout a(X, Y ), P ′),

step(Q, in a(X,Z), Q′).
step(sum(P,Q), A, P ′) :− step(P,A, P ′).
step(out(X, Y, P ), fout a(X, Y ), P ).
step(in(X, 〈z〉P ), in a(X,W ), ren p(P,W, z)) :− W # 〈z〉P.
step(match(X,X, P ), A, P ′) :− step(P,A, P ′).
step(match(X, Y, P ), A, P ′) :− X # Y, step(P,A, P ′).
step(par(P,Q), tau a, res(〈z〉par(P ′, Q′))) :− step(P, bout a(X, z), P ′),

step(Q, in a(X, z), Q′).
step(res(〈y〉P ), A, res(〈y〉P ′)) :− y # A, step(P,A, P ′).
step(res(〈y〉P ), bout a(X,W ), ren p(P ′,W, y)) :− step(P, fout a(X, y), P ′), y # X,

W # 〈y〉P.

Fig. 7. π-calculus transitions and αProlog implementation

which occurs when restricted names “escape” their scope because of communica-
tion. In ((x)ax.p)|(a(z).z(x).0)

τ
−→ (x′)(p|x′(x).0)), for example, it is necessary

to “freshen” x to x′ in order to avoid capturing the free x in a(z).z(x).0. Bound
output actions are used to lift the scope of an escaping name out to the point where
it is received. The rules can be translated directly into αProlog (see Figure 7). The
function ren p(P, Y,X) performing capture-avoiding renaming is not shown, but
easy to define.
We can check that this implementation of the operational semantics produces

correct answers for the following queries:

?– step(res(〈x〉par(res(〈y〉out(x, y, ina)), in(x, 〈z〉out(z, x, ina)))), A, P ).
A = tau a, P = res(〈y58〉res(〈z643〉par(ina, out(z643, y58, ina))))
?– step(res(〈x〉out(x, y, ina)), A, P ).
No.

This αProlog session shows that (x)((y)xy.0 | x(y).yx.0)
τ

−→ (x)(y)(0 | yx.0), but
(x)(x(y).0) cannot make any transition. Moreover, the answer to the first query is
unique (up to renaming).
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Röckl [2001] and Gabbay [2003] have also considered encodings of the π-calculus
using nominal abstract syntax. Röckl considered only modeling the syntax of terms
up to α-equivalence using swapping, whereas Gabbay went further, encoding tran-
sitions and the bisimulation relation and proving basic properties thereof. By [Gab-
bay 2003, Thm 4.5], Gabbay’s version of the π-calculus is equivalent to our con-
ventional representation. In fact, Gabbay’s presentation is a bit simpler to express
in αProlog, but we have chosen Milner et al.’s original presentation to emphasize
that informal “paper” presentations (even for fairly complicated calculi) can be
translated directly to αProlog programs.

2.3.1 Dyadic π-calculus. The polyadic π-calculus adds to the π-calculus the
ability to send and receive n-tuples of names, not just single names. It is a useful
intermediate stage for translations form other languages (such as the λ-calculus,
object calculi, or the ambient calculus) to the pure π-calculus. We can easily define
a special case of dyadic π-terms (that can send and receive pairs of names) in
αProlog:

in2 : chan× 〈chan〉〈chan〉proc → proc.
out2 : chan× chan× chan× proc → proc.

unpoly :: proc → proc.
unpoly(out2(C,X, Y, P )) = res(〈z〉out(C, z, out(z, X, out(z, Y, unpoly(P )))))

:− z # (C,X, Y, P ).
unpoly(in2(C, 〈x〉〈y〉P )) = in(C, 〈z〉in(z, 〈x〉in(z, 〈y〉unpoly(P ))))

:− z # (C,P ).

2.3.2 True polyadicity. It is somewhat awkward to work with the in2 and out2
constructors. Ideally, we would prefer to be able to send an arbitrary n-tuple (i.e.,
list) of names along a channel. For output, this is no problem: we can easily change
out2 to

out∗ : chan× list chan× proc → proc

and modify unpoly appropriately. However, for inputs, we need to be able to bind
a list of names

in∗ : chan× 〈list chan〉proc→ proc

This would permit us to deal with in∗ as follows:

in∗ : (chan, 〈list chan〉proc) → proc.

unpoly in :: chan→ list chan→ proc→ proc
unpoly in Z [] P = P.
unpoly in Z (X :: Xs) P = in(Z, 〈X〉unpoly in Z Xs P ).

unpoly :: proc → proc.
unpoly(in∗(C, 〈L〉P )) = in(C, 〈z〉unpoly in z L (unpoly P )) :− z # P.

This behavior can be simulated using a user-defined type listAbs : name type →
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type → type having constructors

nilAbs : β → listAbs α β
consAbs : 〈α〉listAbs α β → listAbs α β

but programming with polyadic π-terms in this way is awkward. Dealing with more
general binding structures “natively” in αProlog (as has been done in functional
programming settings such as FreshML [Shinwell et al. 2003], Cαml [Pottier 2005],
and FreshLib [Cheney 2005c]) is the subject of current research; however, the main
challenges seem to be in designing appropriate general-purpose binding specification
techniques and constraint solvers for generalized binding forms.

2.3.3 Translation from λ-calculus to π-calculus. Both call-by-value and call-by-
name translations from the λ-calculus to (dyadic) π-calculus can be developed. We
assume that the λ-calculus variables and π-calculus names coincide.

cbv :: exp× chan→ proc.
cbv(var(X), P ) = out(P,X).
cbv(app(M,N), P ) = res(〈q〉par( cbv(M, q),

in(q, 〈v〉res(〈r〉par( cbv(N, r),
in(r, 〈w〉out2(v,w, P, ina)))))))

cbv(lam(〈x〉M), P ) = res(〈y〉out(P, y, rep(in2(y, 〈x〉〈q〉cbv(M, q))))).

This can be seen to be equivalent to an informal definition (paraphrasing [San-
giorgi and Walker 2001, Table 15.2]):

V [[x]]p = px
V [[M N ]]p = (q) (V [[M ]]q | q(v).(r)(V [[N ]]r | r(w).v〈w, p〉))
V [[λx.M ]]p = p(y).!y(x, q).V [[M ]]q

3. NOMINAL LOGIC AND HERBRAND MODELS

In the previous section, we employed a concrete syntax for αProlog programs which
is convenient for writing programs, but less convenient for defining the semantics
and reasoning about programs. We take the view that αProlog programs are in-
terpreted as theories in nominal logic, just as pure Prolog programs can be viewed
as theories of first-order logic. Consequently, we will now adopt an abstract syntax
for αProlog programs that is based on the syntax of nominal logic. Thus, instead
of the concrete syntax

goal(X, 〈a〉Y ) :− subgoal1(X), subgoal2(a, Y ).

we use the more explicit, logically equivalent formula

Na.∀X,Y.subgoal1(X)∧ subgoal2(a, Y ) ⇒ goal(X, 〈a〉Y )

This correspondence between αProlog goals and program and nominal logic formu-
las and theories will now be made precise.
The syntax of nominal logic is shown in Figure 8. We assume fixed countable sets

of variables V and names A. A language L consists of a set of data types δ, name
types ν, constants c : δ, function symbols f : ~σ → δ, and relation symbols p : ~σ → o.
The novel term constructors include names a ∈ A, name-abstractions 〈a〉t denoting
α-equivalence classes, and name-swapping applications (a b) · t. Atomic formulas
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(Types) σ ::= ν | δ | 〈ν〉σ
(Contexts) Σ ::= · | Σ,X:σ | Σ#a:ν

(Terms) t ::= a | c | f(~t) | x | (a b) · t | 〈a〉t
(Constraints) C ::= t ≈ u | a # t | C ∧ C′ | ∃X:σ.C | Na:σ.C

(Formulas) φ ::= ⊤ | ⊥ | p(~t) | C | φ ⇒ ψ | φ ∧ ψ | φ ∨ ψ | ∀X:σ.φ | ∃X:σ.φ | Na:ν.φ

Fig. 8. Syntax of nominal logic

a : ν ∈ Σ

Σ ⊢ a : ν

x : σ ∈ Σ

Σ ⊢ x : σ

c : δ ∈ L

Σ ⊢ c : δ

f : ~σ → δ ∈ L Σ ⊢ ~t : ~σ

Σ ⊢ f(~t) : δ

Σ ⊢ a : ν Σ ⊢ t : σ

Σ ⊢ 〈a〉t : 〈ν〉σ

Σ ⊢ a : ν Σ ⊢ b : ν Σ ⊢ t : σ

Σ ⊢ (a b) · t : σ

Σ ⊢ t, u : σ

Σ ⊢ t ≈ u : o
Σ ⊢ a : ν Σ ⊢ t : σ

Σ ⊢ a # t : o

Σ ⊢ ⊤,⊥ : o

Σ ⊢ φ,ψ : o

Σ ⊢ φ ∧ ψ, φ ∨ ψ, φ⇒ ψ : o

Σ, X:σ ⊢ φ : o

Σ ⊢ ∀X:σ.φ, ∃X:σ.φ : o

Σ#a:ν ⊢ φ : o

Σ ⊢ Na:ν.φ : o

Fig. 9. Well-formedness for nominal terms and formulas

(a b) · a = b

(a b) · b = a

(a b) · a′ = a′ (a 6= a′ 6= b)

(a b) · c = c

(a b) · f(~t) = f((a b) · ~t)
(a b) · 〈a′〉t = 〈(a b) · a′〉(a b) · t

(a 6= b)

� a # b � a # c

∧n
i=1 � a # ti

� a # f(tn1 )

� a # b � a # t

� a # 〈b〉t � a # 〈a〉t

� a ≈ a � c ≈ c

∧n
i=1 � ti ≈ ui

� f(tn1 ) ≈ f(un1 )

� t ≈ u

� 〈a〉t ≈ 〈a〉u

� a # u � t ≈ (a b) · u

� 〈a〉t ≈ 〈b〉u

Fig. 10. Swapping, freshness, and equality for ground nominal terms

include freshness a # t and equality t ≈ u. Well-formedness is defined for terms and
formulas in Figure 9. Context bindings include ordinary typed variables Σ, X :σ and
name-typed names Σ#a:ν. We write o for the type of propositions; quantification
over types mentioning o is not allowed.
Figure 10 defines the swapping, freshness, and equality operations on ground

terms. Swapping exchanges two syntactic occurrences of a name in a term (includ-
ing occurrences such as a in 〈a〉t.) The freshness relation defines what it means
for a name to be “not free in” (or fresh for) a term. Intuitively, a name a is fresh
for a term t (that is, a # t) if t possesses no occurrences of a unenclosed by an
abstraction of a. Finally, the equality relation on nominal terms is defined using
freshness and swapping. The only interesting cases are for abstractions; the second
rule for abstractions is equivalent to more standard forms of α-renaming, as has
been shown elsewhere [Gabbay and Pitts 2002; Pitts 2003].
We sometimes refer to the set of “free” names of a term supp(t) = A−{a | a # t}

as its support. Also, swapping and support are extended to formulas by setting
(a b) ·QX.φ[X ] = QX.(a b) · φ[X ] for Q ∈ {∀, ∃} and (a b) · Na′.φ = Na′.(a b) · φ,
provided a′ 6∈ {a, b}; thus, using α-renaming, we have (a b) · ∀X. Na.p(a, b, X) =
Na′.∀X.p(a′, a, X). Likewise, swapping can be extended to sets of terms or formulas

by setting (a b) · S = {(a b) · t | t ∈ S}.
For the purposes of this paper, it suffices to restrict attention to term models
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H �⊤
H 6�⊥
H �A ⇐⇒ A ∈ H
H � t ≈ u ⇐⇒ � t ≈ u
H � a # u ⇐⇒ � a # u
H � φ ∧ ψ ⇐⇒ H � φ and H � ψ

H � φ ∨ ψ ⇐⇒ H � φ or H � ψ
H � φ⇒ ψ ⇐⇒ H � φ implies H � ψ
H � ∀X:σ.φ ⇐⇒ for all t : σ, H � φ[t/X]
H � ∃X:σ.φ ⇐⇒ for some t : σ, H � φ[t/X]
H � Na:ν.φ ⇐⇒ for all b : ν 6∈ supp( Na:ν.φ),

H � (b a) · φ.

Fig. 11. Term model semantics of nominal logic

of nominal logic in which the domain elements are nominal terms with equality
and freshness defined as in Figure 10. We write BL for the Herbrand base, that is,
the set of all ground instances of user-defined predicates p. We view an Herbrand
model H as a subset of BL that is equivariant, or closed under swapping (that is,
H ⊆ (a b) · H for any a, b.) The semantics of nominal logic formulas over term
models is defined as shown in Figure 11. The only nonstandard case is that for N.
This definition of the semantics of Nhas a dual form:

Lemma 3.1. The following are equivalent:

(1 ) H � Na.φ.

(2 ) H � (a b) · φ for some b 6∈ supp( Na.φ).

(3 ) H � (a b) · φ for every b 6∈ supp( Na.φ).

Proof. (1) and (3) are equivalent by definition. (2) and (3) are equivalent
because

∃a.a # ~x ∧ φ(a, ~x) ⇐⇒ ∀a.a # ~x⇒ φ(a, ~x)

is a theorem of nominal logic for any φ such that FV (φ) ⊆ {a, ~x} [Pitts 2003, Prop.
4].

We define ground substitutions θ as functions from V to ground terms. Given a
context Σ, we say that a ground substitution θ satisfies Σ (written θ : Σ) when

· : ·
θ : Σ

θ, x 7→ v : Σ, x

a # θ θ : Σ

θ : Σ#a

For example, [X 7→ a, Y 7→ b] satisfies Σ = a, X#b, Y but not X,Y#a#b.
We generalize the satisfiability judgments as follows. Given sets of formulas Γ,∆,

we write

—H � Γ (for Γ closed) to indicate that H � φ for each φ ∈ Γ

—Γ � ∆ (for Γ,∆ closed) to indicate that H � Γ implies H � ∆

—Σ : θ � φ (for θ : Σ) to indicate that H � θ(φ).

—Σ : Γ, θ � ∆ to indicate that θ(Γ) � θ(∆)

—Σ : Γ � ∆ to indicate that Σ : Γ, θ � ∆ for every θ : Σ

—∀Σ[φ] (or ∃Σ[φ]) for the formula obtained by ∀-quantifying (or ∃-quantifying) all
variables and N-quantifying all names in Σ.

Note that, for example, X#a : · � a # X but a, X : · 6� a # X .
We enumerate a number of basic properties of satisfiability, most of which are

standard.
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Lemma 3.2. If Σ : Γ � φ and Σ : Γ, φ � ψ then Σ : Γ � ψ.

Lemma 3.3. If Σ : Γ � ∃X.ψ and Σ, X : Γ, ψ � φ hold then Σ : Γ � ∃X.φ holds.

Lemma 3.4. If Σ : Γ � Na.ψ and Σ#a : Γ, ψ � φ hold then Σ : Γ � Na.φ holds.

Lemma 3.5. If Σ : Γ, ψi � φ then Σ : Γ, ψ1 ∧ ψ2 � φ.

Lemma 3.6. If Σ : Γ � ψ1 and Σ : Γ, ψ2 � φ then Σ : Γ, ψ1 ⇒ ψ2 � φ.

Lemma 3.7. If Σ, X : Γ, ψ, θ[X 7→ t] � φ and X does not appear in Γ, φ then
Σ : Γ, ∀X.ψ, θ � φ.

Lemma 3.8. If Σ#a : Γ, ψ � φ for some a not appearing in Γ, φ then Σ :
Γ, Na.ψ � φ.

We define the nominal Horn goal formulas G and nominal Horn program clauses
D as follows:

G ::= ⊤ | A | C | G ∧G′ | G ∨G′ | ∃X.G | Na.G

D ::= ⊤ | A | D ∧D′ | G⇒ D | ∀X.D | Na.D

A nominal logic program is a set of closed clause formulas D.

Remark 3.9. The current implementation of αProlog includes support for negation-
as-failure, conditionals, and the “cut” goal, which are not included in the above core
language. We shall investigate only the semantics of “pure” αProlog programs. We
believe that our results can be extended to negation-as-failure following [Jaffar
et al. 1998] relatively easily. Also, we consider only monomorphic programs. It
also appears straightforward to extend our results to general constraint domains or
functional constraint logic programming.

4. SEMANTICS

So far, we have motivated αProlog purely in intuitive terms, arguing that αProlog
concepts such as freshness and name-abstraction behave as they do “on paper”.
However, in order to prove the correctness of the example programs we have con-
sidered, it is important to provide a semantic foundation for reasoning about such
programs. We shall investigate model-theoretic, proof-theoretic, and operational
semantics for nominal logic programs.
Classical model-theoretic semantics for logic programming [van Emden and Kowal-

ski 1976; Lloyd 1987] defines the meaning of a program as a Herbrand model con-
structed as the least fixed point of a continuous operator. We take for granted the
theory of Herbrand models for nominal logic introduced in the previous section (full
details are presented in [Cheney 2006a]). We then define an appropriate least fixed
point semantics for nominal logic programs and prove that the least fixed point
model and the least Herbrand model coincide.
While model-theoretic semantics is convenient for relating formal and informal

systems, it is not as useful for implementation purposes. Instead, syntactic tech-
niques based on proof theory are more appropriate because they provide a declar-
ative reading of connectives as proof search operations in constructive logic. Miller
et al. [1991] introduced the concept of uniform proof ; a collection of program clauses
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and goal formulas is considered an abstract logic programming language if goal-
directed proof search is complete with respect to the underlying logic. Accordingly,
we introduce a proof theory for a fragment of intuitionistic nominal logic which per-
forms goal-directed proof search (decomposes complex goals to simple atomic for-
mulas) and focused resolution (searches systematically for proofs of atomic formulas
based on the syntax of program clauses). We prove the soundness and completeness
of this system with respect to the model-theoretic semantics.
Finally, we consider the operational semantics of nominal logic programs at an

abstract level. The proof theoretic semantics contains a number of “don’t-know”
nondeterministic choices. We provide an operational semantics (following the se-
mantics of constraint logic programming [Jaffar et al. 1998; Darlington and Guo
1994; Leach et al. 2001]) which delays these choices as long as possible, and closely
models the behavior of an interpreter.
Along the way we prove appropriate soundness and completeness results relating

the model-theoretic, proof-theoretic, and operational semantics. These results en-
sure the correctness of a low-level interpreter based on the operational semantics
relative to the high-level approaches, and provide a rich array of tools for analyzing
the behavior of nominal logic programs. The model-theoretic semantics is especially
useful for relating informal systems with nominal logic programs, while the proof-
theoretic semantics is convenient for proving behavioral properties of programs and
program transformations. We shall consider such applications in Section 5.

4.1 Model-theoretic semantics

In this section we define the model-theoretic semantics of nominal logic programs.
We show that least Herbrand models exist for nominal Horn clause programs and
that the least Herbrand model is the least fixed point of an appropriate continuous
one-step deduction operator, following Lloyd [1987]. This section also relies on
standard definitions and concepts from lattice theory [Davey and Priestley 2002].
Although the overall structure of our proof follows Lloyd, it differs in some impor-

tant technical details. Most importantly, we do not assume that clauses have been
normalized to the form A :− G. Instead, all definitions and proofs are by induction
over the structure of goals and program clauses. This is advantageous because it
permits a much cleaner treatment of each logical connective independently of the
others; this is especially helpful when considering the new cases arising for the N-
quantifier, and when relating the model-theoretic semantics to the proof-theoretic
and operational semantics.

4.1.1 Least Herbrand Models. It is a well-known fact that least Herbrand models
exist for Horn clause theories in first-order logic. This is also true for nominal Horn
clause theories. We rely on a previous development of Herbrand model theory for
nominal logic [Cheney 2006a], culminating in the completeness of Herbrand models
for Horn clause theories:

Theorem 4.1 Completeness of nominal Herbrand models. A collection
of program clauses is satisfiable in nominal logic if and only if it has an Herbrand
model.

Proof. We note without proof that we can prenex-normalize all ∃ and Nquan-
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tifiers in goals in D-formulas out to the top level as ∀ and Nquantifiers respectively.
Then a collection of normalized D-formulas is a N∀-theory in the sense of [Cheney
2006a, Theorem 6.17], so has a model iff it has an Herbrand model.

Lemma 4.2. Let ∆ be a program and M a nonempty set of Herbrand models of
∆. Then H =

⋂

M is also an Herbrand model of ∆.

Proof. We first note that the intersection of a collection of equivariant sets is
still equivariant, so H is an Herbrand model. To prove it models ∆, we show by
mutual induction that

(1) For any program clause D, if ∀M ∈ M.M � D then H � D; and

(2) For any goal formula G, if H � G then ∀M ∈ M.M � G.

All the cases are standard except for Na.G and Na.D. If ∀M ∈ M.M � Na.D then
for each M , M � (b a) ·D for all b not in supp( Na.D). Choose a b 6∈ supp( Na.D)
such that ∀M ∈ M.M � (b a) · D. Appealing to the induction hypothesis, we
obtain H � (b a) ·D. By Lemma 3.1, it follows that H � Na.D. The case for Na.G
is similar (but simpler).

An immediate consequence is that a least Herbrand model H∆ =
⋂

{H | H � ∆}
exists for any nominal Horn theory ∆. Moreover, H∆ consists of all ground atoms
entailed by ∆, as we now show.

Theorem 4.3. Let ∆ be a program. Then H∆ = {A ∈ BL | ∆ � A}.

Proof. If A ∈ H∆, then A is valid in every Herbrand model of ∆, so by Theo-
rem 4.1, A is valid in every model of ∆. Conversely, if ∆ � A then since H∆ � ∆
we have H∆ � A; thus A ∈ H∆.

4.1.2 Fixed Point Semantics. Classical fixed point theorems assert the existence
of a fixed point. However, to ensure that the fixed point of an operator on nominal
Herbrand models is still an Herbrand model we need an additional constraint: we
require that the operator is also equivariant, in the following sense.

Definition 4.4. A set operator T : P(BL) → P(BL) is called equivariant if
(a b) · T (S) = T ((a b) · S).

Theorem 4.5. Suppose T : P(BL) → P(BL) is equivariant and monotone.
Then lfp(T ) =

⋂

{S ∈ P(BL) | T (S) ⊆ S} is the least fixed point of T and is
equivariant. If, in addition, T is continuous, then lfp(T ) = Tω =

⋃ω
i=0 T

i(∅).

Proof. By the Knaster-Tarski fixed-point theorem, lfp(T ) is the least fixed point
of T . To show that lfp(T ) is equivariant, it suffices to show that A ∈ lfp(T ) =⇒
(a b) ·A ∈ lfp(T ). Let a, b be given and assume A ∈ lfp(T ). Then for any pre-fixed
point S of T (satisfying T (S) ⊆ S), we have A ∈ S. Let such an S be given. Note
that T ((a b) · S) = (a b) · T (S) ⊆ (a b) · S, so (a b) · S is also a pre-fixed point of
T . Hence A ∈ (a b) · S so (a b) · A ∈ (a b) · (a b) · S = S. Since S was an arbitrary
pre-fixed point, it follows that (a b) ·A ∈ lfp(T ), as desired.
The second part follows immediately from Kleene’s fixed point theorem.

ACM Journal Name, Vol. V, No. N, Month 20YY.



Nominal Logic Programming · 23

Definition 4.6. Let S be an Herbrand interpretation and D a closed program
clause. The one-step deduction operator TD : P(BL) → P(BL) is defined as follows:

T⊤(S) = S
TA(S) = S ∪ {A}

TD1∧D2
(S) = TD1

(S) ∪ TD2
(S)

TG⇒D(S) =

{

TD(S) if S � G
S otherwise

T∀X:σ.D(S) =
⋃

t:σ TD[t/X](S)
T Na:ν.D(S) =

⋃

b:ν 6∈supp( Na.D) T(a b)·D(S)

We define T∆ as TD1∧···∧Dn
provided ∆ = {D1, . . . , Dn} and each Di is closed.

Remark 4.7. Many prior expositions of the model-theoretic semantics of logic
programs treat “open” Horn clauses A :− B1, . . . , Bn as the basic units of compu-
tation. For example, the one-step deduction operator is usually formulated as

T (S) = {θ(A) | ∃(A :− B1, . . . , Bn ∈ P ), θ.S � θ(B1), . . . , θ(Bn)}

This definition is not straightforward to extend to nominal logic programming be-
cause of the presence of the N-quantifier. Although it can be done [Cheney 2004b,
Chapter 6], the resulting model-theoretic semantics is difficult to relate to the proof-
theoretic and operational semantics. Instead, we prefer to define T by induction
on the structure of program clauses. This necessitates reorganizing our proofs,
but the resulting argument is more modular with respect to extensions based on
connectives.

Lemma 4.8. For any program ∆, T∆ is monotone and continuous.

Proof. We prove by induction on the structure of D that TD has the above
properties. Monotonicity is straightforward. For continuity, let S0, S1, . . . , be an
ω-chain of subsets of BL. The cases for ⊤,∧,⇒, ∀, and atomic formulas follow
standard arguments (see Appendix A). Suppose D = Na.D′. Then we have

T Na.D′(
⋃

i Si) =
⋃

b:ν 6∈supp( Na.D′) T(a b)·D′(
⋃

i Si) Definition

=
⋃

b:ν 6∈supp( Na.D′)

⋃

i T(a b)·D′(Si) Induction hyp.

=
⋃

i

⋃

b:ν 6∈supp( Na.D′) T(a b)·D′(Si) Unions commute

=
⋃

i T Na.D′(Si) Definition

This completes the proof.

Lemma 4.9. For any a, b ∈ A, (a b) · TD(S) = T(a b)·D((a b)·S). In particular,
if ∆ is a closed program with FV (∆) = supp(∆) = ∅, then T∆ is equivariant.

Proof. The proof is by induction on the structure of D. The cases for ⊤, A,∧
are straightforward (see Appendix A); for ⇒ we need the easy observation that
S � G ⇐⇒ (a b)·S � (a b)·G. For ∀X :σ.D formulas, observe that

(a b)·T∀X.D(S) = (a b)·
⋃

t:σ TD[t/X](S) Definition
=

⋃

t:σ(a b) · TD[t/X](S) Swapping commutes with union
=

⋃

t:σ T((a b)·D)[(a b)·t/X]((a b)·S) Induction hyp.
=

⋃

u:σ T((a b)·D)[u/X]((a b)·S) Change of variables (u = (a b) · t)
= T(a b)·∀X.D((a b)·S) Definition.
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For N, the argument is similar.

Lemma 4.10. If M is a fixed point of T∆, then M � ∆.

Proof. We first prove by induction on the structure of D that if TD(M) = M
then M � D. We show only the case for N; the full proof is in Appendix A. For
D = Na:ν.D′, note that M = T Na.D′(M) =

⋃

b:ν 6∈supp( Na.D′) T(a b)·D′(M) implies

T(a b)·D′(M) = M for every fresh b. Hence by the induction hypothesis M �

(a b) ·D′ for every fresh b; consequently M � Na.D′.
Since any program ∆ = {D1, . . . , Dn} is equivalent to a D-formula D1∧· · ·∧Dn,

the desired result follows immediately.

Lemma 4.11. If M � ∆ then M is a fixed point of T∆.

Proof. Since T∆ is monotone it suffices to show that M is a pre-fixed point.
We first prove that for any D, if M � D then TD(M) ⊆ M, by induction
on the structure of D. We show only the case for N; other cases are in Ap-
pendix A. If D = Na:ν.D′, by assumption M � Na:ν.D′ so M � (a b) · D′ for
any b 6∈ supp( Na.D′). By induction T(a b)·D′(M) ⊆ M for any b 6∈ supp( Na.D′) so
⋃

b:ν 6∈supp( Na.D′) T(a b)·D′(M) ⊆ M.

To prove the lemma, take ∆ = {D1, . . . , Dn} and D = D1 ∧ · · · ∧Dn. If M � ∆,
then M � D, so TD(M) ⊆ M, whence T∆(M) ⊆ M.

Theorem 4.12. H∆ = lfp(T∆) = Tω
∆.

Proof. Clearly Tω
∆ = lfp(T∆) by Theorem 4.5. Moreover, by Lemma 4.11 and

Lemma 4.10, the set of models of ∆ equals the set of fixed points of T∆, so we must
have H∆ = lfp(T∆), since H∆ is the least model of ∆ and lfp(T∆) is the least fixed
point of T∆.

4.2 Proof-theoretic semantics

In proof-theoretic semantics, an approach due to Miller et al. [1991], well-behaved
logic programming languages are characterized as those for which uniform (or goal-
directed) proof search is complete. Uniform proofs are sequent calculus proofs in
which right-decomposition rules are always used to decompose the goal before any
other proof rules are considered. Proof-theoretic semantics has been extended to a
variety of settings; most relevant here is work on constraint logic programming in
a proof theoretic setting [Darlington and Guo 1994; Leach et al. 2001].
A uniform proof-theoretic approach to nominal logic programming was investi-

gated by Gabbay and Cheney [2004] in the context of NLSeq, an early sequent
calculus formulation of nominal logic. However, this approach was unsatisfactory
in some respects.
First, the underlying sequent calculus suggested an approach to proof-search for
N-formulas quite unlike the intuitive “generate a fresh name and proceed” approach

employed in αProlog. This problem has been addressed by an alternative sequent
calculus for nominal logic called NL⇒ [Cheney 2005d], in which the N-quantifier
rules take a simpler form.
Second, some rules of NLseq (and NL⇒) are not goal-directed but cannot be

permuted past the ∃R and ∀L rules. Instead, in these systems it appears necessary
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Σ : ∇ � C
Σ : ∆;∇ =⇒ C

con
Σ : ∆;∇ =⇒ G1 Σ : ∆;∇ =⇒ G2

Σ : ∆;∇ =⇒ G1 ∧G2
∧R

Σ : ∆;∇ =⇒ Gi

Σ : ∆;∇ =⇒ G1 ∨G2
∨Ri

Σ : ∆;∇ =⇒ ⊤
⊤R

Σ : ∇ � ∃X.C Σ, X : ∆;∇, C =⇒ G

Σ : ∆;∇ =⇒ ∃X:σ.G
∃R

Σ : ∇ � Na.C Σ#a : ∆;∇, C =⇒ G

Σ : ∆;∇ =⇒ Na:ν.G
NR

Σ : ∆;∇
D
−→ A (D ∈ ∆)

Σ : ∆;∇ =⇒ A
sel

Σ : ∇ �A′ ∼ A

Σ : ∆;∇
A′

−−→ A

hyp
Σ : ∆;∇

Di−−→ A

Σ : ∆;∇
D1∧D2−−−−−→ A

∧Li
Σ : ∆;∇

D
−→ A Σ : ∆;∇ =⇒ G

Σ : ∆;∇
G⇒D
−−−−→ A

⇒L

Σ : ∇ � ∃X.C Σ,X : ∆;∇, C
D
−→ A

Σ : ∆;∇
∀X:σ.D
−−−−−→ A

∀L
Σ : ∇ � Na.C Σ#a : ∆;∇, C

D
−→ A

Σ : ∆;∇
Na:ν.D

−−−−−→ A
NL

Fig. 12. Uniform/focused proof search for intuitionistic nominal logic

to weaken the definition of uniform proof in order to permit applications of non-
goal-directed rules before ∃R and ∀L.
For example, NL⇒ contains a freshness rule (F ) that asserts that a fresh name

can be introduced at any point in an argument:

Σ#a : Γ ⇒ φ

Σ : Γ ⇒ φ
F

(a 6∈ Σ)

Here, the judgment Σ : Γ ⇒ φ can be read as “For any valuation satisfying Σ,
if all the formulas of Γ hold then φ holds.” As the following partial derivation
suggests, the goal formula Na.∃x.a # x cannot be derived in NL⇒ without using
the “freshness rule” before ∃R, because otherwise there is no way to obtain a ground
name b distinct from a with which to instantiate X :

...
a#b : · ⇒ a # b

a#b : · ⇒ ∃X.a # X
∃R

a : · ⇒ ∃X.a # X
F

· : · ⇒ Na.∃X.a # X
NR

We adopt a variation of NL⇒ that also addresses the second problem: specifi-
cally, we define an “amalgamated” proof system NL⇒

�
that separates the term-level

constraint-based reasoning from logical reasoning and proof search. This technique
was employed by Darlington and Guo [1994] and further developed by Leach et al.
[2001] in studying the semantics of constraint logic programs.
In this section we introduce the amalgamated proof system NL⇒

�
and relate it to

the model-theoretic semantics in the previous section. We also introduce a second
residuated proof system that explicates the process of reducing a goal to an answer
constraint; this system forms an important link between the proof theory and the
operational semantics in the next section. Residuated proof search corresponds to
ordinary proof search in a natural way.
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4.2.1 The amalgamated system NL⇒
�
. The proof rules in Figure 12 describe a

proof system that first proceeds by decomposing the goal to an atomic formula,
which is then solved by refining a program clause. The uniform derivability judg-
ment Σ : ∆;∇ =⇒ G indicates that G is derivable from ∆ and ∇ in context Σ,

while the focused proof judgment Σ : ∆;∇
D
−→ A indicates that atomic goal A is

derivable from ∆ and ∇ by refining the program clause D (using ∆ to help solve
any residual goals). The judgment Σ : ∇ � C is the ordinary constraint entailment
relation defined in Section 3.
These rules are unusual in several important respects. First, the hyp rule re-

quires solving a constraint of the form A ∼ B, which we define as “there exists a
permutation π such that π·A ≈ B”. In contrast usually the hypothesis rule requires
only that A ≈ A′. Our rule accounts for the fact that equivalent atomic formulas
may not be syntactically equal as nominal terms, but only equal modulo a per-
mutation. Second, the proof system treats constraints specially, separating them
into a context ∇. This is necessary because the role of constraints is quite different
from that of program clauses: the former are used exclusively for constraint solving
whereas the latter are used in backchaining. Third, the NL, NR, ∃R and ∀L rules
are permitted to introduce a constraint on the witness name a or variable X rather
than providing a witness term. This constraint-based treatment makes it possible
to compartmentalize all reasoning about the constraint domain in the judgment
Σ : ∇ � C.
For example, the goal Na.∃X.a # X has the following uniform derivation:

Σ#a : ∇ � Na.⊤

Σ#a : ∇,⊤ � ∃X.a # X Σ#a, X : ∆;∇,⊤, a # X =⇒ a # X

Σ#a : ∆;∇,⊤ =⇒ ∃X.a # X
∃R

Σ : ∆;∇ =⇒ Na.∃X.a # X
NR

since Σ#a : ∇ � ∃X.a # X is clearly valid for any ∇ (take X to be any ground
name besides a).
We state without proof the following basic properties:

Lemma 4.13.

(1 ) If Σ : ∆;∇ =⇒ G (or Σ : ∆;∇
D
−→ A) and Σ,Σ′ is a well-formed context then

Σ,Σ′ : ∆;∇ =⇒ G (or Σ,Σ′ : ∆;∇
D
−→ A).

(2 ) If Σ : ∆;∇ =⇒ G (or Σ : ∆;∇
D
−→ A) and ∆ ⊆ ∆′ then Σ : ∆,∆′;∇ =⇒ G

(or Σ : ∆,∆′;∇
D
−→ A).

(3 ) If Σ : ∆;∇ =⇒ G (or Σ : ∆;∇
D
−→ A) and Σ : ∇′

� ∇ then Σ : ∆;∇′ =⇒ G

(or Σ : ∆;∇′ D
−→ A).

We first show that the restricted system is sound with respect to the model-
theoretic semantics.

Theorem 4.14 (Soundness).

(1 ) If Σ : ∆;∇ =⇒ G is derivable then Σ : ∆,∇ � G.

(2 ) If Σ : ∆;∇
D
−→ G is derivable then Σ : ∆, D,∇ � G.
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Proof. Induction on derivations. The only novel cases involve N.
Suppose we have derivation

Σ : ∇ � Na.C Σ#a : ∆;∇, C =⇒ G

Σ : ∆;∇ =⇒ Na.G
NR

By induction we have that Σ#a : ∆,∇, C � G. Appealing to Lemma 3.4, we
conclude Σ : ∆,∇ � Na.G.
Suppose we have derivation

Σ : ∆;∇
D
−→ A (D ∈ ∆)

Σ : ∆;∇ =⇒ A
sel

Then by induction hypothesis (2), we have that Σ : ∆, D,∇ � A. Since D ∈ ∆,
clearly Σ : ∆ � D so we can deduce Σ : ∆,∇ � A.

For the second part, proof is by induction on the derivation of Σ : ∆;∇
D
−→ G.

The interesting cases are hyp and NL.

—Suppose we have derivation

Σ : ∇ � A′ ∼ A

Σ : ∆;∇
A′

−→ A
hyp

We need to show Σ : ∆, A′,∇ � A. To see this, suppose θ satisfies ∇ and H is an
Herbrand model of ∆, θ(A′). Since Σ : ∇ � A′ ∼ A, there must be a permutation
π such that π·θ(A′) = θ(A). Moreover, since H � θ(A′), by the equivariance of
H we also have H � π·θ(A′) so H � θ(A). Since θ and H were arbitrary, we
conclude that Σ : ∆, A′,∇ � A.

—Suppose we have derivation

Σ : ∇ � Na.C Σ#a : ∆;∇, C
D
−→ A

Σ : ∆;∇
Na.D

−−−→ A
NL

By induction, we know that Σ#a : ∆, D,∇, C � A. Since Σ : ∇ � Na.C it follows
that Σ#a : ∆, D,∇, C � A, so by Lemma 3.2 we have Σ#a : ∆, D,∇ � A.
Moreover, by Lemma 3.8, we can conclude Σ : ∆, Na.D,∇ � A.

This completes the proof.

We next show a restricted form of completeness relative to the model-theoretic
semantics. Since the model-theoretic semantics is classical while the proof theory
is constructive, it is too much to expect that classical completeness holds. For
example, A,B : · � A ≈ B ∨ A # B is valid, but A,B : ·; · =⇒ A ≈ B ∨ A # B
is not derivable (and indeed not intuitionistically valid). Instead, however, we can
prove that any valuation θ that satisfies a goal G also satisfies a constraint which
entails G.

Proposition 4.15. For any Σ,∆, G,D, i ≥ 0:

(1 ) If Σ : T i
∆, θ � G then there exists ∇ such that Σ : θ � ∇ and Σ : ∆;∇ =⇒ G is

derivable.
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(2 ) If Σ : Tθ(D)(T
i
∆), θ � A but Σ : T i

∆, θ 6� A then there exists ∇ such that Σ : θ � ∇

and Σ : ∆;∇
D
−→ A.

Proof. For the first part, proof is by induction on i and G; most cases are
straightforward. We give two illustrative cases.

—If G = A and i > 0, then there are two further cases. If Σ : T i−1
∆ , θ � A then we

use part (1) of the induction hypothesis. Otherwise Σ : T i−1
∆ , θ 6� A. This implies

that θ(A) ∈ T∆(T
i−1
∆ ) =

⋃

D∈∆ TD(T i−1
∆ ), so we must have θ(A) ∈ TD(T i−1

∆ )
for some D ∈ ∆. Observe that since D is closed, θ(D) = D. Consequently
Σ : Tθ(D)(T

i−1
∆ ), θ � A but Σ : T i−1

∆ 6� A, so induction hypothesis (2) applies and

we can obtain a derivation of Σ : ∆;∇
D
−→ A. The following derivation completes

this case:

Σ : ∆;∇
D
−→ A (D ∈ ∆)

Σ : ∆;∇ =⇒ A
sel

.

—If G = Na:ν.G′, assume without loss of generality a 6∈ Σ. Then Σ : T i
∆, θ � Na.G′

implies Σ#a : T i
∆, θ � G

′. By induction, there exists ∇ such that Σ#a : ∆;∇ =⇒
G′ is derivable. We can therefore derive

Σ : Na.∇ � Na.∇ Σ, X :σ : ∆; Na.∇,∇ =⇒ G′

Σ : ∆; Na.∇ =⇒ Na.G′ NR

using weakening to obtain the second subderivation.

Similarly, the second part follows by induction on D, unwinding the definition of
TD in each case. We show the case for NL.

—If D = Na:ν.D′, assume without loss of generality that a 6∈ Σ, θ, A. Then θ(D) =
Na.θ(D′) and since T Na.θ(D′)(S) =

⋃

b 6∈supp( Na.θ(D′)) T(a b)·θ(D′)(S), so we must

have Σ :
⋃

b 6∈supp( Na.θ(D′)) T(a b)·θ(D′)(T
i
∆), θ � A. By definition, this means that

θ(A) ∈
⋃

b 6∈supp( Na.θ(D′)) T(a b)·θ(D′)(T
i
∆). Since by assumption a 6∈ Σ, θ, A and

a 6∈ supp( Na.D′), we must have θ(A) ∈ T(a a)·θ(D′)(T
i
∆). Note that (a a) · θ(D′) =

θ(D′), and θ : Σ#a, hence Σ#a : Tθ(D′)(T
i
∆), θ � A. Consequently, by induction,

there exists a ∇ such that Σ : θ � ∇ and Σ#a : ∆;∇
D′

−−→ A. Therefore, we have

Σ : Na.∇ � Na.∇ Σ#a : ∆; Na.∇,∇
D′

−−→ A

Σ : ∆; Na.∇
Na.D′

−−−−→ A
NL

Moreover, clearly Σ#a : θ � ∇ implies Σ : θ � Na.∇.

The complete proof can be found in Appendix B.

Theorem 4.16 (Algebraic Completeness). If Σ : ∆, θ � G then there ex-
ists a constraint ∇ such that Σ : ∆, θ � ∇ and Σ : ∆;∇ =⇒ G is derivable.

Proof. If Σ : ∆, θ � G, then there is some n such that Σ : T n
∆, θ � G, so

Proposition 4.15 applies.

We can also extend this to a “logical” completeness result (following [Jaffar et al.
1998]), namely that if an answer C classically implies G, then there is a finite set
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Σ : ∆ =⇒ C \ C
con

Σ : ∆ =⇒ G1 \ C1 Σ : ∆ =⇒ G2 \ C2

Σ : ∆ =⇒ G1 ∧G2 \ C1 ∧ C2
∧R

Σ : ∆ =⇒ Gi \ C

Σ : ∆ =⇒ G1 ∨G2 \ C
∨Ri

Σ : ∆ =⇒ ⊤ \ ⊤
⊤R

Σ,X : ∆ =⇒ G \ C

Σ : ∆ =⇒ ∃X:σ.G \ ∃X.C
∃R

Σ#a : ∆ =⇒ G \ C

Σ : ∆ =⇒ Na:ν.G \ Na:ν.C
NR

Σ : ∆
D
−→ A \ G Σ : ∆ =⇒ G \ C (D ∈ ∆)

Σ : ∆ =⇒ A \ C
back

Σ : ∆
A′

−−→ A \ A ∼ A′

hyp
Σ : ∆

Di−−→ A \ G

Σ : ∆
D1∧D2−−−−−→ A \ G

∧Li

Σ : ∆
D
−→ A \ G′

Σ : ∆
G⇒D
−−−−→ A \ G ∧G′

⇒L

Σ,X : ∆
D
−→ A \ G

Σ : ∆
∀X:σ.D
−−−−−→ A \ ∃X:σ.G

∀L
Σ#a : ∆

D
−→ A \ G

Σ : ∆
Na:ν.D

−−−−−→ A \ Na:ν.G
NL

Fig. 13. Residuated uniform/focused proof search

of constraints which prove G and whose disjunction covers C. We first establish
that a goal formula is classically equivalent to the disjunction (possibly infinite) of
all the constraints that entail it.

Lemma 4.17. Let Σ be a context, ∆ a program, G a goal, and ΓG = {C | Σ :
∆;C =⇒ G}. Then Σ : ∆ � G ⇐⇒

∨

ΓG.

Proof. For the forward direction, if Σ : ∆, θ � G then by Theorem 4.16 there
exists a constraint ∇ such that Σ : θ � ∇ and Σ : ∆;∇ =⇒ G. Hence,

∧

∇ ∈ ΓG,
so Σ : ∆, θ �

∨

ΓG.
Conversely, if Σ : ∆, θ �

∨

ΓG, then for some constraint C ∈ ΓG, Σ : ∆, θ � C.
Consequently Σ : ∆;C =⇒ G holds, so by Theorem 4.14, we have Σ : ∆, C � G.
Since Σ : ∆, θ � C, we conclude that Σ : ∆, θ � G.

Theorem 4.18 (Logical Completeness). If Σ : ∆, C � G then there exists
a finite set of constraints Γ0 such that Σ : C �

∨

Γ0 and for each C′ ∈ Γ0, Σ :
∆;C′ =⇒ G.

Proof. Again set ΓG = {C′ | Σ : ∆;C′ =⇒ G}. By Lemma 4.17, Σ :
∆, G �

∨

ΓG. Hence, Σ : ∆, C �
∨

ΓG. By the Compactness Theorem for
nominal logic [Cheney 2006a, Cor. 4.8], it follows that there is a finite subset
Γ0 ⊆ ΓG such that Σ : ∆, C �

∨

Γ0. By definition, every C′ ∈ Γ0 ⊆ ΓG satisfies
Σ : ∆;C′ =⇒ G.

4.2.2 The residuated system RNL⇒
�
. The rules in Figure 12 have the potential

disadvantage that an arbitrary constraint C is allowed in the rules ∃R, ∀L, NL, NR.
Figure 13 shows a residuated proof system that avoids this nondeterminism. (A
similar idea is employed by Cervesato [1998]). Specifically, the judgment Σ : ∆ =⇒
G \ C means that given context Σ and program ∆, goal G reduces to constraint

C; similarly, Σ : ∆
D
−→ A \ G means that goal formula G suffices to prove A from

D.
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(B) Σ〈A,Γ | ∇〉 −→ Σ〈G,Γ | ∇〉 (if ∃D ∈ ∆.Σ : ∆
D
−→ A \ G)

(C) Σ〈C,Γ | ∇〉 −→ Σ〈Γ | ∇, C〉 (∇, C consistent)

(⊤) Σ〈⊤,Γ | ∇〉 −→ Σ〈Γ | ∇〉

(∧) Σ〈G1 ∧G2,Γ | ∇〉 −→ Σ〈G1, G2,Γ | ∇〉

(∨i) Σ〈G1 ∨G2,Γ | ∇〉 −→ Σ〈Gi,Γ | ∇〉

(∃) Σ〈∃X :σ.G,Γ | ∇〉 −→ Σ, X :σ〈G,Γ | ∇〉

( N) Σ〈 Na:ν.G,Γ | ∇〉 −→ Σ#a:ν〈G,Γ | ∇〉

Fig. 14. Operational semantics transitions for nominal logic programs

Theorem 4.19 (Residuated Soundness).

(1 ) If Σ : ∆ =⇒ G \ C then Σ : ∆;C =⇒ G.

(2 ) If Σ : ∆;∇ =⇒ G and Σ : ∆
D
−→ A \ G then Σ : ∆;∇

D
−→ A.

Theorem 4.20 (Residuated Completeness).

(1 ) If Σ : ∆;∇ =⇒ G then there exists a constraint C such that Σ : ∆ =⇒ G \ C
and Σ : ∇ � C.

(2 ) If Σ : ∆;∇
D
−→ A then there exists goal G and constraint C such that Σ : ∆

D
−→

A \ G and Σ : ∆ =⇒ G \ C and Σ : ∇ � C.

Both proofs are straightforward structural inductions (see Appendix B).

4.3 Operational Semantics

We now give a CLP-style operational semantics for nominal logic programs. The
rules of the operational semantics are shown in Figure 14. A program state is a
triple of the form Σ〈Γ | ∇〉. Note that the backchaining step is defined in terms of

residuated focused proof, Σ : ∆
D
−→ A \ G.

We now state the operational soundness and completeness properties. The proofs
are straightforward by cases or induction, so omitted. To simplify notation, we write
Σ : ∆ =⇒ ~G \ ~C where Γ = G1, . . . , Gn and ~C = C1, . . . , Cn to abbreviate Σ :
∆ =⇒ G1 \ C1, . . . ,Σ : ∆ =⇒ Gn \ Cn. In addition, we will need to reason by well-
founded induction on such ensembles of derivations. We define the subderivation
relation D < E to indicate that D is a strict subderivation of E , and write ~D <∗ ~E
for the multiset ordering generated by <.
Proposition 4.21 amounts to showing that each operational transition corresponds

to a valid manipulation on (multisets of) residuated proofs.

Proposition 4.21 (Transition Soundness). If Σ〈~G | ∇〉 −→ Σ′〈 ~G′ | ∇′〉

and Σ′ : ∆ =⇒ ~G′ \ ~C′ then there exist ~C such that

(1 ) Σ : ∆ =⇒ ~G \ ~C and

(2 ) Σ′ : ∇′, ~C′ � ∇, ~C.
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Proof. Assume Σ′ : ∆ =⇒ ~G′ \ ~C′ is derivable. Proof is by case decomposition
on the possible transition steps. We show the case for a N-step; the complete proof
is in Appendix C. For a step ( N) of the form

Σ〈 Na:ν.G, ~G0 | ∇〉 −→ Σ#a:ν〈G, ~G0 | ∇〉

Then Σ′ = Σ#a; ∇′ = ∇, ~G = Na.G, ~G0; ~G′ = G, ~G0; ~C′ = C, ~C0, so set ~C =
Na.C, ~C0. For part (1), derive Σ : ∆ =⇒ Na.G, ~G0 \ Na.C, ~C0 using NR. For part

(2), observe that Σ#a : ∇, C, ~C0 � Na.C, ~C0.

Theorem 4.22 (Operational Soundness). if Σ〈~G | ∇〉 −→∗ Σ′〈∅ | ∇′〉

then there exists ~C such that Σ′ : ∇′
� ∇, ~C and Σ : ∆ =⇒ ~G \ ~C.

Proof. Proof is by induction on the number of transition steps. If no steps are
taken, then ~G is empty and ∇′ = ∇, so taking ~C to be empty, the conclusion is
trivial. Otherwise we have a step

Σ〈~G | ∇〉 −→ Σ0〈 ~G0 | ∇0〉 −→
∗ Σ′〈∅ | ∇′〉 .

By induction, there exists ~C0 such that Σ′ : ∇′
� ∇0, ~C0 and Σ0 : ∆ =⇒ ~G0 \ ~C0.

Using Proposition 4.21, we can construct ~C such that Σ : ∆ =⇒ ~G \ ~C and

Σ0 : ∇0, ~C0 � ∇, ~C. Moreover, using weakening and deduction, we can conclude
that Σ′ : ∇′

� ∇, ~C.

The transition completeness property (Proposition 4.23) states that for any con-
figuration Σ〈Γ | ∇〉 such that the goals Γ have appropriate derivations in the
residuated proof system, there is an operational transition step to a new state with
appropriately modified derivations. This is essentially the (complicated) induction
hypothesis for proving completeness of the operational semantics with respect to
the other systems (Theorem 4.24).

Proposition 4.23 (Transition Completeness). For any nonempty ~G and

satisfiable ∇, ~C, if we have derivations ~D of Σ : ∆ =⇒ ~G \ ~C then for some Σ′,

∇′, and ~C′ we have

(1 ) Σ〈~G | ∇〉 −→ Σ′〈 ~G′ | ∇′〉,

(2 ) There exist derivations ~D′ of Σ′ : ∆ =⇒ ~G′ \ ~C′, where ~D′ <∗ ~D

(3 ) ∃Σ[∇] � ∃Σ′[∇′]

Proof. Let ~G, ~C,∇ be given as above. Since ~G is nonempty, we must have
~G = G, ~G0 and ~C = C, ~C0. Proof is by case decomposition of the derivation of
Σ : ∆ =⇒ G \ C. We show the cases for NR and back; the complete proof is in
Appendix C. If the derivation is of the form

Σ#a : ∆ =⇒ G \ C

Σ : ∆ =⇒ Na.G \ Na.C
NR

~G = Na.G, ~G0 and ~C = Na.C, ~C0. Setting Σ′ = Σ#a;∇′ = ∇; ~G′ = G, ~G0; ~C′ =
C, ~C0; we can take the operational step Σ〈 Na.G, ~G0 | ∇〉 −→ Σ#a〈G, ~G0 | ∇〉. In

addition, for (2) we can obtain smaller subderivations of Σ#a : ∆ =⇒ G, ~G0 \ C, ~C0
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from the given derivations, and for (3) observe that ∃Σ[∇, Na.C, ~C0] � ∃Σ#a[∇, C, ~C0]

since a is not free in ∇, ~C0.
For a derivation of the form

Σ : ∆
D
−→ A \ G′ Σ : ∆ =⇒ G′ \ C (D ∈ ∆)

Σ : ∆ =⇒ A \ C
back

we have ~G = A, ~G0 and ~C = C, ~C0. Set Σ = Σ′; ~G′ = G′, ~G0; ~C′ = C, ~C0; ∇
′ = ∇.

Using the first subderivation, we can take a backchaining step Σ〈A, ~G0 | ∇〉 −→

Σ〈G′, ~G0 | ∇〉. Moreover, for part (2), using the second subderivation we obtain a

smaller derivation Σ : ∆ =⇒ G′, ~G0 \ C, ~C0, and part (3) is trivial.

Theorem 4.24 (Operational Completeness). If Σ : ∆ =⇒ ~G \ ~C and

∇, ~C is satisfiable then for some Σ′ and ∇′, we have Σ〈~G | ∇〉 −→∗ Σ′〈∅ | ∇′〉 and

∃Σ[∇, ~C] � ∃Σ′[∇′].

Proof. The proof is by induction on the length of ~G and the sizes of the deriva-
tions ~D of Σ : ∆ =⇒ ~G \ ~C. If ~G is empty, then we are done. Otherwise, using

Proposition 4.23, there exist Σ0, ~G0, ~C0, and ∇0, such that

Σ〈~G | ∇〉 −→ Σ0〈 ~G0 | ∇0〉

~D′

Σ0 : ∆ =⇒ ~G0 \ ~C0 ∃Σ[∇, ~C] � ∃Σ0[∇0, ~C0]

The derivations ~D′ are smaller than ~D, and the satisfiability of ∇, ~C implies that
∇0, ~C0 is also satisfiable, so the induction hypothesis applies. Accordingly, con-
struct Σ′,∇′ such that

Σ0〈 ~G0 | ∇0〉 −→
∗ Σ′〈∅ | ∇′〉 ∃Σ[∇0, ~C0] � ∃Σ′[∇′]

Chaining the transitions and entailments, we conclude

Σ〈~G | ∇〉 −→ Σ0〈 ~G0 | ∇0〉 −→
∗ Σ′〈∅ | ∇′〉 ∃Σ[∇, ~C] � ∃Σ0[∇0, ~C0] � ∃Σ′[∇′]

as desired.

4.4 Summary

The goal of this section has been to present and show the equivalence of model-
theoretic, proof-theoretic, and operational presentations of the semantics of nominal
logic programs. We abbreviate Σ〈G | ∅〉 −→∗ Σ;Σ′〈∅ | C〉 as Σ〈G〉 ⇓ ∃Σ′[C]. The
soundness and completeness theorems we have established can be chained together
as follows to summarize these results:

Corollary 4.25. If Σ〈G〉 ⇓ ∇ then:

(1 ) there exists C such that Σ : ∇ � C and Σ : ∆ =⇒ G \ C;

(2 ) Σ : ∆;∇ =⇒ G; and

(3 ) Σ : ∆,∇ � G

Proof. Immediate using Theorem 4.22, Theorem 4.19, and Theorem 4.14.

Corollary 4.26.
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(1 ) If Σ : ∆ =⇒ G \ C and C is satisfiable then for some ∇, we have Σ〈G〉 ⇓ ∇
and Σ : C � ∇.

(2 ) If Σ : ∆;∇ =⇒ G and ∇ is satisfiable then for some ∇′, we have Σ〈G〉 ⇓ ∇′

and Σ : ∇ � ∇′.

(3 ) If Σ : ∆, θ � G then for some ∇, we have Σ〈G〉 ⇓ ∇ and Σ : θ � ∇.

(4 ) If Σ : ∆, C � G then there exists a finite collection of constraints ~∇ such that

Σ〈G〉 ⇓ ∇i for each ∇i ∈ ~∇ and Σ : C � ∇1 ∨ · · · ∨ ∇n.

Proof. Immediate using Theorem 4.24, Theorem 4.20, Theorem 4.16, Theo-
rem 4.18.

These results ensure that the operational semantics computes all (and only) cor-
rect solutions with respect to nominal logic, so the proof-theoretic and model-
theoretic semantics can be used to reason about the behavior of programs; this is
often much easier than reasoning about the operational semantics, as we shall now
demonstrate.

5. APPLICATIONS

5.1 Correctness of elaboration

In an implementation, program clauses are often elaborated into a normal form
∀Σ[G⇒ A] which is easier to manipulate and optimize. We define the elaboration
of a program clause or program as the result of normalizing it with respect to the
following rewrite system:

G⇒ ⊤ ❀ ⊤
D ∧ ⊤ ❀ D
⊤ ∧D ❀ D
∀X.⊤ ❀ ⊤
Na.⊤ ❀ ⊤

∆, D ∧D′
❀ ∆, D,D′

∆,⊤ ❀ ∆

G⇒ G′ ⇒ D ❀ G ∧G′ ⇒ D
G⇒ D ∧D′

❀ (G⇒ D) ∧ (G⇒ D′)
G⇒ ∀X.D ❀ ∀X.(G⇒ D) (X 6∈ FV (G))
G⇒ Na.D ❀ Na.(G⇒ D) (a 6∈ supp(G))

∀X.(D ∧D′) ❀ ∀X.D ∧ ∀X.D′

Na.(D ∧D′) ❀ Na.D ∧ Na.D′

It is straightforward to show that this system is terminating and confluent (up to α-
and multiset-equality) and that elaborated programs consist only of closed formulas
of the form ∀Σ[G ⇒ A]. Moreover, this translation preserves the meaning of the
program:

Theorem 5.1 Correctness of elaboration.

(1 ) If ∆ ❀ ∆′ then Σ : ∆;∇ =⇒ G iff Σ : ∆′;∇ =⇒ G.

(2 ) If ∆ ❀ ∆′ then Σ : ∆;∇
D
−→ A iff Σ : ∆′;∇

D
−→ A.

(3 ) If D ❀ D′ then Σ : ∆;∇
D
−→ A iff Σ : ∆;∇

D′

−−→ A.

Proof. Each part is a straightforward induction on derivations and case decom-
position on the possible rewriting steps. We show a few representative cases. All
omitted cases are in the proof in Appendix D.
For part (1), proof is by induction on the given derivation. In this case, we need

to consider the possible rewrite step taken on ∆. Writing D for the selected formula
D ∈ ∆, there are four possibilities:
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—The rewrite step does not affect D. Hence, D ∈ ∆′. Then we have

Σ : ∆;∇
D
−→ A (D ∈ ∆)

Σ : ∆;∇ =⇒ A
sel

⇐⇒

Σ : ∆′;∇
D
−→ A (D ∈ ∆′)

Σ : ∆′;∇ =⇒ A
sel

—The rewrite step eliminates D = ⊤ from ∆. This case is vacuous because there
can be no derivation with focused formula ⊤.

—The rewrite step splits D = D1 ∧ D2 ∈ ∆; thus, ∆ = ∆0, D1 ∧ D2 and ∆′ =
∆, D1, D2. Then we have

Σ : ∆;∇
Di−−→ A

Σ : ∆;∇
D1∧D2−−−−−→ A

∧Li

D1 ∧D2 ∈ ∆

Σ : ∆;∇ =⇒ A
sel

⇐⇒

Σ : ∆′;∇
Di−−→ A Di ∈ ∆′

Σ : ∆′;∇ =⇒ A
sel

—The rewrite step rewrites D ❀ D′; thus, D′ ∈ ∆′, and using parts (2) and (3)
we can obtain

Σ : ∆;∇
D
−→ A (D ∈ ∆)

Σ : ∆;∇ =⇒ A
sel

⇐⇒

Σ : ∆′;∇
D′

−−→ A (D′ ∈ ∆′)

Σ : ∆;∇ =⇒ A
sel

For part (2), all of the cases are straightforward.
For part (3), proof is by induction on the structure of derivations and of the

possible rewriting steps. There are several easy cases in which the rewriting step
takes place “deep” in the term. The remaining cases involve a rewriting step at the
root of D. Of these, we show only the only novel cases involving N.
If the rewriting step is G ⇒ Na.D ❀ Na.(G ⇒ D), where a 6∈ supp(G,Σ), then

we can derive

D1

Σ : ∆;∇ =⇒ G

Σ : ∇ � Na.C

D2

Σ#a : ∆;∇, C
D
−→ A

Σ : ∆;∇
Na.D

−−−→ A
NL

Σ : ∆;∇
G⇒ Na.D
−−−−−−→ A

⇒L

if and only if we can also derive

Σ : ∇ � Na.C

D′
1

Σ#a : ∆;∇, C =⇒ G

D2

Σ#a : ∆;∇, C
D
−→ A

Σ#a : ∆;∇, C
G⇒D
−−−−→ A

⇒L

Σ : ∆;∇
Na.(G⇒D)

−−−−−−−→ A
NL

since a is not mentioned in G or Σ.
If the rewriting step is Na.(D1∧D2) ❀ Na.D1 ∧ Na.D2 then for i ∈ {1, 2} we can

derive

Σ : ∇ � Na.C

D

Σ#a : ∆;∇, C
Di−−→ A

Σ#a : ∆;∇, C
D1∧D2−−−−−→ A

∧Li

Σ : ∆;∇
Na.(D1∧D2)

−−−−−−−−→ A
NL
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if and only if we can derive

Σ : ∇ � Na.C

D

Σ#a : ∆;∇, C
Di−−→ A

Σ : ∆;∇, C
Na.Di−−−−→ A

NL

Σ : ∆;∇
Na.D1∧ Na.D2−−−−−−−−−→ A

∧Li

This completes the proof.

5.2 Completeness of ≈-resolution

In general, full nominal constraint solving is intractable, and the only known al-
gorithm is somewhat involved [Cheney 2004a; 2005a]. However, Urban, Pitts, and
Gabbay’s nominal unification algorithm solves a tractable special case, specifically,
it works for constraints involving only ≈ or # that are satisfy the following ground
name restriction:

Definition 5.2. We say that a term, formula, or constraint is (ground) name-
restricted if, for every subformula or subterm of one of the forms

a # t (a b) · t 〈a〉t

the subterms a, b are ground names.

We refer to Urban, Pitts and Gabbay’s nominal unification algorithm as restricted
nominal unification. It is an attractive idea to limit nominal logic programs to
the name-restricted fragment and use restricted nominal unification algorithm for
resolution. In the proof theoretic semantics, we can model this behavior by replacing
the hyp rule with hyp≈

Σ : ∇ � A ≈ A′

Σ : ∆;∇
A′

−→ A
hyp≈

in which the stronger condition Σ : ∇ � A ≈ A′ is required to conclude Σ : ∆;∇
A′

−→

A. We write Σ : ∆;∇ =⇒≈ G and Σ : ∆;∇
D
−→≈ A for uniform or focused proofs in

which hyp≈ is used instead of hyp, and refer to such proofs as equational resolution
(or ≈-resolution) proofs. It is easy to verify that ≈-resolution proofs are sound
with respect to ordinary derivations and that all constraints arising in such proofs
are name-restricted.
Unfortunately, ≈-resolution is incomplete relative to the full system, because

unlike in first-order logic, two atomic formulas can be logically equivalent, but not
equal as nominal terms. Equational resolution fails to find solutions that depend
on this aspect of nominal logic. The simplest example is the single program clause

Na.p(a).

If we try to solve the goal p(X) against this program, then we get a solution
X = a′ for some fresh name a′; up to equivariance, this is the most general solution.
However, if pose the query p(a) then proof search fails, yet logically, ∃X.p(X) ⇐⇒
Na.p(a).
This example shows that equational resolution is incomplete for name-restricted

programs. Moreover, ≈-resolution over name-restricted terms is NP-complete

ACM Journal Name, Vol. V, No. N, Month 20YY.



36 · J. Cheney and C. Urban

via an easy reduction from the NP-completeness of restricted equivariant unifi-
cation [Cheney 2004a]. Thus, there is little hope that a polynomial-time resolution
algorithm for name-restricted nominal logic programs can be found.
A natural next question is whether further syntactic restrictions beyond name-

restriction can guarantee completeness for equational resolution, yet still permit
writing interesting nominal logic programs. Such a criterion does exist. However,
before presenting it and proving its correctness, we describe some plausible-seeming,
but insufficient attempts.

Example 5.3. The clause Na.p(a) mentions an “unbound” name a in its head.
However, if we impose the natural-seeming further restriction that names may only
appear bound in the head of the clause, there are still clauses and goals for which
proof search is incomplete. For example,

Na.∀X.q(〈a〉X,X).

logically implies the goal formula q(〈a〉a, b), but proof search for this goal fails.
If we forbid names anywhere in the head of the clause, this is also not enough,

as the following program illustrates:

Na.∀X.r(X) :− X ≈ a.

for this program logically implies Na.r(a) but this answer cannot be found by ≈-
resolution.
On the other hand, forbidding all names anywhere in a clause seems to be enough

to guarantee completeness, but this means that only “first-order” Horn clauses not
mentioning names, abstraction, freshness, or swapping can be used as program
clauses. While this does mean that ordinary first-order logic programs can be
executed efficiently over nominal terms, it rules out all interesting nominal logic
programs.

Now we consider criteria which do ensure that ≈-resolution is complete yet permit
interesting nominal logic programs. One interesting example identified by Urban
and Cheney [2005]. The key idea is that names in the head of the clause are all
right as long as they are inessential to the meaning of the clause. Specifically, if a
name a appears in a clause, then it must be fresh for all of the terms appearing in
the head of the clause. However, this condition turns out to be somewhat difficult
to analyze.
We say that a program clause is N-goal if it has no subformula of the form Na.D.

However, N-quantified goals Na.G are allowed. Such goals and program clauses are
generated by the BNF grammar:

G ::= ⊤ | A | C | G ∧G′ | G ∨G′ | ∃X.G | Na.G

D ::= ⊤ | A | D ∧D′ | G⇒ D | ∀X.D

Example 5.4. Although the tc program of Section 2 is not N-goal, its third clause
is equivalent to the N-goal formula

tc(Ctx, lam(F ), fn(T, U)) :− Nx.F ≈ 〈x〉E, tc([(x, T )|Ctx], E, U).

Technically, the above clause imposes the additional restriction that x # T, U , but
simple types do not contain variable names, so this does not affect the behavior of
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the program.

As a first step towards proving that ≈-backchaining is complete for N-goal pro-
grams, we show that ≈-backchaining derivations are stable under application of
permutations for such programs.

Lemma 5.5. Let ∆ be a N-goal program and π be a type-preserving permutation
of names in Σ.

(1 ) If Σ : ∆;∇ =⇒≈ G then Σ : ∆;∇ =⇒≈ π·G.

(2 ) If Σ : ∆;∇
D
−→≈ A then Σ : ∆;∇

π·D
−−→≈ π·A.

Proof. By induction on derivations. For part (1), most cases are straightfor-
ward; we show representative cases ∃R, NR, and sel.

—For case ∃R, we have

Σ : ∇ � ∃X.C[X ]
D

Σ, X : ∆;∇, C[X ] =⇒≈ G

Σ : ∆;∇ =⇒≈ ∃X.G
∃R

Note that π·∃X.G[X ] = ∃X.π·G[π−1
·X ]. By induction,

D
Σ, X : ∆;∇, C[X ] =⇒≈ G 7−→

D′

Σ, X : ∆;∇, C[X ] =⇒≈ π·G[X ] .

Since π is invertible, we can substitute Y = π·X to obtainD′′ :: Σ, Y : ∆;∇, C[π−1
·Y ] =⇒≈

π·G[π−1
·Y ]; moreover, clearly, Σ : ∇ � ∃Y.C[π−1

·Y ], so we can conclude

Σ : ∇ � ∃Y.C[π−1
·Y ]

D′′

Σ, Y : ∆;∇, C[π−1
·Y ] =⇒≈ π·G[π−1

·Y ]

Σ : ∆;∇ =⇒≈ π·∃X.G
∃R

.

—For case NR, we have derivation

Σ : ∇ � Na.C
D

Σ#a : ∆;∇, C =⇒≈ G

Σ : ∆;∇ =⇒≈ Na:ν.G
NR

7−→

Σ : ∇ � Na.C
D′

Σ#a : ∆;∇, C =⇒≈ π·G

Σ : ∆;∇ =⇒≈ π·( Na:ν.G)
NR

since π· Na:ν.G = Na:ν.π·G, (since, without loss, a 6∈ FN(Σ) ∪ supp(π)). The
derivation D′ :: Σ#a : ∆;∇, C =⇒≈ π·G is obtained by induction.

—For case sel,

D

Σ : ∆;∇
D
−→≈ A (D ∈ ∆)

Σ : ∆;∇ =⇒≈ A
sel

7−→

D′

Σ : ∆;∇
D
−→≈ π·A (D ∈ ∆)

Σ : ∆;∇ =⇒≈ π·A
sel

using induction hypothesis (2) to derive D′ from D, and the fact that π·D = D
(because D ∈ ∆ is closed).

For part (2), all cases are straightforward; we show hyp and ⇒L. Case ∀L requires
a change of variables argument similar to ∃R. Case NL is vacuous.

—Case hyp

Σ : ∇ � A′ ≈ A

Σ : ∆;∇
A′

−→≈ A
hyp

7−→

Σ : ∇ � π·A′ ≈ π·A

Σ : ∆;∇
π·A′

−−−→≈ π·A
hyp
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since Σ : A′ ≈ A � π·A′ ≈ π·A.

—Case ⇒L

Σ : ∆;∇
D
−→≈ A Σ : ∆;∇ =⇒≈ G

Σ : ∆;∇
G⇒D
−−−−→≈ A

⇒L
7−→

Σ : ∆;∇
π·D
−−→≈ π·A Σ : ∆;∇ =⇒≈ π·G

Σ : ∆;∇
π·(G⇒D)
−−−−−−→≈ π·A

⇒L

where the subderivations are obtained by induction; this suffices because π·(G⇒
D) = π·G⇒ π·D.

The complete proof is given in Appendix E.

We can now show that ≈-derivations are complete for N-goal programs.

Theorem 5.6. If ∆ is N-goal then

(1 ) If Σ : ∆;∇ =⇒ G is derivable, then Σ : ∆;∇ =⇒≈ G is derivable.

(2 ) If Σ : ∆;∇
D
−→ A is derivable, there exists a π such that Σ : ∆;∇

π·D
−−→≈ A is

derivable.

Proof. The proof is by induction on derivations. For part (1), the most inter-
esting case is sel; the rest are straightforward. For a derivation ending in sel, we
have

Σ : ∆;∇
D
−→ A (D ∈ ∆)

Σ : ∆;∇ =⇒ A
sel

for some closed D ∈ ∆. By induction hypothesis (2), for some π, Σ : ∆;∇
π·D
−−→≈ A

holds. However, since D is closed, π·D = D ∈ ∆ so we may conclude

Σ : ∆;∇
D
−→≈ A (D ∈ ∆)

Σ : ∆;∇ =⇒≈ A
sel

For part (2), the interesting cases are hyp and NL; ∀L requires a change of
variables (as in Lemma 5.5).

—For hyp, we have

Σ : ∇ � A′ ∼ A

Σ : ∆;∇
A′

−→ A
hyp

By definition Σ : ∇ � A′ ∼ A means there exists a π such that Σ : ∇ � π·A′ ≈ A,
so

Σ : ∇ � π·A′ ≈ A

Σ : ∆;∇
π·A′

−−−→≈ A
hyp

—Case ⇒L: Using both induction hypotheses, and then Lemma 5.5(1), we can
transform the derivation as follows:

Σ : ∆;∇
D
−→ A Σ : ∆;∇ =⇒ G

Σ : ∆;∇
G⇒D
−−−−→ A

⇒L
7−→

Σ : ∆;∇
π·D
−−→≈ A Σ : ∆;∇ =⇒≈ π·G

Σ : ∆;∇
π·G⇒π·D
−−−−−−→≈ A

⇒L

—Case NL is vacuous.
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The complete proof is given in Appendix E.

Note that Theorem 5.6 fails if NL is allowed: for example, faced with a derivation

Σ#a : ∆;∇
D
−→ A

Σ : ∆;∇
Na.D

−−−→ A
NL

we can obtain Σ#a : ∆;∇
π·D
−−→≈ A by induction, but since π may mention a, it is

not possible in general to conclude Σ : ∆;∇
π′

· Na.D
−−−−−→≈ π′

·A for some π′. (This can
be seen for D = p(a), A = p(b), π = (a b) in Example 5.3.)

6. COMPARISON WITH PREVIOUS WORK

Several techniques for providing better handling of syntax with bound names in
logic programming settings have been considered:

—Higher-order logic programming and higher-order abstract syntax [Nadathur and
Miller 1998; Pfenning and Elliott 1989; Pfenning 1991; Pfenning and Schürmann
1999]

—Lambda-term abstract syntax, a variation on higher-order abstract syntax based
on Miller’s higher-order patterns [Miller 1991]

—Qu-Prolog, a first-order logic programming language with binding and substitu-
tion constraints [Staples et al. 1996; Cheng et al. 1991; Nickolas and Robinson
1996; Clark et al. 2001]

—Logic programming based on binding algebras, an approach to the semantics
of bound names based on functor categories [Hamana 2001; Fiore et al. 1999;
Hofmann 1999].

We also relate our approach with functional programming languages that provide
built-in features for name-binding, such as MLλ [Miller 1990], FreshML [Pitts and
Gabbay 2000; Shinwell et al. 2003; Shinwell and Pitts 2005], and Delphin [Schürmann
et al. 2005], as well as recent efforts to provide nominal abstract syntax as a
lightweight language extension [Pottier 2005; Cheney 2005c].

6.1 Logic programming with names and binding

6.1.1 Higher-order logic programming. Higher-order abstract syntax [Pfenning
and Elliott 1989] is a powerful and elegant approach to programming with names
and binding that is well-supported by higher-order logic programming languages
such as λProlog [Nadathur and Miller 1998] or Twelf [Pfenning 1991; Pfenning
and Schürmann 1999]. In higher-order logic programming, we consider logic pro-
grams to be formulas of a higher-order logic such as Church’s simple type the-
ory Church [1940] or the logical framework LF [Harper et al. 1993]. Higher-order
logic programming provides logically well-founded techniques for modularity and
abstraction [Miller 1989] and provides advanced capabilities for programming with
abstract syntax involving bound names, and for programming relations with “local”
hypotheses.
These capabilities are ideal for programming a wide variety of type systems, pro-

gram transformations, and theorem provers [Hannan and Miller 1988; Pfenning
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1991; Felty 1993; Nadathur and Miller 1998]. Thus higher-order logic program-
ming is an excellent tool for prototyping and designing type systems and program
transformations.
While this approach is elegant and powerful, it has some disadvantages as well.

These disadvantages seem inextricably connected to higher-order abstract syn-
tax’s main advantage: the use of constants of higher-order type to describe ob-
ject language binding syntax, meta-language variables to encode object variables,
and meta-language hypotheses and contexts to encode object-language assump-
tions and contexts. In particular, the fact that object-language names “disappear”
into meta-level variables means that computations that involve comparing names
(such as cconv) or generating fresh names are difficult to perform in a higher-order
encoding.
Another drawback of the higher-order approach is that “elegant” encodings work

well only when the inherent properties of the meta-language concepts are shared
by the object language. In particular, if the LF context is used for the context(s)
of the object language, then the latter inherits the properties of the former, such
as weakening and contraction. Many interesting systems have unusual contexts or
binding behavior, especially substructural type systems [Girard 1987; O’Hearn and
Pym 1999], logics of imperative programs [Mason 1987; Harel et al. 2000; Reynolds
2002], and low-level syntax transformations such as closure conversion. Representa-
tions of these languages in pure higher-order logic (or LF) seem disproportionately
difficult to program and reason about. Of course, such programs can still be writ-
ten as higher-order logic programs, only without making full use of higher-order
abstract syntax. This can result in nondeclarative (and nonintuitive) programs
and complicates reasoning about the object system.
One remedy is to extend the meta-language with new features that make it pos-

sible to encode larger classes of object languages elegantly. This approach has
been employed primarily in the setting of LF; examples include linearity (Linear
LF [Cervesato and Pfenning 2002]) and monadic encapsulation of effects (Concur-
rent LF [Watkins et al. 2003]). Nevertheless, there remain many logics and pro-
gramming languages which are difficult to encode elegantly in any extant LF-style
system.

6.1.2 Logic programming with higher-order patterns. Lλ is a restricted form of
higher-order logic programming introduced by Miller [1991]. In Lλ, occurrences
of meta-variables in unification problems are required to obey the higher-order
pattern constraint : namely, each such meta-variable may only occur as the head of
an application to a sequence of distinct bound variables. For example, λx.F x is a
pattern but λx.F x x and λx.x(FX) are not. The higher-order pattern restriction
guarantees that most general unifiers exist, and that unification is decidable.
However, built-in capture-avoiding substitution for arbitrary terms is not avail-

able in Lλ. In full λProlog, the beta-reduction predicate can be encoded as

beta (app (lam (x\M x)) N) (M N).

but this is not a higher-order pattern because of the subterm M N. Instead, substi-
tution must be programmed explicitly in Lλ, though this is not difficult:

beta (app (lam (x\E x)) E’) E’’ :- subst (x\E x) E’ E’’.
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subst (x\x) E E.

subst (x\app (E1 x) (E2 x)) E (app E1’ E2’)

:- subst E1 E E1’, subst E2 E E2’.

subst (x\lam y\E1 x y) E (lam y\E1’ y)

:- pi y\ (subst (x\y) E y -> subst (x\E1 x y) E (E1’ y)).

This definition involves only higher-order patterns. In Lλ, the only substitutions
permitted are of the form Miller calls β0:

(λx.M) y =M [y/x]

that is, in which a bound variable is replaced with another bound variable.
There are several interesting parallels between Lλ and αProlog (and nominal

unification and Lλ unification [Urban et al. 2004]). The name-restricted fragment
of nominal logic programming which underlies the current αProlog implementation
seems closely related to Lλ. It seems possible to translate many programs directly
from one formalism to the other, for example, by replacing local hypotheses with
an explicit context. The proof-theoretic semantics in this paper may be useful for
further investigating this relationship.
Miller and Tiu have investigated logics called FOλ∆∇ and LGω which include a

novel quantifier ∇ that quantifies over “generic” objects [Miller and Tiu 2003; Tiu
2006]. The ∇-quantifier has many properties in common with N; Miller and Tiu ar-
gue that ∇ provides the right logical behavior to encode “fresh name” constraints
such as arise in encoding (bi)similarity in the π-calculus. However, FOλ∆∇ has
primarily been employed as a foundation for encoding and reasoning about lan-
guages, not as the basis of a logic programming language per se. Moreover, in
Miller and Tiu’s approach, higher-order abstract syntax is used to deal with bind-
ing and substitution at an implicit level, whereas in our approach, names, binding,
and freshness are explicitly axiomatized.

6.1.3 Qu-Prolog. Qu-Prolog [Staples et al. 1996; Cheng et al. 1991; Nickolas
and Robinson 1996] is a logic programming language with built-in support for
object languages with variables, binding, and capture-avoiding substitution. It
extends Prolog’s (untyped) term language with constant symbols denoting object-
level variables and a built-in simultaneous capture-avoiding substitution operation
t{t1/x1, . . . , tn/xn}. Also, a binary predicate x not free in t is used to assert that
an object-variable x does not appear in a term t. Certain identifiers can be declared
as binders or quantifiers ; for example, lambda could be so declared, in which case
the term lambda x t is interpreted as binding x in t. Unlike in higher-order abstract
syntax, quantifier symbols are not necessarily λ-abstractions, so Qu-Prolog is not
simply a limited form of higher-order logic programming. Qu-Prolog does not
provide direct support for name-generation; instead name-generation is dealt with
by the implementation during execution as in higher-order abstract syntax.
Qu-Prolog is based on a classical theory of names and binding described in terms

of substitution. Like higher-order unification, Qu-Prolog’s unification problem is
undecidable, but in practice a semidecision procedure based on delaying “hard”
subproblems seems to work well [Nickolas and Robinson 1996].
Qu-Prolog enjoys a mature implementation including a compiler for Qu-Prolog

written in Qu-Prolog. Many interesting programs have be written in Qu-Prolog, in-
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cluding interactive theorem provers, client/server and database applications [Clark
et al. 2001]. Relations such as λ-term typability can be programmed essentially
the same as in αProlog. As with higher-order abstract syntax, Qu-Prolog’s built-in
substitution operation is extremely convenient.
Formal investigations of Qu-Prolog have been limited to the operational seman-

tics and unification algorithm. There is no denotational or proof-theoretic semantics
explaining the behavior of names and binding in Qu-Prolog. Qu-Prolog is untyped
and there is no distinction between names and ordinary Prolog constants. There
is no analogue of the N-quantifier or the equivariance or freshness principles. It
may be possible to define a clearer denotational semantics for Qu-Prolog programs
in terms of nominal logic. This could be useful for relating the expressiveness of
αProlog and Qu-Prolog. Conversely, it may be interesting to add a Qu-Prolog-like
built-in substitution operation (and associated unification techniques) to αProlog.

6.1.4 Logic programming with binding algebras. Fiore et al. [1999] and Hofmann
[1999] introduced binding algebras and techniques for reasoning about abstract syn-
tax with binding using functor categories. Hamana [2001] developed a unification
algorithm and logic programming language for programming with binding algebra
terms involving name-abstraction [a]t, name-application t@a, name occurrences
var(a), injective renamings ξ = [x := y, x2 := y2, . . .], and first-order function
symbols and constants.
Hamana’s unification algorithm unifies up to β0-equivalence of bound names with

respect to name-application. Hamana employs a type system that assigns each term
a type and a set of names that may appear free in the term. Hamana’s unification
algorithm appears to generalize higher-order pattern unification; since names in
application sequences do not have to be distinct, however, most general unifiers do
not exist; for example [x]F @x@ x ≈? [y]G@ y has two unifiers, F = [x][y]y and
F = [x][y]x.
Many of the example programs of Section 2 can also be programmed using

Hamana’s programming language. For example, capture-avoiding substitution is
given as an example by Hamana [2001]. However, because binding algebras are
based on arbitrary renamings, rather than injective renamings, it may be difficult
to write programs such as cconv that rely on distinguishing names. In addition,
since the names free in a term must appear in the term’s type, some programs may
require more involved type annotations or may be ruled out by the type system.

6.2 Functional programming with names and binding

6.2.1 MLλ. Miller also proposed a functional language extending Standard ML
to include an intensional function type τ ⇒ τ ′ populated by “functions that can
be analyzed at run-time”, that is, higher-order patterns [Miller 1990]. This lan-
guage is called MLλ and supports functional programming with λ-term abstract
syntax using the intensional function type. Since higher-order pattern unification
and matching are decidable, programs in MLλ can examine the structure of in-
tensional function values, in contrast to ordinary function values which cannot be
examined, only applied to data. Miller’s original proposal left many issues open for
future consideration; Pasalic et al. [2000] developed an operational semantics and
prototype implementation of a language called DALI, which was inspired by MLλ.
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6.2.2 FreshML. FreshML [Pitts and Gabbay 2000; Shinwell et al. 2003; Shin-
well and Pitts 2005] is a variant of ML (or Objective Caml) that provides built-in
primitives for names and binding based on nominal abstract syntax. FreshML was
an important source of inspiration for αProlog. At present FreshML and αProlog
provide similar facilities for dealing with nominal abstract syntax. Arguably, be-
cause of the similarities between higher-order patterns and nominal terms [Urban
et al. 2004; Cheney 2005b], FreshML can be viewed as an alternative realization of
MLλ.
The main differences are

—FreshML’s treatment of name-generation uses side-effects, whereas αProlog uses
nondeterminism.

—There are no ground names in FreshML programs; instead, names are always
manipulated via variables.

—FreshML currently provides more advanced forms of name-binding (such as bind-
ing a list of names simultaneously).

—FreshML provides richer higher-order programming features.

Conversely, there are many programs that can be written cleanly in αProlog’s
logical paradigm but not so cleanly in FreshML’s functional paradigm, such as
typechecking relations and nondeterministic transition systems.

6.2.3 Delphin. Another language which draws upon MLλ is Delphin. Delphin
is a functional language for programming with higher-order abstract syntax and
dependent types [Schürmann et al. 2005]. Because ordinary recursion principles do
not work for higher-order encodings that violate the positivity restriction, Delphin
provides novel features (based on earlier work in the context of Twelf [Schürmann
2001b; 2001a]) for writing such programs. This approach seems very powerful,
but also potentially more complex than nominal techniques. For example, Delphin
programs may be nondeterministic and produce non-ground answers, because the
underlying higher-order matching problems needed for pattern matching may lack
most general unifiers. At present a prototype called Elphin has been implemented.

6.2.4 Cαml. Pottier [2005] has developed a tool for OCaml called Cαml. Cαml
translates high-level, OCaml-like specifications of the binding structure of a lan-
guage to ordinary OCaml type declarations and code for performing pattern match-
ing and fold-like traversals of syntax trees. Cαml uses a swapping-based nominal
abstract syntax technique internally, but these details typically do not need to be
visible to the library user. Like FreshML, Cαml provides forms of binding be-
yond binding a single variable; for example, its binding specifications can describe
pattern-matching and letrec constructs.

6.2.5 FreshLib. Cheney [2005c] developed FreshLib, a library for Haskell that
employs advanced generic programming techniques to provide nominal abstract
syntax for Haskell programs. Moreover, FreshLib provides common operations such
as capture-avoiding substitution and free-variables functions as generic operations.
FreshLib also provides a richer family of binding structures, as well as a type class-
based interface which permits users to define their own binding structures (such as
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pattern matching binders). Since Haskell is purely functional, FreshLib code that
performs fresh name generation has to be encapsulated in a monad.

7. CONCLUSIONS

Declarative programming derives much of its power from the fact that programs
have a clear mathematical meaning. Name-binding and name-generation are one
of many phenomena which seem to motivate abandoning declarativity in favor
of expediency in practical Prolog programming. On the other hand, techniques
for programming with names and binding based on higher-order abstract syntax
introduce significant complexity, yet provide an interface that is too high-level for
some situations. As a result both first-order and higher-order logic programs often
depart from the declarative ideal when we wish to program with names and binding,
since implementations often must depart significantly from a paper specification.
This paper investigates logic programming based on nominal logic. Nominal logic

programs can be used to define a wide variety of computations involving names,
binding, and name generation declaratively. It provides many of the benefits of
higher-order abstract syntax, particularly built-in handling of renaming and α-
equivalence, while still providing names as ordinary data. As a result, nominal
logic programs are frequently direct transcriptions of what one would write “on
paper”.
In this paper we have presented a variety of examples of nominal logic programs,

thoroughly investigated the semantics of nominal logic programming, and presented
some applications of the semantics. This work provides a foundation for a number
of interesting future directions, including efficient constraint solving and compila-
tion for nominal logic programs, adding nominal abstract syntax as “just another
constraint domain” to existing, mature CLP implementations, and analyzing or
proving metatheoretic properties of core languages or logics defined using nominal
logic programs.
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A. PROOFS FROM SECTION 4.1

Lemma A.1 (Lemma 4.8). For any program ∆, T∆ is monotone and continu-
ous.

Proof of Lemma 4.8. We prove by induction on the structure of D that TD
has the above properties. Monotonicity is straightforward. For continuity, let
S0, S1, . . . , be an ω-chain of subsets of BL. The cases for ⊤,∧,⇒, ∀,⇒, and atomic
formulas follow standard arguments. For N,

—Suppose D = G ⇒ D′. Suppose that A ∈ TG⇒D′(
⋃

i Si). If
⋃

i Si � G then
A ∈ TD′(

⋃

i Si), and by induction A ∈
⋃

i TD′(Si) =
⋃

i TG⇒D′(Si). Otherwise,
A ∈

⋃

i Si =
⋃

i TG⇒D′(Si). This shows that TG⇒D′(
⋃

i Si) ⊆
⋃

i TG⇒D′(Si).
For the reverse direction, suppose A ∈

⋃

i TG⇒D′(Si). Then for some i, A ∈
TG⇒D′(Si). There are two cases. If Si � G, then A ∈ TD′(Si) = TG⇒D′(Si) ⊆
TG⇒D′(

⋃

i(Si)). Otherwise, A ∈ Si = TG⇒D′(Si) ⊆ TG⇒D′(
⋃

i(Si)).

—Suppose D = Na.D′. Then we have

T Na.D′(
⋃

i Si) =
⋃

b:ν 6∈supp( Na.D′) T(a b)·D′(
⋃

i Si) Definition

=
⋃

b:ν 6∈supp( Na.D′)

⋃

i T(a b)·D′(Si) Induction hyp.

=
⋃

i

⋃

b:ν 6∈supp( Na.D′) T(a b)·D′(Si) Unions commute

=
⋃

i T Na.D′(Si) Definition

This completes the proof.

Lemma A.2 (Lemma 4.9). For any a, b ∈ A, (a b) · TD(S) = T(a b)·D((a b)·S).
In particular, if ∆ is a closed program with FV (∆) = supp(∆) = ∅, then T∆ is
equivariant.

Proof of Lemma 4.9. The proof is by induction on the structure of D. The
cases for ⊤, A,∧ are straightforward; for ⇒ we need the easy observation that
S � G ⇐⇒ (a b)·S � (a b)·G. For ∀X :σ.D formulas, observe that

(a b)·T∀X.D(S) = (a b)·
⋃

t:σ TD[t/X](S) Definition
=

⋃

t:σ(a b) · TD[t/X](S) Swapping commutes with union
=

⋃

t:σ T((a b)·D)[(a b)·t/X]((a b)·S) Induction hyp.
=

⋃

u:σ T((a b)·D)[u/X]((a b)·S) Change of variables (u = (a b) · t)
= T(a b)·∀X.D((a b)·S) Definition.

For N, the argument is similar.

Lemma A.3 (Lemma 4.10). If M is a fixed point of T∆, then M � ∆.

Proof of Lemma 4.10. We first prove by induction on the structure of D that
if TD(M) = M then M � D.

—If D = ⊤, trivially M � ⊤.

—If D = A, then clearly M∪ {A} = TA(M) = M implies A ∈ M so M � A.

—If D = D1∧D2, then TD1∧D2
(M) = TD1

(M)∪TD2
(M) = M implies TD1

(M) =
TD2

(M) = M since TD1
, TD2

are monotone. Then using the induction hypothesis
M � D1 and M � D2, so M � D1 ∧D2.

—If D = G⇒ D′, suppose that M � G. Then TG⇒D′(M) = TD′(M) = M so by
induction M � D′. Hence M � G⇒ D′.
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—For D = ∀X :σ.D′, note that M = T∀X.D′(M) =
⋃

t:σ TD′[t/X](M) implies
TD′[t/X](M) = M for every t : σ. Hence by the induction hypothesis M �

D′[t/X ] for every t : σ; consequently M � ∀X.D′.

—For D = Na:ν.D′, note that M = T Na.D′(M) =
⋃

b:ν 6∈supp( Na.D′) T(a b)·D′(M)

implies T(a b)·D′(M) = M for every fresh b. Hence by the induction hypothesis
M � (a b) ·D′ for every fresh b; consequently M � Na.D′.

Since any program ∆ = {D1, . . . , Dn} is equivalent to a D-formula conjunction
D = D1 ∧ · · · ∧Dn, the desired result follows immediately.

Lemma A.4 (Lemma 4.11). If M � ∆ then M is a fixed point of T∆.

Proof of Lemma 4.11. Since T∆ is monotone it suffices to show that M is a
pre-fixed point. We first prove that for any D, if M � D then TD(M) ⊆ M, by
induction on the structure of D.

—If D = ⊤, clearly T⊤(M) = M.

—If D = A then since M � A, we must have A ∈ M, so TA(M) = M∪{A} = M.

—IfD = D1∧D2, then TD1∧D2
(M) = TD1

(M)∪TD2
(M) ⊆ M since TDi

(M) ⊆ M
by induction for i = 1, 2.

—For D = G ⇒ D′, since by assumption M � G ⇒ D, there are two cases. If
M � G, then M � D, and by induction TG⇒D(M) = TD(M) ⊆ M. On the
other hand, if M 6� G, then TG⇒D(M) = M.

—ForD = ∀X :σ.D′, by assumptionM � ∀X :σ.D′ so we must haveM � D[t/X ] for
all t:σ. By induction TD′[t/X](M) ⊆ M for any t : σ so

⋃

t:σ TD′[t/X](M) ⊆ M.

—If D = Na:ν.D′, by assumption M � Na:ν.D′ so M � (a b) · D′ for any
b 6∈ supp( Na.D′). By induction T(a b)·D′(M) ⊆ M for any b 6∈ supp( Na.D′)
so

⋃

b:ν 6∈supp( Na.D′) T(a b)·D′(M) ⊆ M.

To prove the lemma, take ∆ = {D1, . . . , Dn} and D = D1 ∧ · · · ∧Dn. If M � ∆,
then M � D, so TD(M) ⊆ M, whence T∆(M) ⊆ M.

B. PROOFS FROM SECTION 4.2

Theorem B.1 Soundness (Theorem 4.14).

(1 ) If Σ : ∆;∇ =⇒ G is derivable then Σ : ∆,∇ � G.

(2 ) If Σ : ∆;∇
D
−→ G is derivable then Σ : ∆, D,∇ � G.

Proof of Theorem 4.14. Induction on derivations. The only novel cases in-
volve N.

—Suppose we have derivation

Σ : ∇ � C
Σ : ∆;∇ =⇒ C

con

Then Σ : ∇ � C implies Σ : ∆,∇ � C as desired.

—Suppose we have derivation

Σ : ∆;∇ =⇒ G1 Σ : ∆;∇ =⇒ G2

Σ : ∆;∇ =⇒ G1 ∧G2
∧R

By induction, Σ : ∆,∇ � G1 and Σ : ∆,∇ � G2, so clearly Σ : ∆,∇ � G1 ∧G2.
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—Suppose we have derivation

Σ : ∆;∇ =⇒ Gi

Σ : ∆;∇ =⇒ G1 ∨G2
∨Ri

By induction, Σ : ∆,∇ � Gi so Σ : ∆,∇ � G1 ∨G2.

—Suppose we have derivation

Σ : ∇ � ∃X.C Σ, X : ∆;∇, C =⇒ G

Σ : ∆;∇ =⇒ ∃X :σ.G
∃R

By induction, Σ, X : ∆,∇, C � G. Appealing to Lemma 3.3, we have Σ : ∆,∇ �

∃X.C.

—Suppose we have derivation

Σ : ∇ � Na.C Σ#a : ∆;∇, C =⇒ G

Σ : ∆;∇ =⇒ Na.G

By induction we have that Σ#a : ∆,∇, C � G. Appealing to Lemma 3.4, we
conclude Σ : ∆,∇ � Na.G.

—Suppose we have derivation

Σ : ∆;∇
D
−→ A (D ∈ ∆)

Σ : ∆;∇ =⇒ A
sel

Then by induction hypothesis (2), we have that Σ : ∆, D,∇ � A. Since D ∈ ∆,
clearly Σ : ∆ � D so we can deduce Σ : ∆,∇ � A.

For the second part, proof is by induction on the derivation of Σ : ∆;∇
D
−→ G.

—Suppose we have derivation

Σ : ∇ � A′ ∼ A

Σ : ∆;∇
A′

−→ A
hyp

We need to show Σ : ∆, A′,∇ � A. To see this, suppose θ satisfies ∇ and H is an
Herbrand model of ∆, θ(A′). Since Σ : ∇ � A′ ∼ A, there must be a permutation
π such that π·θ(A′) = θ(A). Moreover, since H � θ(A′), by the equivariance of
H we also have H � π·θ(A′) so H � θ(A). Since θ and H were arbitrary, we
conclude that Σ : ∆, A′,∇ � A.

—Suppose we have derivation

Σ : ∆;∇
Di−−→ A

Σ : ∆;∇
D1∧D2−−−−−→ A

∧Li

By induction, we know that Σ : ∆, Di,∇ � A, so can conclude Σ : ∆, D1∧D2,∇ �

A by Lemma 3.5.

—Suppose we have derivation

Σ : ∆;∇
D
−→ A Σ : ∆;∇ =⇒ G

Σ : ∆;∇
G⇒D
−−−−→ A

⇒L
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Then by induction, we have that Σ : ∆, D,∇ � A and Σ : ∆,∇ � G. Then we
can conclude Σ : ∆, G⇒ D,∇ � A using Lemma 3.6.

—Suppose we have derivation

Σ : ∇ � ∃X.C Σ, X : ∆;∇, C
D
−→ A

Σ : ∆;∇
∀X:σ.D
−−−−−→ A

∀L

Then by induction, we have that Σ, X : ∆, D,∇, C � A. Want to conclude that
Σ : ∆, ∀X.D,∇ � A. Suppose Σ : θ � ∇. Since Σ : ∇ � ∃X.C, we have that
Σ : θ � ∃X.C. Thus, there exists a t such that Σ, X : θ[X 7→ t] � C. Therefore,
Σ, X : ∆, D, θ[X 7→ t] � A. Since X appears only in D, by Lemma 3.7, we have
that Σ : ∆, ∀X.D, θ � A. Since θ was an arbitrary valuation satisfying ∇, it
follows that Σ : ∆, ∀X.D,∇ � A.

—Suppose we have derivation

Σ : ∇ � Na.C Σ#a : ∆;∇, C
D
−→ A

Σ : ∆;∇
Na.D

−−−→ A

By induction, we know that Σ#a : ∆, D,∇, C � A. Since Σ : ∇ � Na.C it follows
that Σ#a : ∆, D,∇, C � A, so by Lemma 3.2 we have Σ#a : ∆, D,∇ � A.
Moreover, by Lemma 3.8, we can conclude Σ : ∆, Na.D,∇ � A.

This completes the proof.

Proposition B.2 (Proposition 4.15). For any Σ,∆, G,D, i ≥ 0:

(1 ) If Σ : T i
∆, θ � G then there exists ∇ such that Σ : θ � ∇ and Σ : ∆;∇ =⇒ G is

derivable.

(2 ) If Σ : Tθ(D)(T
i
∆), θ � A but Σ : T i

∆, θ 6� A then there exists ∇ such that Σ : θ � ∇

and Σ : ∆;∇
D
−→ A.

Proof of Proposition 4.15. For the first part, proof is by induction on i and
G; most cases are straightforward.

—If G = ⊤ then trivially Σ : ∆; · =⇒ ⊤.

—If G = C, a constraint, then Σ : T i
∆, θ � C. By definition, this means that � θ(C)

holds; equivalently, Σ : θ � C. Thus, taking ∇ = C, we obviously have

Σ : ∆;C =⇒ C
con

.

—If G = A and i = 0, this case is vacuous since no atomic formulas are satisfied in
the empty model T 0

∆.

—If G = A and i > 0, then there are two further cases. If Σ : T i−1
∆ , θ � A

then we use part (1) of the induction hypothesis with i − 1 to conclude Σ :
∆;∇ =⇒ A. Otherwise Σ : T i−1

∆ , θ 6� A. This implies that θ(A) ∈ T∆(T
i−1
∆ ) =

⋃

D∈∆ TD(T
i−1
∆ ), so we must have θ(A) ∈ TD(T

i−1
∆ ) for some D ∈ ∆. Since

D ∈ ∆ is closed, we have D = θ(D), so Σ : Tθ(D)(T
i−1
∆ ), θ � A but Σ : T i−1

∆ 6� A.

Induction hypothesis (2) applies and we can obtain a derivation of Σ : ∆;∇
D
−→ A.
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The following derivation completes this case:

Σ : ∆;∇
D
−→ A (D ∈ ∆)

Σ : ∆;∇ =⇒ A
sel

.

—If G = G1 ∧G2, then Σ : T i
∆, θ � G1 ∧G2 implies Σ : T i

∆, θ � G1 and Σ : T i
∆, θ �

G2, so by induction for some ∇1,∇2, we have Σ : ∆;∇1 =⇒ G1, Σ : θ � ∇1,
Σ : ∆;∇ =⇒ G2, and Σ : θ � ∇2. We can therefore conclude

Σ : ∆;∇1 ∧ ∇2 =⇒ G1 Σ : ∆;∇1 ∧ ∇2 =⇒ G2

Σ : ∆;∇1 ∧ ∇2 =⇒ G1 ∧G2 .

since clearly Σ : θ � ∇1 ∧ ∇2.

—If G = G1 ∨ G2, then Σ : T i
∆, θ � G1 ∨ G2 implies Σ : T i

∆, θ � Gi for i ∈ {1, 2}.
In either case, by induction Σ : ∆;∇ =⇒ Gi and Σ : θ � ∇ hold for some ∇, so
we deduce

Σ : ∆;∇ =⇒ Gi

Σ : ∆;∇ =⇒ G1 ∨G2 .

—If G = ∃X :σ.G′, then Σ : T i
∆, θ � ∃X :σ.G′ implies Σ, X :σ : T i

∆, θ[X 7→ t] � G′ for
some t : σ. By induction, then, there exists ∇ such that Σ, X :σ : ∆;∇ =⇒ G′ is
derivable and Σ, X : θ[X 7→ t] � ∇. We can therefore derive

Σ : ∃X.∇ � ∃X.∇ Σ, X :σ : ∆; ∃X.∇,∇ =⇒ G′

Σ : ∆; ∃X.∇ =⇒ ∃X :σ.G′

using weakening to obtain the second subderivation. Clearly Σ, X : θ[X 7→ t] � ∇
implies Σ : θ � ∃X.∇.

—If G = Na:ν.G′, assume without loss of generality a 6∈ Σ. Then Σ : T i
∆, θ � Na.G′

implies Σ#a : T i
∆, θ � G

′. By induction, there exists ∇ such that Σ#a : ∆;∇ =⇒
G′ is derivable and Σ#a : θ � ∇. We can therefore derive

Σ : Na.∇ � Na.∇ Σ, X :σ : ∆; Na.∇,∇ =⇒ G′

Σ : ∆; Na.∇ =⇒ Na.G′

using weakening to obtain the second subderivation. Clearly, Σ#a : θ � ∇ implies
Σ : θ � Na.∇

Similarly, the second part follows by induction on D, unwinding the definition of
TD in each case.

—If D = ⊤, then θ(⊤) = ⊤ and T⊤(S) = S; we cannot have both Σ : T i
∆, θ � A

and Σ : T i
∆, θ 6� A so this case is vacuous.

—If D = A′, then Tθ(A′)(S) = S ∪ {θ(A′)}. Thus, if Σ : T i
∆ ∪ {θ(A′)}, θ � A

but Σ : T i
∆, θ 6� A, then we must have θ(A) = θ(A′). This clearly implies

Σ : θ � A ≈ A′, so taking ∇ = A ≈ A′, clearly Σ : ∇ � A ∼ A′ and we can derive

Σ : A ≈ A′
� A ∼ A′

Σ : ∆;A ≈ A′ A′

−→ A .

—If D = D1 ∧D2, then θ(D) = θ(D1) ∧ θ(D2), and Tθ(D1)∧θ(D2)(S) = Tθ(D1)(S) ∪
Tθ(D2)(S), and Σ : Tθ(D1)(T

i
∆) ∪ Tθ(D2)(T

i
∆), θ � A. Then we must have Σ :
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Tθ(Dj)(T
i
∆), θ � A for j ∈ {1, 2}. In either case, by induction there exists ∇ such

that Σ : θ � ∇ and Σ : ∆;∇
Dj

−−→ A, so we can conclude

Σ : ∆;∇
Dj

−−→ A

Σ : ∆;∇
D1∧D2−−−−−→ A

—If D = G ⇒ D′, then θ(D) = θ(G) ⇒ θ(D′). There are two cases. If Σ :
T i
∆, θ � G, then Tθ(G)⇒θ(D′)(T

i
∆) = Tθ(D′)(T

i
∆) so Σ : Tθ(D′)(T

i
∆), θ � A. By

induction hypothesis (1), it follows that there exists a∇ such that Σ : ∆;∇ =⇒ G
and Σ : θ � ∇; by induction hypothesis (2) there also exists a ∇′ such that

Σ : ∆;∇′ D′

−−→ A and Σ : θ � ∇′. Using weakening and the ⇒L rule, we conclude

Σ : ∆;∇,∇′ =⇒ G Σ : ∆;∇,∇′ D′

−−→ A

Σ : ∆;∇,∇′ G⇒D′

−−−−→ A

which suffices since Σ : θ � ∇,∇′.
Otherwise, if Σ : T i

∆, θ 6� G, then Tθ(G)⇒θ(D′)(T
i
∆) = T i

∆. Then this case is
vacuous since we cannot have both Σ : T i

∆, θ � A and Σ : T i
∆, θ 6� A.

—If D = ∀X :σ.D′, assume without loss of generality that X 6∈ Dom(Σ)∪Dom(θ).
Observe that θ(D) = ∀X :σ.θ(D′). Since T∀X:σ.θ(D′)(S) =

⋃

t:σ Tθ(D′)[t/X](S),
we must have Σ :

⋃

t:σ Tθ(D′)[t/X](T
i
∆), θ � A. Hence, there must be a t : σ

such that θ(A) ∈ Tθ(D′)[t/X](T
i
∆); choose a particular t : σ. Consequently,

Σ : Tθ(D′)[t/X](T
i
∆), θ � A. Moreover, since X is not present in Σ, A, θ, this

is equivalent to Σ, X : Tθ[X 7→t](D′)(T
i
∆), θ[X 7→ t] � A. By induction, there must

exist a ∇ such that Σ, X : θ, [X 7→ t] � ∇ and Σ, X : ∆;∇
D′

−−→ A holds. Hence,
Σ : θ � ∃X.∇ so we can conclude by deriving

Σ : ∃X.∇ � ∃X.∇ Σ, X :σ : ∆; ∃X.∇,∇
D′

−−→ A

Σ : ∆; ∃X.∇
∀X:σ.D′

−−−−−→ A

—If D = Na:ν.D′, assume without loss of generality that a 6∈ Σ, θ, A. Then θ(D) =
Na.θ(D′) and since T Na.θ(D′)(S) =

⋃

b 6∈supp( Na.θ(D′)) T(a b)·θ(D′)(S), so we must

have Σ :
⋃

b 6∈supp( Na.θ(D′)) T(a b)·θ(D′)(T
i
∆), θ � A. By definition, this means that

θ(A) ∈
⋃

b 6∈supp( Na.θ(D′)) T(a b)·θ(D′)(T
i
∆). Since by assumption a 6∈ Σ, θ, A and

a 6∈ supp( Na.D′), we must have θ(A) ∈ T(a a)·θ(D′)(T
i
∆). Note that (a a) · θ(D′) =

θ(D′), and θ : Σ#a, hence Σ#a : Tθ(D′)(T
i
∆), θ � A. Consequently, by induction,

there exists a ∇ such that Σ : θ � ∇ and Σ#a : ∆;∇
D′

−−→ A. Therefore, we have

Σ : Na.∇ � Na.∇ Σ#a : ∆; Na.∇,∇
D′

−−→ A

Σ : ∆; Na.∇
Na.D′

−−−−→ A

Moreover, clearly Σ#a : θ � ∇ implies Σ : θ � Na.∇.

This exhausts all cases and completes the proof.

Theorem B.3 Residuated Soundness (Theorem 4.19).
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(1 ) If Σ : ∆ =⇒ G \ C then Σ : ∆;C =⇒ G.

(2 ) If Σ : ∆;∇ =⇒ G and Σ : ∆
D
−→ A \ G then Σ : ∆;∇

D
−→ A.

Proof of Theorem 4.19. Both parts are by structural induction on deriva-
tions.

—If the derivation is of the form

Σ : ∆ =⇒ C \ C
con

then deriving Σ : ∆;C =⇒ C is immediate.

—For derivation

Σ : ∆ =⇒ G1 \ C1 Σ : ∆ =⇒ G2 \ C2

Σ : ∆ =⇒ G1 ∧G2 \ C1 ∧ C2
∧R

by induction we have Σ : ∆;C1 =⇒ G1 and Σ : ∆;C2 =⇒ G2. Weakening both
sides, we have Σ : ∆;C1 ∧ C2 =⇒ G1 and Σ : ∆;C1 ∧ C2 =⇒ G2, so can derive

Σ : ∆;C1 ∧C2 =⇒ G1 Σ : ∆;C1 ∧C2 =⇒ G2

Σ : ∆;C1 ∧ C2 =⇒ G1 ∧G2

—For derivation

Σ : ∆ =⇒ Gi \ C

Σ : ∆ =⇒ G1 ∨G2 \ C
∨Ri

by induction we have Σ : ∆;C =⇒ Gi, so can derive

Σ : ∆;C =⇒ Gi

Σ : ∆;C =⇒ G1 ∨G2

—For derivation

Σ, X : ∆ =⇒ G \ C

Σ : ∆ =⇒ ∃X :σ.G \ ∃X.C
∃R

by induction, we have Σ, X : ∆;C =⇒ G. Weakening this derivation, we obtain

Σ : ∃X.C � ∃X.C Σ, X : ∆; ∃X.C,C =⇒ G

Σ : ∆; ∃X.C =⇒ ∃X.G

—For derivation

Σ#a : ∆ =⇒ G \ C

Σ : ∆ =⇒ Na.G \ Na.C
NR

by induction, we have Σ#a : ∆;C =⇒ G. Weakening this derivation, we obtain

Σ : Na.C � Na.C Σ#a : ∆; Na.C, C =⇒ G

Σ : ∆; Na.C =⇒ Na.G

—For derivation

Σ : ∆
D
−→ A \ G Σ : ∆ =⇒ G \ C (D ∈ ∆)

Σ : ∆ =⇒ A \ C
back
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by induction on the second derivation, we know that Σ : ∆;C =⇒ G holds. By

induction hypothesis (2) on the first subderivation, it follows that Σ : ∆;C
D
−→ A

holds. Hence, since D ∈ ∆, we can conclude

Σ : ∆;C
D
−→ A (D ∈ ∆)

Σ : ∆;C =⇒ A

For part (2), we reason simultaneously by induction on the structure of the two
derivations.

—For derivations

Σ : ∆
A′

−→ A \ A ∼ A′

hyp
E

Σ : ∇ � A ∼ A′

Σ : ∆;∇ =⇒ A ∼ A′

it follows that

Σ : ∇ � A ∼ A′

Σ : ∆;∇
A′

−→ A

—For derivations

D

Σ : ∆
Di−−→ A \ G

Σ : ∆
D1∧D2−−−−−→ A \ G

∧Li E
Σ : ∆;∇ =⇒ G

by induction using D, E we have Σ : ∆;∇
Di−−→ A so we can conclude

Σ : ∆;∇
Di−−→ A

Σ : ∆;∇
D1∧D2−−−−−→ A

∧Li

—For derivations

D

Σ : ∆
D
−→ A \ G2

Σ : ∆
G1⇒D
−−−−→ A \ G1 ∧G2

⇒L

E1
Σ : ∆;∇ =⇒ G1

E2
Σ : ∆;∇ =⇒ G2

Σ : ∆;∇ =⇒ G1 ∧G2

By the induction hypothesis applied to D and E2, we have Σ : ∆;∇
D
−→ A. Then

we can conclude

E1
Σ : ∆;∇ =⇒ G1 Σ : ∆;∇

D
−→ A

Σ : ∆;∇
G1⇒D
−−−−→ A

—For derivations

D

Σ, X : ∆
D
−→ A \ G′

Σ : ∆
∀X:σ.D
−−−−−→ A \ ∃X.G′

∀L Σ : ∇ � ∃X.C
E

Σ, X : ∆;∇, C =⇒ G′

Σ : ∆;∇ =⇒ ∃X.G′

ACM Journal Name, Vol. V, No. N, Month 20YY.



56 · J. Cheney and C. Urban

we can apply the induction hypothesis applied to subderivations D, E to obtain

Σ, X : ∆;∇, C
D
−→ A; hence, we can conclude

Σ : ∇ � ∃X.C Σ, X : ∆;∇, C
D
−→ A

Σ : ∆;∇
∀X.D
−−−−→ A

—For derivations

D

Σ#a : ∆
D
−→ A \ G

Σ : ∆
Na.D

−−−→ A \ Na.G
NL Σ : ∇ � Na.C

E
Σ#a : ∆;∇, C =⇒ G

Σ : ∆;∇ =⇒ Na.G

by induction on D, E we can derive Σ#a : ∆;∇, C
D
−→ A; hence we can conclude

Σ : ∇ � Na.C Σ#a : ∆;∇, C
D
−→ A

Σ : ∆;∇
Na.D

−−−→ A

This exhausts all possible cases, so the proof is complete.

Theorem B.4 Residuated Completeness (Theorem 4.20).

(1 ) If Σ : ∆;∇ =⇒ G then there exists a constraint C such that Σ : ∆ =⇒ G \ C
and Σ : ∇ � C.

(2 ) If Σ : ∆;∇
D
−→ A then there exists goal G and constraint C such that Σ : ∆

D
−→

A \ G and Σ : ∆ =⇒ G \ C and Σ : ∇ � C.

Proof of Theorem 4.20. Again, the proof is by structural induction on deriva-
tions. The main subtlety is the construction of C in each case.

—Case con

Σ : ∇ � C
Σ : ∆;∇ =⇒ C

con

Then clearly, we immediately derive

Σ : ∆ =⇒ C \ C

since Σ : ∇ � C.

—Case ∧R

Σ : ∆;∇ =⇒ G1 Σ : ∆;∇ =⇒ G2

Σ : ∆;∇ =⇒ G1 ∧G2
∧R

By induction, we have C1 such that Σ : ∆ =⇒ G1 \ C1 and Σ : ∇ � C1; and C2

such that Σ : ∆ =⇒ G2 \ C2 and Σ : ∇ � C2. We can conclude that

Σ : ∆ =⇒ G1 \ C1 Σ : ∆ =⇒ G2 \ C2

Σ : ∆ =⇒ G1 ∧G2 \ C1 ∧ C2

observing that Σ : ∇ � C1 ∧ C2 follows from Σ : ∇ � C1 and Σ : ∇ � C2.

—Case ∨Ri

Σ : ∆;∇ =⇒ Gi

Σ : ∆;∇ =⇒ G1 ∨G2
∨Ri
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By induction, we have C such that Σ : ∆ =⇒ Gi \ C and Σ : ∇ � C; we can
conclude by deriving

Σ : ∆ =⇒ Gi \ C

Σ : ∆ =⇒ G1 ∨G2 \ C

—Case ∃R

Σ : ∇ � ∃X.C Σ, X : ∆;∇, C =⇒ G

Σ : ∆;∇ =⇒ ∃X :σ.G
∃R

By induction, we know that Σ, X : ∆ =⇒ G \ C′ holds for some C′ satisfying
Σ, X : ∇, C � C′. We may derive

Σ, X : ∆ =⇒ G \ C′

Σ : ∆ =⇒ ∃X.G \ ∃X.C′

To complete this case, we need to show that Σ : ∇ � ∃X.C′. This follows by
Lemma 3.3.

—Case NR

Σ : ∇ � Na.C Σ#a : ∆;∇, C =⇒ G

Σ : ∆;∇ =⇒ Na.G
NR

By induction, we have Σ#a : ∆ =⇒ G \ C′ holds for some C′ such that Σ#a :
∇, C � C′. We may derive

Σ#a : ∆ =⇒ G \ C′

Σ : ∆ =⇒ Na.G \ Na.C′

Finally, to show that Σ : ∇ � Na.C′, we appeal to Lemma 3.4.

—Case sel

Σ : ∆;∇
D
−→ A (D ∈ ∆)

Σ : ∆;∇ =⇒ A
sel

By induction hypothesis (2), there exists C and G such that Σ : ∆
D
−→ A \ G,

Σ : ∆ =⇒ G \ C and Σ : ∇ � C. Therefore, we can conclude by deriving

Σ : ∆
D
−→ A \ G Σ : ∆ =⇒ G \ C (D ∈ ∆)

Σ : ∆ =⇒ A \ C

Now we consider the cases arising from part (2).

—Case hyp

Σ : ∇ � A ∼ A′

Σ : ∆;∇
A′

−→ A
hyp

Then we take G = A ∼ A′ = C and derive

Σ : ∆
A′

−→ A \ A ∼ A′ Σ : ∆ =⇒ A ∼ A′ \ A ∼ A′

which suffices since Σ : ∇ � A ∼ A′.
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—Case ∧Li

Σ : ∆;∇
Di−−→ A

Σ : ∆;∇
D1∧D2−−−−−→ A

∧Li

Then, by induction, we have C and G such that Σ : ∆
Di−−→ A \ G, Σ : ∆ =⇒

G \ C, and Σ : ∇ � C. It suffices to replace the first derivation with

Σ : ∆
Di−−→ A \ G

Σ : ∆
D1∧D2−−−−−→ A \ G

—Case ⇒L

Σ : ∆;∇
D
−→ A Σ : ∆;∇ =⇒ G

Σ : ∆;∇
G⇒D
−−−−→ A

⇒L

Then, by induction on the first subderivation, we have C′ and G′ such that

Σ : ∆
D
−→ A \ G′, Σ : ∆ =⇒ G′ \ C′, and Σ : ∇ � C′. By induction on the

second subderivation, we have Σ : ∆ =⇒ G \ C and Σ : ∇ � C for some C. To
conclude, we derive

Σ : ∆
D
−→ A \ G′

Σ : ∆
G⇒D
−−−−→ A \ G ∧G′

Σ : ∆ =⇒ G \ C Σ : ∆ =⇒ G′ \ C′

Σ : ∆ =⇒ G ∧G′ \ C ∧ C′

since Σ : ∇ � C ∧ C′ follows from Σ : ∇ � C and Σ : ∇ � C′.

—Case ∀L

Σ : ∇ � ∃X.C Σ, X : ∆;∇, C
D
−→ A

Σ : ∆;∇
∀X:σ.D
−−−−−→ A

∀L

By induction hypothesis (2) applied to the second subderivation, there exist

C′ and G′ such that Σ, X : ∆
D
−→ A \ G′ and Σ, X : ∆ =⇒ G′ \ C′ and

Σ, X : ∇, C � C′. We may therefore derive

Σ, X : ∆
D
−→ A \ G′

Σ : ∆
∀X.D
−−−−→ A \ ∃X.G′

Σ, X : ∆ =⇒ G′ \ C′

Σ : ∆ =⇒ ∃X.G′ \ ∃X.C′

and conclude by observing that Σ : ∇ � ∃X.C′ follows from existing assumptions
by Lemma 3.3.

—Case NL

Σ : ∇ � Na.C Σ#a : ∆;∇, C
D
−→ A

Σ : ∆;∇
Na:ν.D

−−−−→ A
NL

By induction, we can obtain a goal G and constraint C′ such that Σ#a : ∆
D
−→

A \ G′ and Σ#a : ∆ =⇒ G′ \ C′ and Σ#a : ∇, C � C′. Clearly, we may now
derive

Σ#a : ∆
D
−→ A \ G′

Σ : ∆
Na.D

−−−→ A \ Na.G′

Σ#a : ∆ =⇒ G′ \ C′

Σ : ∆ =⇒ Na.G′ \ Na.C′
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To conclude, we need to verify that Σ : ∇ � Na.C′. This follows by Lemma 3.4.

This exhausts all cases and completes the proof.

C. PROOFS FROM SECTION 4.3

Proposition C.1 Transition Soundness (Proposition 4.21). If Σ〈Γ | ∇〉 −→

Σ′〈Γ′ | ∇′〉 and Σ′ : ∆ =⇒ ~G′ \ ~C′ then there exist ~C such that

(1 ) Σ : ∆ =⇒ ~G \ ~C and

(2 ) Σ′ : ∇′, ~C′ � ∇, ~C.

Proof. Assume Σ′ : ∆ =⇒ ~G′ \ ~C′ is derivable. Proof is by case decomposition
on the possible transition steps.

—Case (B): If the backchaining rule is used,

Σ〈A, ~G0 | ∇〉 −→ Σ〈G′, ~G0 | ∇〉

where Σ : ∆
D
−→ A \ G′ for some D ∈ ∆, then we have Σ′ = Σ; ~G = A, ~G0;

~G′ = G′, ~G0; ~C′ = ~C = C′, ~C0; and ∇′ = ∇. We can extract a subderivation of
Σ : ∆ =⇒ G′ \ C′ so for (1) we derive Σ : ∆ =⇒ A, ~G0 \ C′, ~C0 using the back
rule. Part (2) is trivial.

—Case (C): If the constraint rule is used, we have

Σ〈C, ~G′ | ∇〉 −→ Σ〈 ~G′ | ∇, C〉

where ∇, C is satisfiable. Then Σ′ = Σ;∇′ = ∇, C; ~G = C, ~G′; and ~C = C, ~C′.
For (1), we can derive using rule con Σ : ∆;C, ~G′ =⇒ C, ~C′; part (2) is trivial.

—Case (⊤): If the operational rule for ⊤ is used, we have

Σ〈⊤, ~G′ | ∇〉 −→ Σ〈 ~G′ | ∇〉

Then Σ′ = Σ;∇′ = ∇; ~C = ⊤, ~C′; for (1), Σ : ∆ =⇒ ⊤, ~G′ \ ⊤, ~C′ can be derived
using ⊤R, while part (2) is trivial.

—Case (∧):

Σ〈G1 ∧G2, ~G0 | ∇〉 −→ Σ〈G1, G2, ~G0 | ∇〉

Then Σ = Σ′; ∇′ = ∇; ~G = G1 ∧ G2, ~G0; ~G′ = G1, G2, ~G0; and ~C′ = C1, C2, ~C0.
Set ~C = C1 ∧ C2, ~C0. For (1), Σ : ∆ =⇒ G1 ∧ G2, ~G0 \ C1 ∧ C2, ~C0 is derivable
using ∧R; moreover, for (2), observe that Σ : ∇, C1, C2 � ∇, C1 ∧ C2.

—Case (∨i):

Σ〈G1 ∨G2, ~G0 | ∇〉 −→ Σ〈Gi, ~G0 | ∇〉

Then Σ = Σ′; ∇′ = ∇; ~G = G1 ∨ G2, ~G0; ~G′ = Gi, ~G0; and ~C′ = C, ~C0; so set
~C = ~C′. For (1), Σ : ∆ =⇒ G1 ∨ G2, ~G0 \ C, ~C0 follows using ∨R, while (2) is
trivial.

—Case (∃):

Σ〈∃X :σ.G, ~G0 | ∇〉 −→ Σ, X :σ〈G, ~G0 | ∇〉
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Then Σ′ = Σ, X ; ∇′ = ∇; ~G = ∃X.G, ~G0; ~G′ = G, ~G0; ~C′ = C, ~C0, so set
~C = ∃X.C, ~C0. We can therefore derive Σ : ∆ =⇒ ∃X.G, ~G0 \ ∃X.C, ~C0 for part

(1). For part (2), we observe that Σ, X : ∇, C, ~C0 � ∃X.C, ~C0.

—Case ( N): Similar to the case for (∃).

Σ〈 Na:ν.G, ~G0 | ∇〉 −→ Σ#a:ν〈G, ~G0 | ∇〉

Then Σ′ = Σ#a; ∇′ = ∇, ~G = Na.G, ~G0; ~G′ = G, ~G0; ~C′ = C, ~C0, so set
~C = Na.C, ~C0. For part (1), derive Σ : ∆ =⇒ Na.G, ~G0 \ Na.C, ~C0 using NR.

For part (2), observe that Σ#a : ∇, C, ~C0 � Na.C, ~C0.

This completes the proof.

Proposition C.2 Transition Completeness (Proposition 4.23). For any

nonempty ~G and satisfiable ∇, ~C, if we have derivations ~D :: Σ : ∆ =⇒ ~G \ ~C then

for some Σ′, ∇′, and ~C′ we have

(1 ) Σ〈~G | ∇〉 −→ Σ′〈 ~G′ | ∇′〉,

(2 ) D′ :: Σ′ : ∆ =⇒ ~G′ \ ~C′, where ~D′ <∗ ~D

(3 ) ∃Σ[∇] � ∃Σ′[∇′]

Proof of Proposition 4.23. Let ~G, ~C,∇ be given as above. Since ~G is nonempty,
we must have ~G = G, ~G0 and ~C = C, ~C0. Proof is by case decomposition of the
derivation of Σ : ∆ =⇒ G \ C.

—Suppose the derivation is of the form

Σ : ∆ =⇒ C \ C
con

thus, ~G = C, ~G′ and ~C = C, ~C′. Then set Σ′ = Σ; ∇′ = ∇, C. We can take the
step Σ〈C, ~G0 | ∇〉 −→ Σ〈 ~G0 | ∇, C〉. For (2), we already have smaller derivations

Σ : ∆ =⇒ ~G0 \ ~C0 and for (3), observe that ∃Σ[∇, (C, ~C0)] � ∃Σ[(∇, C), ~C0].

—Case ⊤R: (Special case of “con”, since ⊤ is a constraint?) If the derivation is of
the form

Σ : ∆ =⇒ ⊤ \ ⊤
⊤R

then ~G = ⊤, ~G′ and ~C = ⊤, ~C′. Setting Σ′ = Σ,∇′ = ∇, clearly Σ〈⊤, ~G′ | ∇〉 −→

Σ〈 ~G′ | ∇〉. For (2), we already have smaller derivations Σ : ∆ =⇒ ~G′ \ ~C′ and

for (3), ∃Σ[∇,⊤, ~C0] � ∃Σ[∇, ~C0].

—Case ∧R: If the derivation is of the form

Σ : ∆ =⇒ G1 \ C1 Σ : ∆ =⇒ G2 \ C2

Σ : ∆ =⇒ G1 ∧G2 \ C1 ∧ C2
∧R

Thus, ~G = G1 ∧ G2, ~G0 and ~C = C1 ∧ C2, ~C0. Setting σ = Σ; ∇′ = ∇; ~G′ =
G1, G2, ~G0; and ~C = C1, C2, ~C0, we can take the operational step Σ〈G1∧G2, ~G0 |

∇〉 −→ Σ〈G1, G2, ~G0 | ∇〉. In addition, for (2) we have subderivations Σ : ∆ =⇒

G1, G2, ~G0 \ C1, C2, ~C0 and for (3), ∃Σ[∇, C1 ∧ C2, ~C0] � ∃Σ[∇, C1, C2, ~C0], as
desired.
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—Case ∨Ri: If the derivation is of the form

Σ : ∆ =⇒ Gi \ C

Σ : ∆ =⇒ G1 ∨G2 \ C
∨Ri

then ~G = G1∨G2 and ~C = C, ~C0. Setting Σ
′ = Σ;∇′ = ∇; ~G′ = Gi, ~G0; and ~C′ =

C, ~C0; we can take the operational step Σ〈G1∨G2 | ∇〉 −→ Σ〈Gi | ∇〉. Moreover,

we have for part (2) immediate subderivations Σ : ∆ =⇒ Gi, ~G0 \ C, ~C0 and part
(3) is trivial.

—Case ∃R: For a derivation of the form

Σ, X : ∆ =⇒ G \ C

Σ : ∆ =⇒ ∃X :σ.G \ ∃X.C
∃R

we have ~G = ∃X.G, ~G0 and ~C = ∃X.C, ~C0. Setting Σ′ = Σ, X ;∇′ = ∇; ~G′ =
G, ~G0; ~C′ = C, ~C0; we can take the operational step Σ〈∃X.G, ~G0 | ∇〉 −→

Σ, X〈G, ~G0 | ∇〉. Moreover, for part (2), from the given derivations we can

obtain subderivations Σ, X : ∆ =⇒ G, ~G0 \ C, ~C0 . For part (3), observe that

∃Σ[∇, ∃X.C, ~C0] � ∃Σ, X [∇, C, ~C0] since X is not free in ∇, ~C0.

—Case NR: In this case, the derivation is of the form

Σ#a : ∆ =⇒ G \ C

Σ : ∆ =⇒ Na.G \ Na.C
NR

~G = Na.G, ~G0 and ~C = Na.C, ~C0. Setting Σ′ = Σ#a;∇′ = ∇; ~G′ = G, ~G0; ~C′ =
C, ~C0; we can take the operational step Σ〈 Na.G, ~G0 | ∇〉 −→ Σ#a〈G, ~G0 | ∇〉.
In addition, for (2) we can obtain smaller subderivations of Σ#a : ∆ =⇒

G, ~G0 \ C, ~C0 from the given derivations, and for (3) observe that ∃Σ[∇, Na.C, ~C0] �

∃Σ#a[∇, C, ~C0] since a is not free in ∇, ~C0.

—Case back: For a derivation of the form

Σ : ∆
D
−→ A \ G′ Σ : ∆ =⇒ G′ \ C (D ∈ ∆)

Σ : ∆ =⇒ A \ C
back

we have ~G = A, ~G0 and ~C = C, ~C0. Set Σ = Σ′; ~G′ = G′, ~G0; ~C′ = C, ~C0;
∇′ = ∇. Using the first subderivation, we can take a backchaining step Σ〈A, ~G0 |

∇〉 −→ Σ〈G′, ~G0 | ∇〉. Moreover, for part (2), using the second subderivation we

obtain a smaller derivation Σ : ∆ =⇒ G′, ~G0 \ C, ~C0, and part (3) is trivial.

This completes the proof.

D. PROOFS FROM SECTION 5.1

Theorem D.1 Correctness of elaboration (Theorem 5.1).

(1 ) If ∆ ❀ ∆′ then Σ : ∆;∇ =⇒ G iff Σ : ∆′;∇ =⇒ G.

(2 ) If ∆ ❀ ∆′ then Σ : ∆;∇
D
−→ A iff Σ : ∆′;∇

D
−→ A.

(3 ) If D ❀ D′ then Σ : ∆;∇
D
−→ A iff Σ : ∆;∇

D′

−−→ A.
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Proof of Theorem 5.1. Each part is a straightforward induction on deriva-
tions and case decomposition on the possible rewriting steps. Most cases are easy;
we just show the appropriate derivation translations.
For (1), proof is by induction on the given derivation.

—Case con:

Σ : ∇ � C
Σ : ∆;∇ =⇒ C

con
⇐⇒

Σ : ∇ � C
Σ : ∆′;∇ =⇒ C

con

—Case ∧R:

Σ : ∆;∇ =⇒ G1 Σ : ∆;∇ =⇒ G2

Σ : ∆;∇ =⇒ G1 ∧G2
∧R

⇐⇒

Σ : ∆′;∇ =⇒ G1 Σ : ∆′;∇ =⇒ G2

Σ : ∆′;∇ =⇒ G1 ∧G2
∧R

—Case ∨Ri:

Σ : ∆;∇ =⇒ Gi

Σ : ∆;∇ =⇒ G1 ∨G2
∨Ri ⇐⇒

Σ : ∆′;∇ =⇒ Gi

Σ : ∆′;∇ =⇒ G1 ∨G2
∨Ri

—Case ⊤R:

Σ : ∆;∇ =⇒ ⊤
⊤R

⇐⇒ Σ : ∆′;∇ =⇒ ⊤
⊤R

—Case ∃R:

Σ : ∇ � ∃X.C Σ, X : ∆;∇, C =⇒ G

Σ : ∆;∇ =⇒ ∃X :σ.G
∃R

⇐⇒

Σ : ∇ � ∃X.C Σ, X : ∆′;∇, C =⇒ G

Σ : ∆′;∇ =⇒ ∃X :σ.G
∃R

—Case NR: If the derivation is of the form

Σ : ∇ � Na.C Σ#a : ∆;∇, C =⇒ G

Σ : ∆;∇ =⇒ Na.G
NR

⇐⇒

Σ : ∇ � Na.C Σ#a : ∆′;∇, C =⇒ G

Σ : ∆′;∇ =⇒ Na.G
NR

—Case sel: In this case, we need to consider the possible rewrite step taken on ∆.
Writing D for the selected formula D ∈ ∆, there are four possibilities:
—The rewrite step does not affect D. Hence, D ∈ ∆′. Then we have

Σ : ∆;∇
D
−→ A (D ∈ ∆)

Σ : ∆;∇ =⇒ A
sel

⇐⇒

Σ : ∆′;∇
D
−→ A (D ∈ ∆′)

Σ : ∆′;∇ =⇒ A
sel

—The rewrite step eliminates D = ⊤ from ∆. This case is vacuous because there
can be no derivation with focused formula ⊤.

—The rewrite step splits D = D1 ∧ D2 ∈ ∆; thus, ∆ = ∆0, D1 ∧ D2 and
∆′ = ∆, D1, D2. Then we have

Σ : ∆;∇
Di−−→ A

Σ : ∆;∇
D1∧D2−−−−−→ A

∧Li

(D1 ∧D2 ∈ ∆)

Σ : ∆;∇ =⇒ A
sel

⇐⇒

Σ : ∆′;∇
Di−−→ A (Di ∈ ∆′)

Σ : ∆′;∇ =⇒ A
sel

—The rewrite step rewrites D ❀ D′; thus, D′ ∈ ∆′, and using IH(2) and IH(3)
we can obtain

Σ : ∆;∇
D
−→ A (D ∈ ∆)

Σ : ∆;∇ =⇒ A
sel

⇐⇒

Σ : ∆′;∇
D′

−−→ A (D′ ∈ ∆′)

Σ : ∆;∇ =⇒ A
sel
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For (2), there are again several straightforward cases, which we illustrate using
derivation transformations:

—Case hyp:

Σ : ∇ � A′ ∼ A

Σ : ∆;∇
A′

−→ A
hyp

⇐⇒

Σ : ∇ � A′ ∼ A

Σ : ∆′;∇
A′

−→ A
hyp

—Case ∧Li:

Σ : ∆;∇
Di−−→ A

Σ : ∆;∇
D1∧D2−−−−−→ A

∧Li

⇐⇒

Σ : ∆′;∇
Di−−→ A

Σ : ∆′;∇
D1∧D2−−−−−→ A

∧Li

—Case ⇒L: Here we need both IH(1) and IH(2):

Σ : ∆;∇
D
−→ A Σ : ∆;∇ =⇒ G

Σ : ∆;∇
G⇒D
−−−−→ A

⇒L
⇐⇒

Σ : ∆′;∇
D
−→ A Σ : ∆′;∇ =⇒ G

Σ : ∆′;∇
G⇒D
−−−−→ A

⇒L

—Case ∀L:

Σ : ∇ � ∃X.C Σ, X : ∆;∇, C
D
−→ A

Σ : ∆;∇
∀X:σ.D
−−−−−→ A

∀L
⇐⇒

Σ : ∇ � ∃X.C Σ, X : ∆′;∇, C
D
−→ A

Σ : ∆′;∇
∀X:σ.D
−−−−−→ A

∀L

—Case NL:

Σ : ∇ � Na.C Σ#a : ∆;∇, C
D
−→ A

Σ : ∆;∇
Na.D

−−−→ A
NL

⇐⇒

Σ : ∇ � Na.C Σ#a : ∆′;∇, C
D
−→ A

Σ : ∆′;∇
Na.D

−−−→ A
NL

For (3), proof is by induction on the structure of derivations and of the possible
rewriting steps.
We first show the easy cases involving “deep” rewriting steps.

—No rewrite rules apply to atomic D-formulas, so there are no deep rewrite cases
involving hyp.

—Similarly, there are no rewrite rules for ⊤ so there are no deep rewrite cases
involving ⊤R.

—If we have a deep rewrite step involving ∧:

D1 ❀ D′
1

D1 ∧D2 ❀ D′
1 ∧D2

then we can derive

Σ : ∆;∇
D1−−→ A

Σ : ∆;∇
D1∧D2−−−−−→ A

∧L1

⇐⇒

Σ : ∆;∇
D′

1−−→ A

Σ : ∆′;∇
D′

1
∧D2

−−−−−→ A

∧L1

The case for ∧L2 is symmetric.

—If we have a deep rewrite involving ⇒:

D ❀ D′

G⇒ D ❀ G⇒ D′
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then we proceed by induction (using IH(1) and IH(3)):

Σ : ∆;∇
D
−→ A Σ : ∆;∇ =⇒ G

Σ : ∆;∇
G⇒D
−−−−→ A

⇒L
⇐⇒

Σ : ∆;∇
D′

−−→ A Σ : ∆;∇ =⇒ G

Σ : ∆;∇
G⇒D′

−−−−→ A
⇒L

—If we have a deep rewrite involving ∀:

D ❀ D′

∀X.D ❀ ∀X.D′

then by induction we have

Σ : ∇ � ∃X.C Σ, X : ∆;∇, C
D
−→ A

Σ : ∆;∇
∀X:σ.D
−−−−−→ A

∀L
⇐⇒

Σ : ∇ � ∃X.C Σ, X : ∆;∇, C
D′

−−→ A

Σ : ∆;∇
∀X:σ.D′

−−−−−→ A
∀L

—If we have a deep rewriting step involving N:

D ❀ D′

Na.D ❀ Na.D′

then by induction we have

Σ : ∇ � Na.C Σ#a : ∆;∇, C
D
−→ A

Σ : ∆;∇
Na.D

−−−→ A
NL

⇐⇒

Σ : ∇ � Na.C Σ#a : ∆;∇, C
D′

−−→ A

Σ : ∆;∇
Na.D′

−−−−→ A
NL

We now show the cases involving a basic rewrite rule applied at the head of the
focused formula.

—Cases G ⇒ ⊤ ❀ ⊤, ∀X.⊤ ❀ ⊤, Na.⊤ ❀ ⊤: Any derivation of either the left-
hand or right-hand derivations would contain a subderivation focused on ⊤, but
there is no atomic rule focusing on ⊤, so these cases are vacuous.

—Case D∧⊤ ❀ D (and symmetrically ⊤∧D ❀ D): Since there is no atomic rule
focusing on ⊤, we must have

Σ : ∆;∇
D
−→ A

Σ : ∆;∇
D∧⊤
−−−→ A

∧L1

⇐⇒ Σ : ∆;∇
D
−→ A

—Case G⇒ G′ ⇒ D ❀ G ∧G′ ⇒ D: Then the left-hand derivation is

Σ : ∆;∇ =⇒ G

Σ : ∆;∇ =⇒ G′ Σ : ∆;∇
D
−→ A

Σ : ∆;∇
G′⇒D
−−−−→ A

⇒L

Σ : ∆;∇
G⇒G′⇒D
−−−−−−−→ A

⇒L

which is derivable if and only if we can also derive

Σ : ∆;∇ =⇒ G Σ : ∆;∇ =⇒ G′

Σ : ∆;∇ =⇒ G ∧G′ ∧R
Σ : ∆;∇

D
−→ A

Σ : ∆;∇
G∧G′⇒D
−−−−−−→ A

⇒L
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—Case G⇒ D1 ∧D2 ❀ (G⇒ D1) ∧ (G⇒ D2): Then we have

Σ : ∆;∇ =⇒ G

Σ : ∆;∇
Di−−→ A

Σ : ∆;∇
D1∧D2−−−−−→ A

∧Li

Σ : ∆;∇
G⇒D1∧D2−−−−−−−→ A

⇒L
⇐⇒

Σ : ∆;∇ =⇒ G Σ : ∆;∇
Di−−→ A

Σ : ∆;∇
G⇒Di−−−−→ A

⇒L

Σ : ∆;∇
(G⇒D1)∧(G⇒D2)
−−−−−−−−−−−−→ A

∧Li

—Case G⇒ ∀X.D ❀ ∀X.(G⇒ D) where X 6∈ FV (G,Σ): Then we have

D1

Σ : ∆;∇ =⇒ G

Σ : ∇ � ∃X.C

D2

Σ, X : ∆;∇, C
D
−→ A

Σ : ∆;∇
∀X.D
−−−−→ A

∀L

Σ : ∆;∇
G⇒∀X.D
−−−−−−→ A

⇒L

which is derivable if and only if we can also derive

Σ : ∇ � ∀X.C

D′
1

Σ, X : ∆;∇, C =⇒ G

D2

Σ, X : ∆;∇, C
D
−→ A

Σ, X : ∆;∇, C
G⇒D
−−−−→ A

⇒L

Σ : ∆;∇
∀X.(G⇒D)
−−−−−−−→ A

∀L

since X is not mentioned in G or ∇.

—If the rewriting step is G ⇒ Na.D ❀ Na.(G ⇒ D), where a 6∈ supp(G,Σ), then
we can derive

D1

Σ : ∆;∇ =⇒ G

Σ : ∇ � Na.C

D2

Σ#a : ∆;∇, C
D
−→ A

Σ : ∆;∇
Na.D

−−−→ A
NL

Σ : ∆;∇
G⇒ Na.D
−−−−−−→ A

⇒L

if and only if we can also derive

Σ : ∇ � Na.C

D′
1

Σ#a : ∆;∇, C =⇒ G

D2

Σ#a : ∆;∇, C
D
−→ A

Σ#a : ∆;∇, C
G⇒D
−−−−→ A

⇒L

Σ : ∆;∇
Na.(G⇒D)

−−−−−−−→ A
NL

since a is not mentioned in G or ∇.

—If the rewriting step is ∀X.(D1 ∧D2) ❀ ∀X.D1 ∧ ∀X.D2 then (for i ∈ {1, 2}) we
can derive

Σ : ∇ � ∀X.C

D

Σ, X : ∆;∇, C
Di−−→ A

Σ, X : ∆;∇, C
D1∧D2−−−−−→ A

∧Li

Σ : ∆;∇
∀X.(D1∧D2)
−−−−−−−−→ A

∀L
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if and only if we can derive

Σ : ∇ � ∃X.C

D

Σ, X : ∆;∇, C
Di−−→ A

Σ : ∆;∇, C
∀X.Di−−−−→ A

∀L

Σ : ∆;∇
∀X.D1∧∀X.D2−−−−−−−−−→ A

∧Li

—If the rewriting step is Na.(D1∧D2) ❀ Na.D1 ∧ Na.D2 then for i ∈ {1, 2} we can
derive

Σ : ∇ � Na.C

D

Σ#a : ∆;∇, C
Di−−→ A

Σ#a : ∆;∇, C
D1∧D2−−−−−→ A

∧Li

Σ : ∆;∇
Na.(D1∧D2)

−−−−−−−−→ A
NL

if and only if we can derive

Σ : ∇ � Na.C

D

Σ#a : ∆;∇, C
Di−−→ A

Σ#a : ∆;∇, C
Na.Di−−−−→ A

NL

Σ : ∆;∇
Na.D1∧ Na.D2−−−−−−−−−→ A

∧Li

This completes the proof.

E. PROOFS FROM SECTION 5.2

Lemma E.1 (Lemma 5.5). Let ∆ be a N-goal program and π be a type-preserving
permutation of names in Σ.

(1 ) If Σ : ∆;∇ =⇒≈ G then Σ : ∆;∇ =⇒≈ π·G.

(2 ) If Σ : ∆;∇
D
−→≈ A then Σ : ∆;∇

π·D
−−→≈ π·A.

Proof of Lemma 5.5. By induction on derivations.

—For case con, we transform derivations as follows:

Σ : ∇ � C
Σ : ∆;∇ =⇒≈ C

con
7−→

Σ : ∇ � π·C
Σ : ∆;∇ =⇒≈ π·C

con

since Σ : ∇ � C implies Σ : ∇ � π·C.

—For case ⊤R, we transform

Σ : ∆;∇ =⇒≈ ⊤
⊤R

7−→ Σ : ∆;∇ =⇒≈ π·⊤
⊤R

since π·⊤ = ⊤.

—For case ∧R, note that π·(G1 ∧G2) = π·G1 ∧ π·G2, so we transform

D1

Σ : ∆;∇ =⇒≈ G1

D2

Σ : ∆;∇ =⇒≈ G2

Σ : ∆;∇ =⇒≈ G1 ∧G2
∧R

7−→

D′
1

Σ : ∆;∇ =⇒≈ π·G1

D′
2

Σ : ∆;∇ =⇒≈ π·G2

Σ : ∆;∇ =⇒≈ π·(G1 ∧G2)
∧R

where by induction Di :: Σ : ∆;∇ =⇒≈ Gi 7−→ D′
i :: Σ : ∆;∇ =⇒≈ π·Gi for

i ∈ {1, 2}.
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—For case ∨Ri (i ∈ {1, 2}), note that π·(G1 ∨G2) = π·G1 ∨ π·G2, so we have

D
Σ : ∆;∇ =⇒≈ Gi

Σ : ∆;∇ =⇒≈ G1 ∨G2
∨Ri 7−→

D′

Σ : ∆;∇ =⇒≈ π·Gi

Σ : ∆;∇ =⇒≈ π·(G1 ∨G2)
∨Ri

where by induction D :: Σ : ∆;∇ =⇒≈ Gi 7−→ D′ :: Σ : ∆;∇ =⇒≈ π·Gi

—For case ∃R, we have

Σ : ∇ � ∃X.C[X ]
D

Σ, X : ∆;∇, C[X ] =⇒≈ G

Σ : ∆;∇ =⇒≈ ∃X.G

Note that π·∃X.G[X ] = ∃X.π·G[π−1
·X ]. By induction,

D
Σ, X : ∆;∇, C[X ] =⇒≈ G 7−→

D′

Σ, X : ∆;∇, C[X ] =⇒≈ π·G[X ] .

Since π is invertible, we can substitute Y = π·X to obtainD′′ :: Σ, Y : ∆;∇, C[π−1
·Y ] =⇒≈

π·G[π−1
·Y ]; moreover, clearly, Σ : ∇ � ∃Y.C[π−1

·Y ], so we can conclude

Σ : ∇ � ∃Y.C[π−1
·Y ]

D′′

Σ, Y : ∆;∇, C[π−1
·Y ] =⇒≈ π·G[π−1

·Y ]

Σ : ∆;∇ =⇒≈ π·∃X.G .

—For case NR, we have derivation

Σ : ∇ � Na.C
D

Σ#a : ∆;∇, C =⇒≈ G

Σ : ∆;∇ =⇒≈ Na:ν.G
NR

7−→

Σ : ∇ � Na.C
D′

Σ#a : ∆;∇, C =⇒≈ π·G

Σ : ∆;∇ =⇒≈ π·( Na:ν.G)
NR

since π· Na:ν.G = Na:ν.π·G, (since, without loss, a 6∈ FN(Σ) ∪ supp(π)). The
derivation D′ :: Σ#a : ∆;∇, C =⇒≈ π·G is obtained by induction.

—For case sel,

D

Σ : ∆;∇
D
−→≈ A (D ∈ ∆)

Σ : ∆;∇ =⇒≈ A
sel

7−→

D′

Σ : ∆;∇
D
−→≈ π·A (D ∈ ∆)

Σ : ∆;∇ =⇒≈ π·A
sel

using induction hypothesis (2) to derive D′ from D, and the fact that π·D = D
(because D ∈ ∆ is closed).

For part (2), all cases are straightforward; cases hyp and NL are of interest.

—Case hyp

Σ : ∇ � A′ ≈ A

Σ : ∆;∇
A′

−→≈ A
hyp

7−→

Σ : ∇ � π·A′ ≈ π·A

Σ : ∆;∇
π·A′

−−−→≈ π·A
hyp

since Σ : A′ ≈ A � π·A′ ≈ π·A.

—Case ∧Li

Σ : ∆;∇
Di−−→≈ A

Σ : ∆;∇
D1∧D2−−−−−→≈ A

∧Li

7−→

Σ : ∆;∇
π·Di−−−→≈ π·A

Σ : ∆;∇
π·(D1∧D2)
−−−−−−−→≈ π·A

∧Li

since π·(D1 ∧D2) = π·D1 ∧ π·D2. The subderivations are constructed by induc-
tion.
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—Case ⇒L

Σ : ∆;∇
D
−→≈ A Σ : ∆;∇ =⇒≈ G

Σ : ∆;∇
G⇒D
−−−−→≈ A

⇒L
7−→

Σ : ∆;∇
π·D
−−→≈ π·A Σ : ∆;∇ =⇒≈ π·G

Σ : ∆;∇
π·(G⇒D)
−−−−−−→≈ π·A

⇒L

where the subderivations are obtained by induction; this suffices because π·(G⇒
D) = π·G⇒ π·D.

—Case ∀L: We have

Σ : ∇ � ∃X.C[X ] Σ, X : ∆;∇, C[X ]
D[X]
−−−→≈ A

Σ : ∆;∇
∀X:σ.D
−−−−−→≈ A

∀L

The argument is similar to that for ∃R for part (1). By induction we have

Σ, X : ∆;∇, C[X ]
π·D[X]
−−−−−→≈ π·A. Substituting Y = π·X , we have Σ, Y :

∆;∇, C[π−1
·Y ]

π·D[π−1
·Y ]

−−−−−−−→≈ π·A. and Σ : ∇ � ∃Y.C[π−1
·Y ]. It follows that

Σ : ∇ � ∃Y.C[π−1
·Y ] Σ, Y : ∆;∇, C[π−1

·Y ]
π·D[π−1

·Y ]
−−−−−−−→≈ π·A

Σ : ∆;∇
π·∀Y :σ.D
−−−−−−→≈ π·A

∀L

since π·∀Y :σ.D = ∀Y.π·D[π−1
·Y ].

—The case for NL is vacuous because no formulas Na.D can appear in a N-goal
program.

This completes the proof.

Theorem E.2 (Theorem 5.6). If ∆ is N-goal then

(1 ) If Σ : ∆;∇ =⇒ G is derivable, then Σ : ∆;∇ =⇒≈ G is derivable.

(2 ) If Σ : ∆;∇
D
−→ A is derivable, there exists a π such that Σ : ∆;∇

π·D
−−→≈ A is

derivable.

Proof of Theorem 5.6. The proof is by induction on derivations. For part
(1), the most interesting cases is sel; the rest are straightforward.

—For sel, we have

Σ : ∆;∇
D
−→ A

Σ : ∆;∇ =⇒ A

for some closed D ∈ ∆. By induction hypothesis (2), for some π, Σ : ∆;∇
π·D
−−→≈

A holds. However, since D is closed, π·D = D ∈ ∆ so we may conclude

Σ : ∆;∇
D
−→≈ A (D ∈ ∆)

Σ : ∆;∇ =⇒≈ A
sel

—Case con:

Σ : ∇ � C
Σ : ∆;∇ =⇒ C

con
7−→

Σ : ∇ � C
Σ : ∆;∇ =⇒≈ C

con
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—Case ⊤R:

Σ : ∆;∇ =⇒ ⊤
⊤R

7−→ Σ : ∆;∇ =⇒≈ ⊤
⊤R

—Case ∧R:

Σ : ∆;∇ =⇒ G1 Σ : ∆;∇ =⇒ G2

Σ : ∆;∇ =⇒ G1 ∧G2
∧R

7−→

Σ : ∆;∇ =⇒≈ G1 Σ : ∆;∇ =⇒≈ G2

Σ : ∆;∇ =⇒≈ G1 ∧G2
∧R

—Case ∨Ri (i ∈ {1, 2}):

Σ : ∆;∇ =⇒ Gi

Σ : ∆;∇ =⇒ G1 ∨G2
∨Ri 7−→

Σ : ∆;∇ =⇒≈ Gi

Σ : ∆;∇ =⇒≈ G1 ∨G2
∨Ri

—Case ∃R:

Σ : ∇ � ∃X.C Σ, X : ∆;∇, C =⇒ G

Σ : ∆;∇ =⇒ ∃X :σ.G
∃R

7−→

Σ : ∇ � ∃X.C Σ, X : ∆;∇, C =⇒≈ G

Σ : ∆;∇ =⇒≈ ∃X :σ.G
∃R

—Case NR:

Σ : ∇ � Na.C Σ#a : ∆;∇, C =⇒ G

Σ : ∆;∇ =⇒ Na:ν.G
NR

7−→

Σ : ∇ � Na.C Σ#a : ∆;∇, C =⇒≈ G

Σ : ∆;∇ =⇒≈ Na:ν.G
NR

For part (2), the interesting cases are hyp and NL.

—For hyp, we have

Σ : ∇ � A′ ∼ A

Σ : ∆;∇
A′

−→ A
hyp

By definition Σ : ∇ � A′ ∼ A means there exists a π such that Σ : ∇ � π·A′ ≈ A,
so

Σ : ∇ � π·A′ ≈ A

Σ : ∆;∇
π·A′

−−−→≈ A
hyp

—Case ∧Li:

Σ : ∆;∇
Di−−→ A

Σ : ∆;∇
D1∧D2−−−−−→ A

∧Li

7−→

Σ : ∆;∇
π·Di−−−→≈ A

Σ : ∆;∇
π·D1∧π·D2−−−−−−−→≈ A

∧Li

—Case⇒L: Suppose we have Using both induction hypotheses, and then Lemma 5.5,
we can obtain derivations of the following judgments:

Σ : ∆;∇
π·G⇒π·D
−−−−−−→≈ A for some π, by part (1)

Σ : ∆;∇ =⇒≈ G by part (2)
Σ : ∆;∇ =⇒≈ G by Lemma 5.5

so we can conclude

Σ : ∆;∇
π·D
−−→≈ A Σ : ∆;∇ =⇒≈ π·G

Σ : ∆;∇
π·G⇒π·D
−−−−−−→≈ A

⇒L
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—Case ∀L: Using the induction hypothesis, and changing variables (Y = π·X), we
have

Σ : ∇ � ∃X.C Σ, X : ∆;∇, C
D
−→ A

Σ : ∆;∇
∀X:σ.D
−−−−−→ A

∀L

7−→

Σ : ∇ � ∃Y.C[π−1
·Y ] Σ, Y : ∆;∇, C[π−1

·Y ]
π·D[π−1

·Y ]
−−−−−−−→≈ A

Σ : ∆;∇
∀Y :σ.π·D[π−1

·Y ]
−−−−−−−−−−−→≈ A

∀L

—Case NL is vacuous, since no instance of NL can occur in a derivation involving
a N-goal program.

This completes the proof.
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