
Solving First-Order
Constraints in the

Theory of the Evaluated
Trees

Thi-Bich-Hanh Dao and Khalil Djelloul
Université d’Orléans, LIFO

Rapport No 2006-05

Abstract

We present in this paper a general algorithm for solving first-order con-
straints in the theory T of the evaluated trees which is a combination of
the theory of finite or infinite trees and the theory of the rational numbers
with addition and subtraction and a linear dense order relation. The algo-
rithm is given in the form of 28 rewriting rules. It transforms a first-order
formula ϕ - which can possibly contain free variables - into a disjunction
φ of solved formulas which is equivalent in T , without new free variables
and such that φ is either the formula true or the formula false or a formula
having at least one free variable and being equivalent neither to true nor
to false in T . In particular if ϕ does not contain free variables then φ is ei-
ther the formula true or false. If φ has free variables then the solutions on
free variables are expressed in an explicit way and φ can be directly trans-
formed into a boolean combination of quantified conjunctions of atomic
formulas which do not accept elimination of quantifiers. The correctness
of our algorithm is another proof of the completeness of this theory.

1 Introduction

The algebra of finite or infinite trees plays a fundamental role in computer
science: it is a model for data structures, program schemes and program exe-
cutions. As early as 1976, G. Huet proposed an algorithm for unifying infinite
terms, that is solving equations in that algebra [12]. B. Courcelle has studied
the properties of infinite trees in the scope of recursive program schemes [8].
A. Colmerauer has described the execution of Prolog II, III and IV programs
in terms of solving equations and disequations in that algebra [4, 3, 1]. The
unification of finite terms, i.e. the resolution of conjunctions of equations in the
theory of finite trees has first been studied by A. Robinson [18]. Some better
algorithms with better complexities has been proposed after by M.S. Paterson
and M.N.Wegman [16] and A. Martelli and U. Montanari [15]. The resolution of
conjunctions of equations in the theory of infinite trees has been studied by G.
Huet [12], by A. Colmerauer [5, 4] and by J. Jaffar [13]. The resolution of con-
junctions of equations and disequations in the theory of possibly infinite trees
has been studied by A. Colmerauer [4] and H.J. Bürckert [2]. An incremental
algorithm for solving conjunctions of equations and disequations on rational
trees has been proposed after by V.Ramachandran and P. Van Hentenryck [17].
On the other hand, there exists an algorithm for elimination of quantifications
which transforms a first-order formula into a boolean combination of simple
constraints. We can refer to the work of M.J. Maher [14] and H. Comon [7].

M.J. Maher has axiomatized all the cases by complete first-order theories
with infinite set of function symbols [14]. We have then extended this theory by
giving a complete first-order axiomatization of the evaluated trees [10] which
are combination of finite or infinite trees with construction operations and the
rational numbers with addition and subtraction and a linear dense order rela-
tion. This theory T reflects essentially to Prolog III and IV which have been
modeled by Alain Colmerauer using combination of trees, rational numbers,
booleans and intervals [3, 1]. In this paper we give a general algorithm for solv-
ing the most general first-order constraints in T , i.e. in all models of T . Our

2

aim is not only to decide the validity of the propositions (sentences) i.e. for-
mulas without free variables, but to be able to express solutions of constraints
in T , which can possibly contain free variables, in a simple and explicit way as
it has done in one of our previous works [9] for the theories of finite trees and
possibly infinite trees. By solving a constraint ϕ in T we mean to transform the
logical formula ϕ, which can possibly contain free variables, into a disjunction
φ of solved formulas, without new free variables, which is equivalent to ϕ in
T and such that φ is either the formula true, or the formula false or has at
least one free variable and is equivalent neither to true nor to false in T . In
particular if ϕ is a proposition, then φ is either true or false. We would be
able also to check formulas which contain free variables but are always true or
false in T . In this case φ is either true or false. We show also that if φ has
at least one free variable then φ can be directly be transformed into a boolean
combination of quantified conjunctions of atomic formulas which do not accept
elimination of quantifiers. The correctness of our algorithm is another proof of
the completeness of this theory.

Our algorithm is not simply a combination of an algorithm over trees with
one over rational numbers, but a powerful mechanism to solve mixed con-
straints. This algorithm is able to solve any first order constraint containing
untyped variables or typed variables and presents the solutions of the free vari-
ables in a clear and explicit way. One of the major difficulty in this work resides
in the fact that (1) the theory of trees does not accept full elimination of quanti-
fiers, (2) every algorithm deciding propositions in the theory of finite or infinite
trees has a non-elementary complexity [19] and (3) the function symbols + and
− of T have two different behaviors whether they are applied on trees or ra-
tional numbers. For example +(1, 1) is the rational number 2, while +(1, f0)
is the tree whose root is labeled + and whose children are 1 and the tree’s
constant f0. The result of the completeness of this theory given in [10] is not
enough to induce solved formulas over trees and rational numbers expressing
solutions of hard problems, such as: planning, wining-strategies in multiplayers
games,...etc. Indeed, our goal in these kinds of problems is not to know only if
there exists a winning strategy but to express this winning strategy in the form
of a first-order formula whose free variables have clear and explicit solutions.
While in [10] the proof of the completeness handles only propositions, in this
paper, our algorithm handles general first order formulas with free variables and
typed or untyped variables. It includes full systems of typing deduction and
constraints simplification and propagation. The expressiveness and clearness of
the solutions of the free variables in the final solved formula are our main goal
in this paper.

The paper is organized in four sections followed by a conclusion. This intro-
duction is the first section. In Section 2 we present the theory of the evaluated
trees and introduce an example of constraints in this theory. In Section 3, we
define the notions of basic formulas, blocks and solved blocks in T which are
particular conjunctions of atomic formulas. We end this section by showing that
every quantified solved block can be decomposed in three embedded sequences
of quantifications having particular properties which enable us to eliminate some
quantifiers. In Section 4, we present the working formulas, the general solved

3

formulas and the algorithm of constraint solving in T . The algorithm is given
in the form of 28 rewriting rules and transforms an initial working formula of
depth d to a final working formula of depth less than or equal to three. The
main idea behind this algorithm consists in (1) a top-down simplification and
propagation of constraints, in each level, quantified blocks are solved locally, are
decomposed and propagated to the embedded sub-formulas, and inconsistent
sub-formulas are removed (2) a bottom-up elimination of quantifiers and work-
ing formulas’ depth decrease using distribution. The disjunction φ of general
solved formulas extracted from the final working formula is either the formula
false or true or a formula having at least one free variable and is equivalent nei-
ther to false nor to true in T . We show also that every general solved formula
is equivalent in T to a boolean combination of quantified conjunctions of basic
formulas which do not accept elimination of quantifiers. We end this section
by giving an example of constraint solving in T . The algorithm represented by
a set of rewriting rules, the working formulas and the general solved formulas
are our main contribution in this paper.

2 Theory T of evaluated trees

2.1 Preliminaries

Let F be an infinite set of function symbols containing the symbols +, −, 0 and
1. To each element of F is associated a non-negative integer, its arity. The
arities of +, −, 0 and 1 are respectively 2, 1, 0 and 0. Let R = {<,num , tree }
be the set of relation symbols, of respective arities 2, 1 and 1. Let V be an
infinite countable set of variables. A term is an expression of the form x or
ft1 . . . tn where n ≥ 0, f an n-ary symbol in F and the ti’s are shorter terms.
A formula is an expression of the forms:
s= t, rt1..tn, true, false, ¬(ϕ), (ϕ∧ψ), (ϕ∨ψ), (ϕ→ψ), (ϕ↔ψ), ∃xϕ, ∀xϕ,
where x ∈ V , s, t and the ti’s are terms, r is an n-ary relation symbol in R
and ϕ and ψ are shorter formulas. The first four forms are called atomic. An
occurrence of a variable x in a formula is bound if it occurs in a sub-formula of
the form (∃xϕ) or (∀xϕ). It is free otherwise. The free variables of a formula
are those which have at least a free occurrence in the formula. For each formula
ϕ, we denote by var(ϕ) the set of all free variables of ϕ. Let x̄ = x1 . . . xn and
ȳ = y1 . . . yn be two vectors of variables of the same length. The empty vector
is denoted by ε. Let ϕ and ϕ(x̄) be formulas. We write

∃x̄ ϕ for ∃x1...∃xn ϕ,
∀x̄ ϕ for ∀x1...∀xn ϕ,
∃?x̄ ϕ(x̄) for ∀x̄∀ȳ ϕ(x̄) ∧ ϕ(ȳ) →

∧
i∈{1,...,n} xi = yi,

∃!x̄ ϕ for (∃x̄ ϕ) ∧ (∃?x̄ ϕ).

2.2 Axiomatization of T

Let a be a positive integer and let t1, ..., tn be terms. Let us denote by:
• t1 < t2, the term < t1t2,

• t1 + t2, the term +t1t2,

• t1 + t2 + t3, the term +t1(+t2t3),

• 0t1, the term 0,

• at1, the term t1 + · · ·+ t1︸ ︷︷ ︸
a

,

• −at1, the term
(−t1) + · · ·+ (−t1)︸ ︷︷ ︸

a

.

4

The theory T of evaluated trees is the set of first-order propositions of the
following forms:

1 ∀x̄∀ȳ ((tree fx̄) ∧ (tree fȳ) ∧ fx̄ = fȳ) →
∧

i
xi = yi,

2 ∀x̄∀ȳ f x̄ = gȳ → num fx̄ ∧ num gȳ,
3 ∀x̄∀ȳ ((

∧
i∈I

num xi) ∧ (
∧

j∈J
tree yj)) → (∃!z̄

∧
k∈K

(tree zk ∧ zk = tk(x̄, ȳ, z̄))),

4 ∀x∀y x < y → (num x ∧ num y),
5 ∀x∀y num x+ y ↔ num x ∧ num y,
6 ∀xnum − x↔ num x,
7 ∀x̄ tree hx̄,
8 ∀x∀y (num x ∧ num y) → x+ y = y + x,
9 ∀x∀y∀z (num x ∧ num y ∧ num z) → x+ (y + z) = (x+ y) + z,
10 ∀xnum x→ x+ 0 = x,
11 ∀xnum x→ x+ (−x) = 0,
12n ∀xnum x→ (nx = 0 → x = 0),
13n ∀xnum x→ ∃!y num y ∧ ny = x,
14 ∀xnum x→ ¬x < x,
15 ∀x∀y∀z num x ∧ num y ∧ num z → ((x < y ∧ y < z) → x < z),
16 ∀x∀y (num x ∧ num y) → (x < y ∨ x = y ∨ y < x),
17 ∀x∀y (num x ∧ num y) → (x < y → (∃z num z ∧ x < z ∧ z < y)),
18 ∀xnum x → (∃y num y ∧ x < y),
19 ∀xnum x → (∃y num y ∧ y < x),
20 ∀x∀y ∀z (num x ∧ num y ∧ num z) → (x < y → (x+ z < y + z)),
21 ∀x (¬num x) ↔ tree x
22 0 < 1,

where n is a non-null integer, f and g are two distinct function symbols taken
from F , h ∈ F − {+,−, 0, 1}, x, y, z are variables, x̄ is a vector of variables
xi, ȳ is a vector of variables yi, z̄ is a vector of distinct variables zi, I and J
are finite possibly empty sets, and where tk(x̄, ȳ, z̄) is a term which begins by a
function symbol fk element of F − {0, 1} followed by variables taken from x̄ or
ȳ or z̄, moreover, if fk ∈ {+,−} then tk(x̄, ȳ, z̄) contains at least one variable
taken from ȳ or z̄. The axiom 3 shows that all models of T contain infinite
trees. In fact we have T |= ∃!z z = fz ∧ tree z for I = J = ∅. In this case, the
tree z is an infinite tree of the form f(f(f(...))). Note that we have not T |=
∀xnum x → (∃!z z = x + x ∧ tree z), since we have T |= num x ↔ num (x + x)
according to axiom 5 which contradicts tree z and z = x + x. This is why we
have a condition if fk belongs to {+,−}.

This theory has been introduced in [10], where we have proved its complete-
ness. This theory has as model (possibly) infinite trees whose nodes are labelled
by Q∪F such that each subtree labelled by Q∪{+,−} is evaluated in Q and
reduced to a leaf labeled by an element of Q.

Let us now introduce an example of constraints in T . Let us consider the
following two-player game: An ordered pair (n,m) of non-negative rational
numbers is given and one after another each player subtracts 1 or 2 from n or
m but keeping n and m non-negative. The first player who cannot play any
more has lost.

Suppose that it is the turn of player A to play. A position (n,m) is called
k-winning if, no matter the way the other player B plays, it is always possible
for A to win, after having made at most k moves. The constraint defined in [6]

5

expressing that a position x is k-winning is:

winningk(x) ↔


∃ymove(x, y) ∧ ¬(∃xmove(y, x)∧

¬(∃ymove(x, y) ∧ ¬(∃xmove(y, x) ∧ ¬(. . .∧
¬(∃ymove(x, y) ∧ ¬(∃xmove(y, x) ∧ ¬(false)) . . .)︸ ︷︷ ︸

2k


Each position (n,m) is represented by c(i, j) with c a function symbol of arity
2 and i, j ∈ Q. The constraint move(x, y) is defined by

(∃i∃j x = c(i, j) ∧ y = c(i− 1, j) ∧ i > 1 ∧ j > 0)∨
(∃i∃j x = c(i, j) ∧ y = c(i− 2, j) ∧ i > 2 ∧ j > 0)∨
(∃i∃j x = c(i, j) ∧ y = c(i, j − 1) ∧ i > 0 ∧ j > 1)∨
(∃i∃j x = c(i, j) ∧ y = c(i, j − 2) ∧ i > 0 ∧ j > 2)∨
(¬(∃i∃j x = c(i, j) ∧ num i ∧ num j) ∧ x = y)


By replacing the definition of move in the constraint winningk(x), we have a
first-order constraint with one free variable x in the theory T of evaluated trees.
Solving this constraint means finding the positions x which are k-winning.

3 Block and quantified block in T

We will now present structured formulas called blocks and show some of their
properties. Essentially a block is a conjunction of atomic formulas where all
the variables are well typed and which gives enough informations to be locally
solved. We will also define a mechanism to decompose each quantified block in
three quantified blocks having interesting properties that will help us solving
first order constraints on quantified blocks.

3.1 Basic formulas and block in T

Suppose that the variables of V are ordered by a linear strict and dense order
relation without endpoints, denoted by “ � ”. For each formula ϕ, the bounded
variables are renamed such that for each sub-formula of ϕ we have x � y for
each bounded variable x and each free variable y. We denote by Σn

i=1ti the term
t1 + . . .+ tn + 0 with t1 + . . .+ tn the term t1 + . . .+ tn where all the terms 0
have been removed.

Let f ∈ F − {0, 1}, a0 ∈ Z and ai ∈ Z. We call leader of the equation
x0 = fx1...xn or x0 = x1 the variable x0. We call leader of the formula
Σn

i=1aixi = a01 the greatest variable xk (in the order �) such that ak 6= 0.
Let f ∈ F , a0 ∈ Z and ai ∈ Z. We call basic formula every conjunction α

of formulas of the form:

• true, false, numx, tree x,

• x = y, x = fy1...yn, Σn
i=1aixi = a01, Σn

i=1aixi < a01.

The formulas num x and tree x are called typing constraints. The formulas x =
y, x = fy1...yn, Σn

i=1aixi = a01 are called equations. The formula Σn
i=1aixi <

a01 is called inequation. Let α be a basic formula:
(1) We say that “num x is a consequence of α” iff α contains at least one

of the following sub-formulas: num x, x = y ∧ num y, y = x ∧ num y, x =

6

−y ∧ num y, y = −x ∧ num y, z = y + x ∧ num z, z = x + y ∧ num z, x =
y+ z ∧ num z ∧ num y, x = 0, x = 1, Σiaixi = a01 or Σiaixi < a01 and x is one
of the xi’s.

(2) We say that “tree x is a consequence of α” iff α contains at least one of
the following sub-formulas: tree x, x = y∧ tree y, y = x∧ tree y, x = −y∧ tree y,
y = −x∧ tree y, x = y+ z ∧ tree z, x = z+ y∧ tree z, y = x+ z ∧ tree y∧num z,
y = z + x ∧ tree y ∧ num z, x = hy1...yn, with h ∈ F − {+,−, 0, 1}.

(3) We call tree-section of α the conjunction αt of the sub-formulas of α of
the form:

• true, tree x,

• x = y or x = fy1...yn, with f ∈ F −{0, 1} and where x is such that tree x
is a sub-formula of α.

This tree-section αt is called formatted iff all the left-hand sides of the equations
of αt are distinct and for each equation x = y of αt we have x � y.

(4) We call numeric-section of α the conjunction αn of sub-fomulas of α of
the form:

• true, false, Σn
i=1aixi = a01, Σn

i=1aixi < a01, num x,

• x = y, x = −y, x = y+ z, where x is such that num x is a sub-formula of
α.

This numeric-section αn is called consistent iff T |= ∃x̄ αn with x̄ = var(αn)
and formatted iff

• αn does not contain sub-formulas of the form x = y, x = −y, x = y + z,
0 = a01, 0 < a01, with a0 ∈ Z

• αn is consistent and each leader of the equations of αn has one occurrence
in only one the equations of αn and no occurrence in the inequations of
αn.

(5) The variable u is called reachable in ∃x̄α if u is a free variable in ∃x̄α or
α has a sub-formula of the form y = t(u)∧ tree y with t(u) a term containing u
and y a reachable variable. In the last case, the equation y = t(u) is also called
reachable in ∃x̄α.

Example 3.1.1 In the formula ∃xyz w = fxy ∧ z = v ∧ tree w, the variables
w, v, x, y are reachable because w, v are free and x and y occur in the sub-formula
w = fxy ∧ tree w. The variable z is not reachable and since z is bound and v
is free, they must be such that z � v. The equation w = fxy is reachable while
the equation z = v is not.

We call block every basic formulas α such that for each variable x in α either
num x or tree x is a sub-formula of α and α does not contain sub-formulas of
the form:

• x = 0 ∧ tree x, x = 1 ∧ tree x,

7

• x = y ∧ num x ∧ tree y, x = y ∧ tree x ∧ num y,

• x = −y ∧ tree x ∧ num y, x = −y ∧ num x ∧ tree y

• x = y + z ∧ num x ∧ tree y, x = y + z ∧ num x ∧ tree z, x = hȳ ∧ num x,

• x = y + z ∧ tree x ∧ num y ∧ num z,

• Σn
i=1aixi = a01 ∧ tree xk, Σn

i=1aixi < a01 ∧ tree xk

with h ∈ F − {+,−, 0, 1}, k ∈ {1, ..., n}, a0 ∈ Z and ai ∈ Z.
Since each variable x in a block is typed i.e. occurs in a sub-formula of the

form num x or tree x, every block α can be divided into two disjoint sections:
a tree-section and a numeric-section.

A block α without equations is called relation block. A block α without
inequations and where each variable has an occurrence in at least one of the
equations of α is called equation block. A block α is called solved iff its tree-
section and numerical-section are formatted.

3.2 Decomposition of quantified solved blocks

Let ψ be a formula. Let x̄ be a vector of variables and α a solved block such
that for all unreachable quantified variable u in ∃x̄α and all reachable quantified
variable v in ∃x̄α we have u � v. We call decomposition of the formula ∃x̄α∧ψ
the formula

∃x̄1 α1 ∧ (∃x̄2 α2 ∧ (∃x̄3 α3 ∧ ψ))), (1)

obtained as follows : Let X be the set of the variables in x̄. Let us decompose
the set X into two disjoint subsets: Xr (the set of the elements of X which are
reachable in ∃x̄α) and Xu. Let Lead be the set of the leaders of the equations
of α. We have:
− x̄1 is a vector of the variables of Xr.
− x̄2 is a vector of the variables of Xu − Lead.
− x̄3 is a vector of the variables of Xu ∩ Lead.
− α1 is of the form α1

1 ∧ α1
2 where α1

1 is the conjunction of all the equations in
∃x̄α whose leader is reachable, α1

2 is the conjunction of all the typing constraints
of α which concern variables of var(α1

1).
− α2 is of the form α2

1 ∧ α2
2 where α2

1 is the conjunction of all the inequations
of α and α2

2 is the conjunction of all the typing constraints of α which do not
concern variables of x̄3.
− α3 is of the form α3

1 ∧α3
2 where α3

1 is the conjunction of the other equations
and α3

2 is the conjunction of all the typing constraints of α which concern the
variables of var(α3

1). The restriction on the order � of the quantified unreach-
able and reachable variables is due to an aim to get as leader of the equations
of the numeric section of α unreachable variables. If one quantified leader is
reachable then we deduce that all the quantified variables of this equation are
reachable. This condition will help us for the algorithm of resolution given at
Section 4. The intuitions behind this decomposition come from an aim to de-
compose a quantified solved block into three embedded sections each one having

8

particular properties that enable us either to remove quantifiers or make special
distributions in ψ and reduce the size of the formula ∃x̄α ∧ ψ.

Let A be the set of the solved blocks. Let A1 be the set of the formulas of
the form ∃x̄1α1, where α1 is a solved equation block and all the variables of x̄1

are reachable in ∃x̄1α1. Let A2 be the set of solved relation blocks.

Property 3.2.1 For all decomposed formula of the form (1) we have : ∃x̄1α1 ∈
A1, α2 ∈ A2, α3 ∈ A and T |= ∀x̄2 α2 → ∃!x̄3α3.

Example 3.2.2 Let v, w, x, y, z variables such that w � y � z � x � v. Let us
decompose the formula

∃wxyz

 v = fvx ∧ w + 2x+ (−2)z = 1 ∧ y + 3z = 0∧
z < 1 ∧ 3z + 2x < 0∧
tree v ∧ num w ∧ num x ∧ num y ∧ num z

 (2)

The reachable variables in the formula (2) are v and x. We have Xr = {x, v},
Xu = {w, y, z} and Lead = {v, w, y}. Since w � y � z � x then the formula
(2) is equivalent in T to the decomposed formula ∃x v = fvx ∧ tree v ∧ num x∧

(∃z z < 1 ∧ 3z + 2x < 0 ∧ num z ∧ numx ∧ tree v∧
(∃wy w+2x+(−2)z=1 ∧ y+3z=0 ∧ num w ∧ num x ∧ num y ∧ num z))


Note that the elements of A1 does not accept elimination of quantifiers, this

is due to the fact that all the variables of x̄1 are reachable in ∃x̄1 α1. Indeed in
the formula ∃x v = fvx the quantification ∃x can not be eliminated in T .

In all what follows we will use the notations x̄1, x̄2, x̄3, α1, α2,α3 to refer to
the decomposition of the formula ∃x̄α.

4 Solving first-order constraints in T

4.1 Working and general solved formulas

Definition 4.1.1 A normalized formula ϕ of depth d ≥ 1 is a formula of the
form

¬(∃x̄ α ∧
∧

i∈I ϕi), (3)

with I a finite (possibly empty) set, α a basic formula and the ϕi normalized
formulas of depth di and d = 1+max{0, d1, ..., dn}. Formulas of depth 1 (I = ∅)
are of the form ¬(∃x̄ α) with α a basic formula.

Property 4.1.2 Every formula is equivalent in T to a normalized formula.

Definition 4.1.3 A working formula is a normalized formula in which all the
occurrences of ¬ are of the form ¬k with k ∈ {0, ..., 9} and such that each
occurrence of a sub-formula of the form

φ = ¬k(∃x̄ αc ∧ αp ∧
∧

i∈I ϕi), (4)

9

has αp = true if k = 0 and satisfies the first k conditions of the following
condition list if k > 0. Here αp is a solved block and is called propagated
constraint section, αc is a basic formula and is called core constraint section,
the ϕi are working formulas, and in the conditions: βp ∧ βc is the conjunction
of the equations and relations of the immediate top-working formula ψ of φ if
it exists. i.e. ψ = ¬k(∃ȳβc ∧ βp ∧ φ ∧

∧
j∈J φj) with φj working formulas.

1. if ψ exists then T |= αp ∧ αc → βp ∧ βc, and the tree-sections of αp and
βc ∧ βp have the same set of left-hand side of equations,

2. the tree-section of αp ∧ αc is formatted and the formula αp ∧ αc does not
contain tree x ∧ num x for any variable x,

3. αp ∧ αc is a block,

4. the numeric-section of αp ∧αc is consistent, and we have u � v for u any
unreachable variable in x̄ and v any reachable variable in x̄,

5. αp ∧ αc is a solved block,

6. αp is the formula βc ∧ βp if ψ exists, and is the formula true otherwise.
The formula αc is a solved block and for each relation num x (or tree x)
in αp, if x does not occur in an equation or inequation of αc then num x
(resp. tree x) does not occur in αc,

7. (∃x̄ αc) is decomposable into (∃x̄1 αc1 ∧ (∃x̄2 αc2 ∧ (∃ε true))),

8. (∃x̄ αc) is decomposable into (∃x̄1 αc1 ∧ (∃ε αc2 ∧ (∃ε true))),

9. (∃x̄ αc) is decomposable into (∃x̄1 αc1 ∧ (∃ε true ∧ (∃ε true))).

The use of k aims to be able to control the execution of our rewriting rules on
working formulas. We strongly insist in the fact that ¬k does not mean that
the normalized formula satisfies only the kth condition but all the conditions i
with 1 ≤ i ≤ k. We call initial working formula a working formula of the form

¬6(∃ε true ∧
∧
i∈I

ϕi)

with ϕi working formulas where all negation symbols ¬k have k = 0 and all
propagated constraint sections are true. We call final working formula a formula
of the form

¬7(∃ε true ∧
∧
i∈I

¬8(∃x̄i α
c
i ∧ α

p
i ∧

∧
j∈Ji

¬9(∃ȳij β
c
ij ∧ β

p
ij))), (5)

where the βc
ij are different from true.

Definition 4.1.4 A general solved formula is a formula of the form

∃x̄1 α1 ∧ α2 ∧
∧
i∈I

¬(∃ȳ1
i β

1
i), (6)

where ∃x̄1 α1 ∈ A1, α2 ∈ A2, ∃ȳ1
i β

1
i ∈ A1, all the α1 ∧α2 ∧ β1

i are solved blocks
and all the β1

i are different from true.

10

According to the properties of ¬8 and ¬9, in the final working formula (5),
αp

i = true and βp
ij = αp

i ∧ αc
i . Thus the formula (5) is equivalent in T to the

following disjunction of general solved formulas∨
i∈I

(∃x̄i α
c
i ∧

∧
j∈Ji

¬(∃ȳij β
c
ij)) (7)

Property 4.1.5 Let ϕ be a general solved formula of the form (6). If ϕ has no
free variables then ϕ is the formula true, otherwise neither T |= ϕ nor T |= ¬ϕ.

Property 4.1.6 Every general solved formula is equivalent in T to a boolean
combination of formulas of the form ∃x̄1α1∧α2, with ∃x̄1α1 ∈ A1 and α2 ∈ A2,
which do not accept elimination of quantifiers.

4.2 Main idea

The general algorithm for solving first-order constraints in T uses a system of
rewriting rules. The main idea is to transform an initial working formula of
depth d to a final working formula of depth less than or equal to three. The
transformation is done in two steps:

(1) The first step is a top-down simplification and propagation. In each
sub-working formula, αc ∧ αp is transformed to a solved block, then ∃x̄αc is
decomposed into three parts as in subsection 3.2. The third part is eliminated
and added to the core-constraint section of the immediate sub-working formu-
las using a special property of the quantifier ∃!. The constraints of the two
other parts in αp are propagated to the propagated-constraint section of the
immediate sub-working formulas. In this step, the rules 1 to 24 are applied and
transform the initial working formula to a working formula where each negation
symbol is of the form ¬7.

(2) The second step is a bottom-up simplification and elimination of quan-
tifiers. This step is done by the rules 25 to 28. In each sub-working formula
of depth one or two, the rule 25 eliminates quantified variables of the second
part of the decomposition (the third one had been already removed in the first
step). The rule 26 eliminates the constraints of the second part in the deepest
level. Each sub-working formula of depth 3 is transformed step by step to a
conjunction of working formulas of depth 2 by the rule 28 using a property of
the quantifier ∃?. The transformations in this step can create new sub-working
formulas where the first step needs to be done. At the end of the transformation,
we obtain a final working formula of depth less than or equal to 3.

4.3 Rewriting rules

We present in Figure 1 the rewriting rules which transform an initial working
formula to a final working formula, which is equivalent in T . To apply the
rule p1 =⇒ p2 to the working formula p means to replace in p, a sub-formula
p1 by the formula p2, by considering that the connector ∧ is associative and
commutative. In all these rules, α are basic formulas, ϕ and ψ are conjunctions
of working formulas.

11

Figure 1: The rewriting rules
1 ¬1(∃ūnum x ∧ tree x ∧ α ∧ ϕ) =⇒ true
2 ¬1(∃ū x = fȳ ∧ x = gz̄ ∧ tree x ∧ α ∧ ϕ) =⇒ true
3 ¬1(∃ū x = x ∧ α ∧ ϕ) =⇒ ¬1(∃ū α ∧ ϕ)
4 ¬1(∃ū y = x ∧ tree x ∧ α ∧ ϕ) =⇒ ¬1(∃ū x = y ∧ tree x ∧ α ∧ ϕ)

5 ¬1

[
∃ū x = fy1...yn ∧ x = fz1...zn∧
tree x ∧ α ∧ ϕ

]
=⇒ ¬1

[
∃ū x = fy1...yn ∧

∧
i
yi = zi∧

tree x ∧ α ∧ ϕ

]
6 ¬1

[
∃ū x = y ∧ x = fz1...zn∧
tree x ∧ tree y ∧ α ∧ ϕ

]
=⇒ ¬1

[
∃ū x = y ∧ y = fz1...zn∧
tree x ∧ tree y ∧ α ∧ ϕ

]
7 ¬1(∃ū x = y ∧ x = z ∧ tree x ∧ α ∧ ϕ) =⇒ ¬1(∃ū x = y ∧ y = z ∧ tree x ∧ α ∧ ϕ)
8 ¬4(∃ū 0 = 01 ∧ α ∧ ϕ) =⇒ ¬4(∃ū α ∧ ϕ)
9 ¬4(∃ū 0 < a01 ∧ α ∧ ϕ) =⇒ ¬4(∃ū α ∧ ϕ)

10 ¬4

[
∃ū x = y∧
num x ∧ num y ∧ α ∧ ϕ

]
=⇒ ¬4

[
∃ū x+ (−1y) = 0∧
num x ∧ num y ∧ α ∧ ϕ

]
11 ¬4

[
∃ū x = −y∧
num x ∧ num y ∧ α ∧ ϕ

]
=⇒ ¬4

[
∃ū x+ y = 0∧
num x ∧ num y ∧ α ∧ ϕ

]
12 ¬4

[
∃ū x = y + z ∧ num x∧
num y ∧ num z ∧ α ∧ ϕ

]
=⇒ ¬4

[
∃ū x+ (−1y) + (−1z) = 0∧
num x ∧ num y ∧ num z ∧ α ∧ ϕ

]
13 ¬4

[∃ūΣn
i=1aixi = a01∧

Σn
i=1bixi = b01∧

α ∧ ϕ

]
=⇒ ¬4

[∃ūΣn
i=1aixi = a01∧

Σn
i=1(bkai − akbi)xi = (bka0 − akb0)1∧

α ∧ ϕ

]

14 ¬4

[∃ūΣn
i=1aixi = a01∧

Σn
i=1bixi < b01∧

α ∧ ϕ

]
=⇒ ¬4

[∃ūΣn
i=1aixi = a01∧

Σn
i=1λ(bkai − akbi)xi < (bka0 − akb0)1∧

α ∧ ϕ

]
15 ¬1(∃x̄ αc ∧ αp ∧ ϕ) =⇒ ¬2(∃x̄ αc ∧ αp ∧ ϕ)
16 ¬2(∃x̄ αc ∧ αp ∧ ϕ) =⇒ ¬1(∃x̄num z ∧ αc ∧ αp ∧ ϕ)
17 ¬2(∃x̄ αc ∧ αp ∧ ϕ) =⇒ ¬1(∃x̄ tree z ∧ αc ∧ αp ∧ ϕ)

18 ¬2(∃x̄ αc ∧ αp ∧ ϕ) =⇒
[
¬1(∃x̄num z ∧ αc ∧ αp ∧ ϕ)∧
¬1(∃x̄ tree z ∧ αc ∧ αp ∧ ϕ)

]
19 ¬2(∃x̄ αc ∧ αp ∧ ϕ) =⇒ ¬3(∃x̄ αc ∧ αp ∧ ϕ)
20 ¬3(∃x̄ αc ∧ αp ∧ ϕ) =⇒ true
21 ¬3(∃x̄ αc ∧ αp ∧ ϕ) =⇒ ¬4(∃x̄ αc ∧ αp ∧ ϕ)
22 ¬4(∃x̄ αc ∧ αp ∧ ϕ) =⇒ ¬5(∃x̄ αc ∧ αp ∧ ϕ)

23 ¬7

[
∃x̄ αc ∧ αp ∧ ϕ∧
¬5(∃ȳ βc ∧ βp ∧ ψ)

]
=⇒ ¬7

[
∃x̄ αc ∧ αp ∧ ϕ∧
¬6(∃ȳ γc ∧ γp ∧ ψ)

]
24 ¬6

[
∃x̄ αc ∧ αp∧∧

i
¬0(∃ȳiβ

c
i ∧ βp

i ∧ ϕi)

]
=⇒ ¬7

[
∃x̄1x̄2 αc1 ∧ αc2 ∧ αp∧∧

i
¬1(∃ȳix̄

3γc
i ∧ γp

i ∧ ϕi)

]
25 ¬7

[
∃x̄ αc ∧ αp∧∧

i∈I
¬9(∃ȳiβ

c
i ∧ βp

i)

]
=⇒ ¬8

[
∃x̄1αc1 ∧ αc2∗ ∧ αp∧∧

i∈I′ ¬9(∃ȳiβ
c
i ∧ βp∗

i)

]
26 ¬7

[
∃x̄ αc ∧ αp ∧ ϕ∧
¬8(∃ȳβc ∧ βp)

]
=⇒

[
¬7(∃x̄ αc ∧ αp ∧ ϕ ∧ ¬9(∃ȳβc1 ∧ βp))∧∧

i∈I
¬1(∃x̄ȳβp ∧ βc1 ∧ βc2∗

i ∧ ϕ0)

]
27 ¬7

[
∃x̄ αc ∧ αp ∧ ϕ∧
¬9(∃εtrue ∧ βp)

]
=⇒ true

28 ¬7


∃x̄ αc ∧ αp ∧ ϕ∧

¬8

 ∃ȳ βc ∧ βp∧∧
i∈I

¬9(∃z̄i γ
c
i ∧ γp

i)


 =⇒

 ¬7(∃x̄ αc ∧ αp ∧ ϕ ∧ ¬8(∃ȳ βc ∧ βp))∧∧
i∈I

¬6(∃x̄ȳz̄i δ
c
i ∧ δp

i ∧ ϕ0)



12

In the rules 1 to 14, the equations and relations in αc and αp are mixed
by considering the connector ∧ associative and commutative. In these rules,
except the rule 6, all modifications in the right hand side are done in αc, since
αp is a solved block.

In the rule 2, f and g are two distinct function symbols taken from F . In the
rules 4, 6, 7 x � y This condition prevent infinite loop and makes the procedure
terminating. In the rule 5, the equation x = fz1...zn does not belong to αp.
In the rule 6, if the equation x = fz1...zn belongs to αp, then x = y ∧ tree y is
moved to αp. In the rule 7, the equation x = z does not belong to αp.

We recall that the notation 01 in the rule 8 means the term 0. In the rule
9, a0 > 0. In the rules 13 and 14 the variable xk is the leader of the equation
Σiaixi = a01 and bk 6= 0. More over the equation Σjbjxj = b01 does not belong
to αp. In the rule 14, the relation Σjbjxj < b01 does not belong to αp and λ = 1
if ak > 0 and λ = −1 otherwise.

In the rule 15, the tree section of αc ∧ αp is formatted and there is no
sub-formula in αc ∧ αp of the form num x ∧ tree x. In the rule 16 respectively
17, the typing constraint num z, respectively tree z is not in αc ∧ αp and is a
consequence of αc ∧ αp. In the rule 18, z does not have typing constraint in
αc ∧ αp and neither num z nor tree z is a consequence of αc ∧ αp.

In the rule 19, αc∧αp is a block. In the rule 20, the numeric section of αc∧αp

is inconsistent. In the rule 21, the unreachable variables in x̄ are renamed if
necessary such that u � v for each unreachable variable u and each reachable
variable v in x̄ and the numeric section of αc∧αp is consistent. The consistency
can be verified for example by using the first step of the Simplex. In the rule
22, αc ∧ αp is a solved block.

In the rule 23, γc is obtained from βc as follows: for all variable x ∈ var(βc),
we add all the relations num x or tree x which are in βp but not in βc, and for
all the variables y which do not occur in an equation or inequation of βc we
remove all relations num y or tree y which are both in βc and βp. The formula
γp is the formula αp ∧ αc.

In the rule 24, ∃x̄αc is decomposed to ∃x̄1αc1 ∧ (∃x̄2αc2 ∧ (∃x̄3αc3)), γc
i =

βc
i ∧ αc3 and γp

i = βp
i ∧ αc1 ∧ αc2 ∧ αp.

The four rules 25, 26, 27 and 28 can not be applied on the occurrence of ¬7 of
the first level of the general working formula. In the rule 25, I ′ is the set of i ∈ I
such that βc

i does not contain occurrences of any variables in x̄2. The formula
αc2∗ is such that T |= (∃x̄2αc2) ↔ αc2∗ and is computed using the Fourier
quantifier elimination. The propagated-constraint section βp∗

i = αc1∧αc2∗∧αp.
In the rule 26, ϕ is such that every negation symbol ¬k has k ≥ 6, ϕ0 is

obtained from ϕ by replacing all occurrences of ¬k by ¬0 and all propagated-
constraint sections by true. Let β2 the formula obtained from βc2 by removing
the multiple occurrences of typing constraints and for all the variables y which
do not occur in an inequation of βc2 we remove all relation num y or tree y
which are both in βc1 and βc2. If β2 is the formula true then I = ∅, otherwise
the βc2∗

i with i ∈ I are obtained from β2 as follows: Since β2 ∈ A2 then it is of
the form [

(
∧

`∈L num z`) ∧ (
∧

k∈K tree vk)∧
((

∧
j∈J

∑n
i=1 aijxi < a0j) ∧

∧n
m=1 num xm)

]
,

13

thus ¬β2 is of the form(
∨

`∈L tree z`) ∨ (
∨

k∈K num vk) ∨ (
∨n

m=1 tree xm)∨∨
j∈J((

∑n
i=1 aijxi = a0j1 ∧

∧n
m=1 num xm)∨

(
∑n

i=1(−aij)xi < (−a0j)1 ∧
∧n

m=1 num xm))


Each element of this disjunction is a block and represents a formula βc2∗

i . Of
course we have T |= (¬β2) ↔

∨
i β

c2∗
i .

In the rule 28, I 6= ∅, ϕ is such that every negation symbol ¬k has k ≥ 6, ϕ0

is obtained from ϕ by replacing all occurrences of ¬k by ¬0 and all propagated-
constraint sections by true. Moreover δp

i = αp and δc
i = γc

i ∧ βc ∧ αc.

Property 4.3.1 Every repeated application of the precedent rewriting rules on
an inital working formula terminates and produces a final working formula
equivalent in T and without new free variables.

4.4 Algorithm for solving constraints in T

Solving the constraint ϕ in T is made as follows:

1. Transform ϕ to a normalized formula, then to an initial working formula
φ, which is equivalent to ϕ in T .

2. Transform φ to a final working formula ψ using the rewriting rules defined
in the subsection 4.3.

3. Extract from ψ the disjunction of general solved formulas, equivalent to
ψ in T . If the disjunction contains the general solved formula true, then
it is reduced to true.

Example 4.4.1 Let ϕ be the following constraint having i, j as free variables: ∃xx =
fij ∧ i > 0∧ tree x∧num i∧num j ∧¬(∃k j = 2k∧num k). We can see that num j ∧¬(∃k j =
2k ∧ num k) is always false in T since for every variable j, there exists a unique variable
k such that j = 2k (axiom 13n). Let us transform ϕ to an initial working formula (the
propagated-constraint sections are underlined):

¬6¬0(∃xx = fij ∧ i > 0 ∧ tree x ∧ num j ∧ true ∧ ¬0(∃k j = 2k ∧ num k ∧ true))

After having applied the rules 24, 15, 16, 15, 19, 21, 22, 23 in this order, we obtain:

¬7¬6(∃xx = fij ∧ i > 0 ∧ tree x ∧ num i ∧ num j ∧ true ∧ ¬0(∃k j = 2k ∧ num k ∧ true))

The rule 24 being applied changes the formula to:

¬7¬7

[
i > 0 ∧ num i ∧ num j ∧ true∧
¬1(∃xk x = fij ∧ j = 2k ∧ num k ∧ tree x ∧ i > 0 ∧ num i ∧ num j)

]
After having applied on the sub-working formula ¬1(...) the rule 15, 19, 21, 12, 22, 23

¬7¬7

[
i > 0 ∧ num i ∧ num j ∧ true∧
¬6(∃xk x = fij ∧ j − 2k = 0 ∧ num k ∧ tree x ∧ i > 0 ∧ num i ∧ num j)

]
The rule 24 is applied then we obtain:

¬7¬7(i > 0 ∧ num i ∧ num j ∧ true ∧ ¬7(true ∧ i > 0 ∧ num i ∧ num j))

14

The rules 25, 26 being applied in this order, giving:

¬7¬7(i > 0 ∧ num i ∧ num j ∧ true ∧ ¬9(true ∧ i > 0 ∧ num i ∧ num j))

Finally, by application of the rule 27, we obtain the final working formula ¬7true, which is

equivalent to the empty disjunction of general solved formulas, i.e. false.

Since T has at least a model [10] and according to Property 4.1.5 and Property
4.3.1 we obtain the following corollary, which is another proof of the complete-
ness of the theory T :

Corollary 4.4.2 Every formula is equivalent in T either to true or to false or
to a disjunction of general solved formulas, which has at least one free variable
and which is equivalent neither to true nor to false in T .

5 Conclusion

We have given in this paper a general algorithm for solving the most general
first-order constraints in the theory of the evaluated trees. The algorithm is
given in the form of 28 rewriting rules and its correctness is another proof of
the completeness of T . The algorithm transforms a formula ϕ which can contain
free variables to a disjunction of solved formulas φ equivalent in T , without new
free variables and such that φ is either the formula true or false or has at least
a free variable and is equivalent neither to true nor to false in T . Our aim in
this work was not only to decide proposition i.e. to decide if a formula without
free variables is true or false in T but to simplify a general constraint with free
variables and to present its solutions in a clear and explicit way. This algorithm
is also able to detect formulas having free variables but being always false or
true in T , by giving at the end false or true.

S. Vorobyov [19] has shown that the problem of deciding if a proposition
is true or not in the trees theory is non-elementary, i.e. the complexity of all
algorithm which solves it cannot be bounded by a tower of powers of 2′s (with
a top down evaluation) with a fixed height. A. Colmerauer and B. Dao [6] have
also given a proof of non-elementary complexity of solving constraints in the
trees theory. Thus our algorithm must not escape this kind of complexity in
the worst case. This is why we have used two strategies in the algorithm: a
top down propagation of constraints and a bottom-up elimination of quantifiers
and distribution. This technic can detect quickly (using propagation and local
solving) sub-formulas which are equivalent to false and prevents us from solving
a big sub-working formula which contradicts its immediate embedding working
formula. We have programmed a similar algorithm only on the theory of finite
or infinite trees and in spite of the high complexity we can solve formulas on
two partners games having 160 nested quantifiers [9].

Actually we plan with Thom Fruehwirth [11] to add to CHR a mechanism
to treat the normalized formulas which will enable us to implement easily our
algorithm in CHR. We try also to find an automatic axiomatization for a com-
bination of any theory T with the theory of finite or infinite trees.
Acknowledgements We thank Alain Colmerauer for our many discussions

15

and his help in this work. We dedicate to him this paper with our best wishes
for a speedy recovery.

References

[1] Benhamou F, Bouvier P, Colmerauer A, Garetta H, Giletta B, Massat J,
Narboni G, N’dong S, Pasero R, Pique J, Touraivane, Van Caneghem M,
Vetillard E. Le manuel de Prolog IV , PrologIA, Marseille, France, 1996.

[2] Bürckert H. Solving disequations in equational theories. In Proc. 9th Conf.
on Automated Deduction, LNCS 310, pages 517-526. Springer-Verlag, 1988.

[3] Colmerauer A. An introduction to Prolog III. Communication of the ACM,
33(7):68–90,1990.

[4] Colmerauer A. Equations and disequations on finite and infinite trees. Pro-
ceeding of the International conference on the fifth generation of computer
systems Tokyo, 1984. P. 85–99.

[5] Colmerauer A. Prolog and infinite trees. In K.L. Clark and S-A. Tarn-
lund, editors, Logic Programming, pages 231251, New York, 1982. Academic
Press.

[6] Colmerauer A., Dao. TBH., Expressiveness of full first-order constraints in
the algebra of finite or infinite trees, Constraints, Vol. 8, No. 3, 2003, pages
283-302.

[7] Comon H. Résolution de contraintes dans des algèbres de termes. Rapport
d’Habilitation, Université de Paris Sud, 1992.

[8] Courcelle B. Fundamental Properties of Infinite Trees, TCS vol. 25, no 2,
1983, pp. 95–169.

[9] Dao T. Résolution de contraintes du premier ordre dans la théorie des arbres
finis ou infinis. Thèse d’informatique, Université de la Méditerranée, 2000.

[10] Djelloul K. About the combination of trees and rational numbers in a
complete first-order theory. 5th Int. Conf. FroCoS 2005, LNAI, vol 3717, P.
106–122.

[11] Fruehwirth T., Abdelnnadher S. Essentials of constraints programming.
Springer Cognitive technologies.

[12] Huet G. Resolution d’equations dans les langages d’ordre 1, 2,. . .ω. These
d’Etat, Universite Paris 7. France,1976.

[13] Jaffar J. Efficient unification over infinite terms. New Generation Comput-
ing, 2(3):207-219, 1984.

[14] Maher M. Complete axiomatization of the algebra of finite, rational and
infinite trees. Technical report, IBM - T.J.Watson Research Center, 1988.

16

[15] Martelli A. and Montanari U. An efficient unification algorithm. ACM
Trans. on Languages and Systems, 4(2):258-282, 1982.

[16] Paterson M and Wegman N. Linear unification. Journal of Computer and
Systems Science, 16:158-167, 1978.

[17] Ramachandran V. and Van Hentenryck P. Incremental algorithms for con-
straint solving and entailment over rational trees. In Proc. of the 13th Conf.
Foundations of Software Technology and Theoretical Computer Science,
LNCS 761, 205-217, 1993.

[18] Robinson J.A. A machine-oriented logic based on the resolution principle.
JACM, 12(1):23-41, 1965.

[19] Vorobyov S. An Improved Lower Bound for the Elementary Theories of
Trees, Proceeding of the 13th International Conference on Automated De-
duction (CADE’96). LNAI 1104, pp. 275- 287, 1996.

6 Appendix

In what follows we use the abbreviation wnfv for “without new free variables”.
By saying a formula ϕ is equivalent to a wnfv formula ψ in T we mean T |=
ϕ↔ ψ and ψ does not contain other free variables than those of ϕ.

6.1 Preliminaries

We present here new properties that will be used to show the properties given
in this paper. Some of these new properties are already defined and proved in
[10].

Property 6.1.1 [10] Let T a theory. If T |= ψ → (∃!x̄ϕ) then

T |= (ψ ∧ (∃x̄ϕ ∧ ¬φ)) ↔ (ψ ∧ ¬(∃x̄ϕ ∧ φ))

Property 6.1.2 [10] Let T a theory. If T |= ∃?ȳφ and if each variable of ȳ
does not have free occurrences in ϕ then

T |= (∃x̄ϕ ∧ ¬(∃ȳφ ∧ ψ)) ↔ (∃x̄ϕ ∧ ¬(∃ȳφ)) ∨ (∃x̄ȳϕ ∧ φ ∧ ¬ψ)

We call instantiation of a formula ϕ by individuals of DM the obtained
formula from ϕ in which for each free variable x in ϕ, we replace each free
occurrence of x by the same individual i of DM .

Definition 6.1.3 (Quantifier zero-infinite[10]) Let M be a model. Let ϕi

and ϕ(x̄) be M -formulas and let Ψ(u) be a set of formulas of the form ∃x̄u =
fx̄ ∧ tree u, with f ∈ F − {0, 1}. We write

M |= ∃Ψ(u)
o ∞ xϕ(x), (8)

iff for any instantiation ∃xϕ′(x) of ∃xϕ(x) by individuals of M one of the
following properties holds:

17

• the set of the individuals i of M such that M |= ϕ′(i), is empty,

• for all finite sub-set {ψ1(u), .., ψn(u)} of elements of Ψ(u), the set of the
individuals i of M such that
M |= ϕ′(i) ∧

∧
j∈{1,...,n} ¬ψj(i) is infinite.

Let T be a theory. We write T |= ∃Ψ(u)
o ∞ xϕ(x), iff for each model M of T we

have (8).

Property 6.1.4 [10] If T |= ∃Ψ(u)
o ∞ xϕ(x) and if for each ϕi, one at least of the

following properties holds:

• T |= ∃?xϕi,

• there exists ψi(u) ∈ Ψ(u) such that T |= ∀xϕi → ψi(x),

then
T |= (∃xϕ(x) ∧

∧
i∈I ¬ϕi) ↔ (∃xϕ(x))

Proof L et M be an any model of T . Let ∃xϕ′(x) an instantiation of ∃xϕ(x)
by individuals of M . Let us show that if the conditions of the Property 6.1.4
hold then

M |= (∃xϕ′(x) ∧
∧

j∈J ¬ϕj(x)) ↔ (∃xϕ′(x)). (9)

Let J ′ the set of the j ∈ J such thatM |= ∃?xϕj(x) and letm be the cardinality
of J ′. Since for all j ∈ J ′, M |= ∃?xϕj(x), then it is enough to have at least
m + 1 individuals of M in order to have M |= ∃x

∧
j∈J ′ ¬ϕj(x). On the other

hand, Since T |= ∃Ψ(u)
o ∞ xϕ(x) and according to Definition 6.1.3 of the infinite

quantifier two cases arise:
(1) Either M |= ¬(∃xϕ′(x)), thus M |= ¬(∃x̄ ϕ′(x)∧

∧
j∈J ¬ϕj(x)) and thus

the equivalence (9) is true in M .
(2) Or, for all finite sub-set {ψ1(u), ..., ψn(u)} of Ψ(u), the set of the indi-

viduals i of M such that M |= ϕ′(i)∧
∧n

j=1 ¬ψj(i) is infinite. Thus, since for all
j ∈ J − J ′ we have, M |= ∀xϕj(x) → ψj(x), then there exists an infinite set ξ
of individuals i of M such that M |= ϕ′(i)∧

∧
j∈J−J ′ ¬ϕj(i). By removing from

this infinite set ξ the m preceding individuals we get another infinite sub-set of
ξ such that for all i ∈ ξ we have M |= ϕ′(i)∧

∧
j∈J ′ ¬ϕj(i)∧

∧
k∈J−J ′ ¬ϕk(i) and

thus M |= ∃xϕ′(x)∧
∧

j∈J ¬ϕj(x). Since We have M |= ∃xϕ′(x)∧
∧

j∈J ¬ϕj(x),
then we get M |= ∃xϕ′(x) and thus the equivalence (9) is true in M .

Property 6.1.5 [10] Let α be a basic formula. If all the variables of x̄ are
reachable in ∃x̄ α then T |= ∃?x̄α.

This property is a direct consequence of the axioms 1 and 2 of T .

Property 6.1.6

T |= Σk
i=1aixi = a0 ∧

k∧
i=1

num xi ↔ akxk = Σk
i=1(−ai)xi + a0 ∧

k∧
i=1

num xi.

18

This property uses the axioms 5,6,8...13 of T .

Property 6.1.7 [10] if ∃x̄1α1 ∈ A1 then T |= ∃?x̄1 α1 and for each free vari-
able y in ∃x̄1α1, at least one of the following properties holds:

• T |= ∃?yx̄1 α1,

• there exists ψ(u) ∈ Ψ(u) such that T |= ∀y (∃x̄1 α1) → ψ(y),

Property 6.1.8 [10] if α2 ∈ A2 then for each x2, T |= ∃Ψ(u)
o ∞ x2 α2

Property 6.1.9 [10] if α2 ∈ A2 then for each x2, the formula ∃x2α2 is equiv-
alent in T to a formula which belongs to A2,

This property uses the Fourier elimination of quantifiers. Recall that formulas
of A2 are solved and contains only inequations and typing constraints.

Property 6.1.10 Let α a solved block and x̄ the vector of the variables of α.
We have T |= ∃x̄α.

Proof L et M a model of T let us show that M |= ∃x̄α. Since α is a solved
block then the numeric section is consistent, all the leaders of the equations of
α do not occur in the inequations of α and all the leaders of the equations of α
are distinct and have one occurrence in only one equation. Let us transform the
equations of the numeric section by moving to the right hand sides all the terms
containing variables that are not leaders of equations (see Property 6.1.6). We
get a conjunction of equations with distinct left hand sides that do not occur
in other right hand side of equations of the numeric section or in inequations
of α (see definition of solved block). Since the inequations are consistent then
there exists an instantiation of the variables of the inequations of α that makes
true these inequations. Thus, using this instantiation and for all instantiation
of the variables of the right hand sides in the equations of the numeric sections
there exists a value for the leaders of these equations(axiom 13). Using this
instantiation and for all instantiation of the variables of the right hand sides of
the equations of the tree section and which are not leader, there exists a value
for the leaders (axiom 3). Thus there exists an instantiation of α that makes
true α i.e. M |= ∃x̄α.

Property 6.1.11 Let ∃x̄1α1 a formula without free variables that belongs to
A1. We have x̄1 = ε and α1 = true.

Proof S ince the formula ∃x̄1α1 has no free variables then there is no reachable
variables in ∃x̄1α1 and thus using the definition of the set A1 we get x̄1 = ε.
Thus the formula ∃x̄1α1 is equivalent in T to α1 which has no free variables.
According to the definition of A1, α1 is a solved block and since it does not
contain free variables then it is reduced to the formula true. It can not be
reduced to false because it is a solved block thus consistent. It can not be
reduced also to an equation or inequation without variables according to the
definition of solved block and more exactly formatted.

19

Property 6.1.12 Let α be a solved equation block. Let x̄ be the vector of the
leaders of the equations of α. Let α∗ be the conjunction of the typing constraints
of α which concern elements that do not belong to x̄. We have

T |= α∗ → ∃!x̄ α

Proof R ecall that we write T |= ∃!x̄α if for every model M and every instan-
tiation α′ of α by individuals of M we have M |= ∃!x̄α.

Using this recall, let us prove now Property 6.1.12. This property is a
consequence of the axioms 3 and 13n of T . In fact, since the tree-section of α
has distinct leaders i.e. distinct left-hand sides and since the equations of the
numeric section of α have distinct leaders which have one occurrence in only
one equation of numeric section of α, then by moving in the numeric section
the terms containing variables that are not leader in the right hand sides (see
Property 6.1.6), we get a system with distinct left hand sides which do not
occur in a right hand side of the equations of the numerical section of α. Thus,
for any instantiation of the free variables which are in the right hand sides of
the numerical section by an any numeric value, we get a unique value for all the
numerical leaders of the numeric equations of α (using axioms 5, 6, 13). Thus
for every unique value of these variables and every instantiation of the other
variables in the right hand sides of the equations of the tree section of α (by
values which respect the typing constraints of α), there exists a unique solution
for the right hand sides of the equations of the tree section (axiom 3). Note
that each time we instantiate by value which respect the typing constraints;
this is why we need the implication of α∗. Let us show this in the following
example: Let x, y, z, v, w be variables such that x � y � z � v � w we have

T |= num w → ∃!vxzy


x = fxyw ∧ y = x∧
2z + 2w = 1 ∧ 3v + w = 0∧
tree x ∧ num v ∧ num w∧
tree y ∧ num z


Note that this property can be written in the following form by moving the
leaders in the left-hand sides of the equations and the others in the right hands
sides and by doing the needed changes in signs we get:

T |= num w → ∃!vxzy


x = fxyw ∧ y = x∧
2z = 1 + (−2)w ∧ 3v = −w∧
tree x ∧ num v ∧ num w∧
tree y ∧ num z


For each instantiation of w by numerical value (and not with tree value) there
exists one and only value for v and z (axioms 5, 6, 13) and thus for x too (axiom
3). The unique solutions of v and z are due to the fact that according to our
definition of solved block, the leaders have one occurrence in only one equation
of α. If w is instantiated by tree value (for example fg0) the formula will be
false. This s why it is an implication by the typing constraints of the variables

20

which are not leaders. In fact, we have

T 6|= ∃!vxzy


x = fxyw ∧ y = x∧
z + 2w = 1 ∧ v + w = 0∧
tree x ∧ num v ∧ num w∧
tree y ∧ num z


because the unique value of vxzy must be for all instantiation of w and here
if w is typed as tree then the numerical equation will be false and then all the
formula will be false. Thus we have just the implication of the unique solution.

Property 6.1.13 Let ϕ a working formula of the form

¬k(∃x̄ αc ∧ αp ∧
∧
i∈I

φi)

with 6 ≤ k ≤ 9 and φi working formulas. We have

T |= ¬(∃x̄ αc ∧ αp ∧
∧
i∈I

φ∗i) ↔ ¬(αp ∧ (∃x̄ αc ∧
∧
i∈I

φ∗i))

with φ∗i the normalized formula obtained from φi by replacing all ¬k by ¬.

Proof L et ψ - if it exists - be the immediate top-working formula of ϕ. Thus,
ψ is of the form

¬k(∃ȳβc ∧ βp ∧ ϕ ∧
∧
j∈J

φ′j)

with φ′j working formulas. According to Definition 4.1.3, since k ≥ 6 then the
normalized formula satisfies the k first conditions of this definition and thus
according to the sixth point of this definition we have two cases:

(1) if φ does not exists then αp is the formula true according to the sixth
condition of Definition 4.1.3. Thus the property is true.

(2) if φ exists then αp = βp∧βc according to the sixth condition of Definition
4.1.3. Since the variables of x̄ can not occur in βc ∧ βp, then these variables
can not occur in αp, thus we can lift the formula αp before the quantification
∃x̄ and thus the property is true.

Property 6.1.14 Let α and β two solved blocks having the same numeric-
section and typing constraints. Let αt and βt the respective tree-sections of α
and β. If T |= α → β and if αt and βt have the same left hand side variables,
then T |= α↔ β.

Proof S ince α and β have the same numeric-section and typing constraints,
there exists a conjunction δ such that α = δ ∧ αt and β = δ ∧ βt.

Let x̄ be a vector of the left-hand side variables of αt (then of βt) and
X be the set of all variables in x̄. Since α and β are solved blocks, we have
X ∩ var(δ) = ∅. Let γ be the conjunction of the typing constraints of α (then

21

also of β) which concern variables not belong to x̄. Thus γ is a sub-formula of
δ. By Property 6.1.12, we have T |= γ → ∃!x̄αt and T |= γ → ∃!x̄βt. Thus we
have T |= δ → ∃!x̄ αt and T |= δ → ∃!x̄ βt.

Having T |= α → β, i.e T |= ∀ȳ∀x̄ δ ∧ αt → δ ∧ βt, with ȳx̄ a vector of all
variables in α∧β. The following formulas are all equivalent each to other in T :

∀ȳ∀x̄ δ ∧ αt → δ ∧ βt

↔ ∀ȳ¬(∃x̄ δ ∧ αt ∧ ¬(δ ∧ βt))
↔ ∀ȳ¬(δ ∧ (∃x̄ αt ∧ ¬βt)) since X ∩ var(δ) = ∅
↔ ∀ȳ¬(δ ∧ ¬(∃x̄ αt ∧ βt)) since T |= δ → ∃!x̄ αt and by Property 6.1.1
↔ ∀ȳ¬(δ ∧ ¬(∃x̄ βt ∧ αt))
↔ ∀ȳ¬(δ ∧ (∃x̄ βt ∧ ¬αt)) since T |= δ → ∃!x̄ βt and by Property 6.1.1
↔ ∀ȳ¬(∃x̄ δ ∧ βt ∧ ¬(δ ∧ αt))
↔ ∀ȳ∀x̄ δ ∧ βt → δ ∧ αt

That means T |= (α→ β) ↔ (β → α). Since T |= α→ β, we have T |= α↔ β.

6.2 The main proofs

Property 3.2.1 For all decomposed formula of the form

∃x̄1α1 ∧ (∃x̄2α2 ∧ (∃x̄3α3 ∧ φ))

we have : ∃x̄1α1 ∈ A1, α2 ∈ A2, α3 ∈ A and T |= ∀x̄2 α2 → ∃!x̄3α3.

Proof L et ∃x̄1α1∧(∃x̄2α2∧(∃x̄3α3∧φ)) be the decomposed formula of ∃x̄α∧φ.
By construction of the set x̄1, x̄2, x̄3, α1, α2 and α3 using Definition 3.2, it is
clear that ∃x̄1α1 ∈ A1 and α2 ∈ A2. Let us show that ∀x̄2α2 → ∃!x̄3α3. Since
α2 contains at least the typing constraints of all the variables of α which are
not in x̄3 and since x̄3 contains the leaders of the equations of α3 then using
Property 6.1.12 we have T |= α2 → ∃!x̄3α3 i.e. ∀x̄2 α2 → ∃!x̄3α3

Property 4.1.2 Every formula is equivalent in T to a normalized formula.

Proof I t is easy to transform any first-order formula to a normalized formula
equivalent in T . It is enough1 for example: (1) to introduce a supplement of
equations and existentially quantified variables to transform the conjunctions
of equations to conjunctions of flat atomic formulas, (2) to express all the
quantifier, constants and logical connectors with ¬, ∧ and ∃, (3) to remove the
double negations i.e. ¬¬ϕ becomes ϕ, (4) to replace each sub-formula of the
form ¬num x by tree x and ¬tree x by numx, (5) if the formula ϕ obtained does
not start with ¬, we replace it by ¬¬ϕ, (6) to name the quantified variables by
distinct names different from the names of the free variables, and as different as
possible, (7) to put the quantifier before the conjunction i.e. ϕ∧(∃x̄ ψ) becomes
(∃x̄ ϕ ∧ ψ) because the free variables of ϕ are distinct from those of x̄. If the

1To make the notations easier in these transformations, we will remove the quantification
∃x̄ if x̄ is the mepty vector and put an empty conjunction rather than the formula true i.e.
¬¬∃x̄ α is the normalized formula ¬(∃ε true ∧ ¬(∃x̄ α)).

22

starting formula does not contain the connector ↔ then this transformation
will be linear i.e. there exists a constant k such that n2 ≤ kn1, where n1 is the
size of the starting formula and n2 the size of the normalized formula.

Property 4.1.5 Let ϕ be a general solved formula of the form. If ϕ has no free
variables then ϕ is the formula true, otherwise neither T |= ϕ nor T |= ¬ϕ.

Proof L et ϕ be a general solved formula of the form

∃x̄1 α1 ∧ α2 ∧
∧
i∈I

¬(∃ȳ1
i β

1
i), (10)

where ∃x̄1 α1 ∈ A1, α2 ∈ A2, ∃ȳ1
i β

1
i ∈ A1, all the α1 ∧α2 ∧β1

i are solved blocks
and all the β1

i are different from true. Two cases arise:
Case 1: Let us show that if ϕ has no free variables then ϕ is the formula

true. Since ϕ has no free variables then ∃x̄1 α1∧α2 has no free variables. Since
∃x̄1 α1 ∈ A1 and has not free variables then according to Property 6.1.11 the
formula (10) is equivalent in T to the following formula without free variables

α2 ∧
∧
i∈I

¬(∃ȳ1
i β

1
i), (11)

Since α2 ∈ A2 and α2 has no free variables then according to the definition of
the set A2 we have α2 = true. Thus the precedent formula is equivalent in T
to the following formula without free variables∧

i∈I

¬(∃ȳ1
i β

1
i), (12)

Since ∃ȳ1
i β

1
i ∈ A1 and has not free variables then using Property 6.1.11 we

deduce that ∃ȳ1
i β

1
i = ∃εtrue. But according to the condition of the formula

(10) all the formulas β1
i are different from true and thus I must be the empty

set. Thus the precedent formula is equivalent to true in T . (recall that
∧

i∈I ϕi =
ϕ1 ∧ ... ∧ ϕn ∧ true thus

∧
i∈∅ ϕi = true).

Case 2: If ϕ has at least a free variables then let us show that there exists
a model M of T and two distinct instantiations ϕ′ and ϕ′′ of ϕ by individuals
of M such that

M |= ¬ϕ′ and M |= ϕ′′

Let us choice M be the model of finite or infinite trees labeled by Q ∪ F and
where all the sub-trees labeled by Q ∪ {+,−} are evaluated in Q and reduced
to a leaf labeled by Q. (more details of this model can be found on [10].)

(1) Let us show that ϕ′ exists. Let z be a free variable of ϕ:

• If z occurs in the formula α1 ∧ α2 then since ∃x̄1 α1 ∈ A1 and α2 ∈ A2,
the formulas α1 and α2 are solved blocks, thus all the variables are typed,
thus num z or ¬num z is a sub formula of α1 ∧ α2. To make false ϕ′ it is
enough to instantiate the free variable z by an element of Q if ¬num z is
a sub formula of α1 ∧ α2 ; and by h if num z is a sub formula of α1 ∧ α2

with h ∈ F − {0, 1} a 0-ary function symbol i.e. a tree constant. By
this instantiation ϕ′, we make a contradiction in the typing of z, thus
M |= ¬ϕ′.

23

• Else, there exists k ∈ I such that the formula ∃ȳ1
k β

1
k with k ∈ I has at least

a free variable. Since ∃ȳ1
k β

1
k ∈ A1, then β1

k is a solved block then according
to Property 6.1.10 there exists an instantiation ∃ȳ1

k β
′1
k of the free variables

of ∃ȳ1
k β

1
k such thatM |= ∃ȳ1

k β
′1
k thusM |= ¬(∃x̄1 α1∧α2∧

∧
i∈I ¬(∃ȳ1

i β
1
i)),

thus M |= ¬ϕ′.

(2) Let us show now that there exists ϕ′′ such that M |= ϕ′′. The formula
ϕ is of the form

∃x̄1 α1 ∧ α2 ∧
∧
i∈I

¬(∃ȳ1
i β

1
i), (13)

where ∃x̄1 α1 ∈ A1, α2 ∈ A2, ∃ȳ1
i β

1
i ∈ A1, all the α1 ∧α2 ∧β1

i are solved blocks
and all the β1

i are different from true.
Let α2∗ the formula α2 in which we remove the typing constraints which concern
the leaders of the equations of α1. Let us also transform the equations of
the numeric section of α1 and β1

i by moving to the right hand side the terms
containing variables that are not leaders (see Property 6.1.6). The precedent
formula is equivalent in T to

∃x̄1 α1 ∧ α2∗ ∧
∧
i∈I

¬(∃ȳ1
i β

1
i), (14)

where the equations of the numeric section of α1 (respectively β1
i) have distinct

left hand sides that have no occurrences in other right hand sides of equations
of the numeric section of α1 (respectively β1

i). This is due to the fact that
∃x̄1α1 ∈ A1 and ∃ȳ1

i β
1
i ∈ A1 thus α1 and β1

i are solved. Since ∃ȳ1
i β

1
i ∈ A1 then

β1
i is a solved block, thus it is consistent and different from false. Moreover

since β1
i are different from true then each β1

i has at least a variable. According
to the definition of A1 all the variable of ȳ1

i are reachable and thus there exists
at least a free variable in each β1

i according to the definition of the reachable
variables. Since α1 ∧ α2∗ ∧ β1

i are solved blocks then they are consistent and
thus there exists an instantiation of ∃x̄1 α1 ∧ α2∗ such that this instantiated
formula is true in M (Property 6.1.10), thus according to Property 6.1.8 there
exists an infinite instantiations of the variables of α2∗ which make it true in M
(and not zero because there exists at least an instantiation since the blocks are
solved). For each value of these instantiations and for all instantiation of right
hand sides of the equations of the numeric section of α1, there exists a value
for the leaders of these equations because the leaders of the equations of α1 do
not occur in α2∗ (α1 ∧α2 ∧ β1

i are solved blocks). For each of these values and
instantiations of the variables of the equations of the tree section of α1 which
are not leaders, there exists a value for the leaders of these equations (axiom 3).
Then there exists an infinite instantiations of the free variables of ∃x̄1 α1 ∧ α2

which make the instantiated formula true in M . Let us show now that there
exists from this infinite instantiation, an instantiation which makes false each
formula of the form ∃ȳ1

i β
1
i and thus make true ϕ′′. In each sub-formula of

the form ∃ȳ1
i β

1
i the leaders of the equations of the numeric section of β1

i do not
occur in the equations and inequations of α1∧α2 because α1∧α2∧β1

i are solved
blocks. Since for each instantiation of the right hand sides of the equations of

24

the numeric section of β1
i there exists a value for the leaders. Thus it is enough

to choose a different value to these leaders to make false all the ∃ȳ1
i β

1
i . This is

possible because the domain M is infinite and more exactly Q is infinite. For
each instantiation of the variables which are not leaders in the tree section of
β1

i there exists a unique value for the leaders thus it is enough to take another
value to make false all the ∃ȳ1

i β
1
i . This is possible because the domain of the

trees is infinite and more exactly the set of the function symbols of F is infinite.
Thus there exists an instantiation which make true ∃x̄1α1 ∧ α2 and false each
sub-formula of the form ∃ȳ1

i β
1
i . Thus this instantiation is the formula ϕ′′.

Property 4.1.6 Every general solved formula is equivalent in T to a boolean
combination of formulas of the form ∃x̄1α1 ∧ α2, with ∃x̄1 ∈ A1 and α2 ∈ A2,
which do not accept elimination of quantifiers.

Proof E ach general solved formula∨
i∈I

(∃x̄iα
c
i ∧

∧
j∈Ji

¬(∃ȳijβ
c
ij)) (15)

where the βc
ij are different from true, is extracted from a final working formula

¬7(∃εtrue
∧
i∈I

¬8(∃x̄iα
c
i ∧ α

p
i ∧

∧
j∈Ji

¬9(∃ȳijβ
c
ij ∧ β

p
ij))

By the conditions of ¬8, we have αp
i = true and all the variables of x̄i are

reachable in ∃x̄iα
c
i . Also by these conditions, ∃x̄iα

c
i is decomposed in T into

∃x̄iαc1i ∧ αc2
i , with ∃x̄iαc1i ∈ A1 and αc2

i ∈ A2.
By the conditions of ¬9, we have βp

ij = αc
i ∧ α

p
i = αc

i , β
c
ij ∧ β

p
ij are solved

blocks and ∃ȳijβ
c
ij is in A1. We deduce then βc

ij ∧ αc
i are solved blocks. Since

each variable in x̄i is reachable in ∃x̄iα
c
i , it remains reachable in ∃x̄iȳijα

c
i ∧ βc

ij .
Since each variable y in ȳij is reachable in ∃ȳijβ

c
ij , there exists two possible

cases: (1) y is reachable without using variables in x̄i, in this case, y remains
reachable in ∃x̄iȳijα

c
i ∧ βc

ij , and (2) y is reachable using variables in x̄i, in this
case, since all variables in x̄i are reachable in ∃x̄iȳijα

c
i ∧ βc

ij , y is still reachable
in this formula.

In consequence, the formulas ∃x̄iȳijα
c
i∧βc

ij can be decomposed into ∃x̄iȳijα
c1
i ∧

βc
ij ∧ αc2

i , with ∃x̄iȳijα
c1
i ∧ βc

ij ∈ A1 and αc2
i ∈ A2.

According to Property 6.1.5, the formula (15) is equivalent in T to the
formula ∨

i∈I

((∃x̄iα
c
i) ∧

∧
j∈Ji

¬(∃x̄iȳijα
c
i ∧ βc

ij))

We have proved that each quantified conjunction is of the form ∃x̄1α1 ∧ α2

where x̄1α1 ∈ A1 and α2 ∈ A2. This property is then proved.

Property 4.3.1Every repeated application of the precedent rewriting rules on
an inital working formula terminates and produces a final working formula
equivalent to the inital formula in T and without new free variables.

25

Proof T he proof is divided into three main sub-proofs: (1) every repeated
application of the rules on an initial working formula terminates, (2) all the
rules are correct, i.e. in each rule, the left-hand side formula is equivalent in
T to the right-hand side one and (3) at the end of the rules’ application, the
eventual formula is in the final working form.

Every application of the rules terminates Let us observe that the rules
1 to 7 are applied on a sub-working formula with ¬1 and do not change the
negation symbols, as well as the rules 8 to 14 are applied on a sub-working
formula with ¬4. Thus we can divide the proof of termination into three parts:
(1) every application of the rules 1 to 7 on a sub-working formula with ¬1

terminates, (2) every application of the rules 8 to 14 on a sub-working formula
with ¬4 terminates and (3) having considered the terminations of the rules 1
to 7 and 8 to 14, every application of the rules 15 to 28 terminates.

Let us prove that every application of the rules 1 to 7 on a sub-working
formula with ¬1(∃x̄α∧ϕ) terminates. Since the variables of V are ordered by a
total strict order �, we can associate to each variable x an integer no(x), such
that x � y if and only if no(x) > no(y). We consider three following integers:

• n1 the number of equations of the form x = fy1...yn in α,

• n2 the sum of no(x) for all occurrences of all variables x in α,

• n3 the number of equations of the form y = x with x � y in α.

We will show that each application of each rule decreases an ni but keeps all
other nj with j < i unchanged. Indeed, n1 is decreased by the rule 2 and 5,
n2 is decreased by the rules 1, 3, 6 and 7, and n3 is decreased by the rule 4.
Since n1, n2 and n3 are integers, they cannot be decreased infinitely. Thus any
application of the rules 1 to 7 terminates.

Let us prove that every application of the rules 8 to 14 on a sub-working
formula with ¬4 terminates. This is quite evident, since the rules 8 to 12 put
the equations or inequations into the right form, and the rules 13 and 14 remove
a double occurrence of the variable xk by setting its coefficient to zero.

Having considered the terminations of the rules 1 to 7 and 8 to 14, let
us prove now that every application of the rules 15 to 28 terminates. Let us
prove that any application of the rules in the first step terminates. This step
concerns the rules 15 to 24. We can see that starting with an initial working
formula ¬6(∃εtrue ∧ ϕ), where ϕ is a conjunction of working formula where
all the negation symbols are ¬0, the rule 24 is the only one can be applied.
With the application of 24, the first negation symbol is changed to ¬7 and the
next level ones are changed to ¬1. On the sub-working formula with ¬1, any
application of the rules 1 to 7 terminates, then the rule 15 changes ¬1 to ¬2.
We can see that on each sub-working formula ¬2, the rules 16, 17 and 18 can
be applied at most once for each variable in αc ∧ αp. The application of these
rules resets a sub-working formula with ¬2 to ¬1, but an application of the rules
1 to 18 cannot be infinite, since no new variable is added. Any application of
the rules 19 to 24 terminates also since each rule can be applied only once on

26

each sub-working formula. We then proved that the first step on a sub-working
formula always terminates.

In the second step, the rules 25 and 27 can be applied only once on a sub-
working formula. The termination of this step thus depends on the rules 26
and 28, which expand the length of working formulas. Concerning the rules 26,

¬7

[
∃x̄ αc ∧ αp ∧ ϕ∧
¬8(∃ȳβc ∧ βp)

]
=⇒

[
¬7(∃x̄ αc ∧ αp ∧ ϕ ∧ ¬9(∃ȳβc1 ∧ βp))∧∧

i∈I ¬1(∃x̄ȳβp ∧ βc1 ∧ βc2∗
i ∧ ϕ0)

]

we replace a sub-working formula containing a sequence ¬7¬8 by the same
working formula but with a sequence ¬7¬9 and by |I| working formulas (|I| is
finite as shown in the description of the rule). On each working formula of the
right-hand side formula, the conjunction ϕ0 contains one less element than the
left-hand side formula of the rule. It is true that the working formulas in this∧

i∈I are became ¬1, that is the first step must be redone on these ones, but
we have proved that the first step always terminates. Thus on one sub-working
formula, the rule 26 cannot be applied infinitely.

With the same reasoning, in the rule 28

¬7


∃x̄ αc ∧ αp ∧ ϕ∧

¬8

 ∃ȳ βc ∧ βp∧∧
i∈I

¬9(∃z̄i γc
i ∧ γ

p
i)


 =⇒

 ¬7(∃x̄ αc ∧ αp ∧ ϕ ∧ ¬8(∃ȳ βc ∧ βp))∧∧
i∈I

¬6(∃x̄ȳz̄i δc
i ∧ δ

p
i ∧ ϕ0)


we replace a sub-working formula containing a sequence ¬7¬8¬9 by the same
but with a sequence ¬7¬8 and by |I| (finite) sub-working formulas. On each
sub-working formula of the right-hand side formula, the conjunction ϕ0 contains
one less element than the left-hand side formula of the rule. On the sub-working
formulas of

∧
i∈I , the first step must be redone but it terminates. The rules

28 can be reapplied, but after a while, the left-hand side formula will have the
depth less than or equal to 2, so that the 28 cannot be applied anymore.

We can see that even the rules 26 and 28, while being applied on a sub-
working formula, expand the length of the formula, but after an finite number
of applications, the working formula will have the depth less than or equal to 2.
Thus these rules cannot be applied infinitely. We then proved that the second
step terminates, thus any application of the rules terminates.

The rules are correct The rules 1..12 are evident in T and deduced directly
from the axiomatization of T . The rule 13 and 14 are the properties of the
theory of the rational numbers section of the axiomatization of T . These two
properties are well known we will not prove its again. The other rules are much
less obvious and need some formal proofs.

In the rule 15, since the tree-section of αc ∧ αp is formatted and there is
no sub-formula in αc ∧ αp of the form num x ∧ tree x, the symbol ¬1 can be
changed to ¬2.

In the rule 16, since num z is a consequence of αc ∧ αp, we have αc ∧ αp is
equivalent to αc ∧ αp ∧ num z. This rule is then correct. In the same way, we
prove that the rules 17 and 18 are correct.

27

In the rule 20, Since the numeric-section of αc ∧ αp is inconsistent then
αc ∧ αp is equivalent to false, this rule is then correct.

The rules 19, 21 and 22 are correct because their conditions ensure that the
number of the first negation symbol can be changed.

In the rule 27

¬7(∃x̄ αc ∧ αp ∧ ϕ ∧ ¬9(∃εtrue ∧ βp)) =⇒ true

by the definition of ¬9, βp is the formula αc∧αp. This rule is evidently correct.
Correction of rule 23: description:

¬7

[
∃x̄ αc ∧ αp ∧ ϕ∧
¬5(∃ȳ βc ∧ βp ∧ ψ)

]
=⇒ ¬7

[
∃x̄ αc ∧ αp ∧ ϕ∧
¬6(∃ȳ γc ∧ γp ∧ ψ)

]

γc is obtained from βc as follows: for all variable x ∈ var(βc), we add all the
relations num x or tree x which are in βp but not in βc, and for all the variables
y which do not occur in an equation or inequation of βc we remove all relation
num y or tree y which are both in βc and βp. The formula γp is the formula
αp ∧ αc.

Proof: Since no typing constraint is removed from βp, we have βc ∧ βp is
equivalent to γc ∧ βp. Let βp

t the tree-section and βp
n the numeric-section of

βp. Let αcp
t the tree-section and αcp

n the numeric-section of αc ∧ αp. By the
conditions of ¬5, αcp

t and βp
t have the same left hand side variables. Let us

observe that by the propagation and since the rule 14 does not change the
numeric-section of βp, we have αcp

n = βp
n. According to the properties of ¬5, we

have T |= βc ∧ βp → αc ∧ αp. We have then

T |= γc ∧ βp → γc ∧ αc ∧ αp

and
T |= γc ∧ βp

t ∧ βp
n → γc ∧ αcp

t ∧ αcp
n

and
T |= γc ∧ βp

t ∧ αcp
n → γc ∧ αcp

t ∧ αcp
n

Since the tree-section of γc ∧ βp
t and the tree-section of γc ∧ αcp

t have the same
left hand side variable, according to Property 6.1.14, we have

T |= γc ∧ βp
t ∧ αcp

n ↔ γc ∧ αcp
t ∧ αcp

n

then
T |= βc ∧ βp ↔ γc ∧ αc ∧ αp

Since γp = αc ∧ αp, the rule 23’s correction is then proved.
Correction of rule 24: description:

¬6

[
∃x̄ αc ∧ αp∧∧

i ¬0(∃ȳiβ
c
i ∧ β

p
i ∧ ϕi)

]
=⇒ ¬7

[
∃x̄1x̄2 αc1 ∧ αc2 ∧ αp∧∧

i ¬1(∃ȳix̄
3γc

i ∧ γ
p
i ∧ ϕi)

]

with γc
i = βc

i ∧ αc3 and γp
i = βp

i ∧ αc1 ∧ αc2 ∧ αp.

28

Proof: According to Definition 4.1.3 of the working formula, since we have
¬6 then the condition 6 of Definition 4.1.3 holds then βp

i = αc ∧ αp. Thus the
left-hand side of this rule is equivalent in T to

¬(∃x̄ αc ∧ αp ∧
∧
i

¬(αc ∧ αp ∧ (∃ȳiβ
c
i ∧ ϕi)))

Which is equivalent in T after distribution and simplification to

¬(∃x̄ αc ∧ αp ∧
∧
i

¬(∃ȳiβ
c
i ∧ ϕi))

According to Property 6.1.13 the precedent formula is equivalent in T to

¬(αp ∧ (∃x̄ αc ∧
∧
i

¬(∃ȳiβ
c
i ∧ ϕi)))

According to Definition 4.1.3 of the working formula, since we have ¬6 then
the conditions 4,5,6 of Definition 4.1.3 hold then the formula ∃x̄αc can be
decomposed in T according to Definition 3.2 and Property 3.2 . Thus the
precedent formula is equivalent in T to

¬(αp ∧ (∃x̄1αc1 ∧ (∃x̄2αc2 ∧ (∃x̄3αc3 ∧
∧
i

¬(∃ȳiβ
c
i ∧ ϕi)))))

with T |= ∀x̄2αc2 → ∃!x̄3αc3. According to Property 6.1.1, the precedent
formula is equivalent in T to

¬(αp ∧ (∃x̄1αc1 ∧ (∃x̄2αc2 ∧
∧
i

¬(∃x̄3ȳi α
c3 ∧ βc

i ∧ ϕi))))

which is equivalent in T to

¬(∃x̄1x̄2 αc1 ∧ αc2 ∧ αp ∧
∧
i

¬(∃x̄3ȳi α
c3 ∧ βc

i ∧ αc1 ∧ αc2 ∧ αp ∧ ϕi))))

Thus this rule is then correct and the ¬k are correct.
Correction of rule 25 description:

¬7

[
∃x̄ αc ∧ αp∧∧

i∈I ¬9(∃ȳiβ
c
i ∧ β

p
i)

]
=⇒ ¬8

[
∃x̄1αc1 ∧ αc2∗ ∧ αp∧∧

i∈I′ ¬9(∃ȳiβ
c
i ∧ β

p∗
i)

]

where I ′ is the set of i ∈ I such that βc
i does not contain occurrences of any

variables in x̄2. The formula αc2∗ is such that T |= (∃x̄2αc2) ↔ αc2∗ and is
computed using the Fourier quantifier elimination. The propagated-constraint
section βp∗

i = αc1 ∧ αc2∗ ∧ αp.
Proof: According to Definition 4.1.3 of the working formula, since we have

¬9 then the condition 6 of Definition 4.1.3 holds then βp
i = αc ∧ αp. Thus the

left-hand side of this rule is equivalent in T to

¬(∃x̄ αc ∧ αp ∧
∧
i

¬(αc ∧ αp ∧ (∃ȳiβ
c
i ∧ ϕi)))

29

Which is equivalent in T after distribution and simplification to

¬(∃x̄ αc ∧ αp ∧
∧
i

¬(∃ȳiβ
c
i ∧ ϕi))

According to Property 6.1.13 the precedent formula is equivalent in T to

¬(αp ∧ (∃x̄ αc ∧
∧
i

¬(∃ȳiβ
c
i ∧ ϕi)))

According to Definition 4.1.3 of the working formula, since we have ¬7 then
the conditions 4,5,6,7 of Definition 4.1.3 hold then the formula ∃x̄αc can be
decomposed in T according to Definition 3.2, Property 3.2 and ∃x̄3αc3 = ∃εtrue.
Thus the precedent formula is equivalent in T to

¬(αp ∧ (∃x̄1αc1 ∧ (∃x̄2αc2 ∧
∧
i

¬(∃ȳiβ
c
i ∧ ϕi))))

Let us denote by I1, the set of the i ∈ I such that x2
n does not have free

occurrences in the formula ∃ȳ1
i β

c1
i , thus, the preceding formula is equivalent in

T to

¬(αp ∧ (∃x̄1αc1 ∧ αp ∧ (∃x2
1...∃x2

n−1

[
(
∧

i∈I1 ¬(∃ȳ1
i β

c1
i))∧

(∃x2
n α

c2 ∧
∧

i∈I−I1 ¬(∃ȳc1
i β

c1
i))

]
))). (16)

According to Property 6.1.4, Property 6.1.7 and Property 6.1.8, the formula
(16) is equivalent in T to

¬(αp ∧ (∃x̄1α1 ∧ αp ∧ (∃x2
1...∃x2

n−1

[
(
∧

i∈I1 ¬(∃ȳ1
i β

c1
i))∧

(∃x2
n α

c2)

]
))). (17)

According to Property 6.1.9 there exists αc2
n ∈ A2 such that T |= (∃x2

n α
c2) ↔

αc2
n thus the preceding formula is equivalent in T to

¬(αp ∧ (∃x̄1αc1 ∧ αp ∧ (∃x2
1...∃x2

n−1((
∧
i∈I1

¬(∃ȳ1
i β

c1
i)) ∧ αc2

n)))). (18)

thus to

¬(αp ∧ (∃x̄1αc1 ∧ αp ∧ (∃x2
1...∃x2

n−1 α
c2
n ∧

∧
i∈I1

¬(∃ȳ1
i β

c1
i)))). (19)

By repeating the four preceding steps (n− 1) times and by denoting by Ik the
set of the i ∈ Ik−1 such that x2

(n−k+1) does not have free occurrences in ∃ȳ1
i β

c1
i ,

the preceding formula is equivalent in T to the following wnfv formula

¬(αp ∧ (∃x̄1αc1 ∧ αc2
1 ∧ αp ∧

∧
i∈In

¬(∃ȳ1
i β

c1
i))),

which is equivalent in T to

¬(∃x̄1αc1 ∧ αc2
1 ∧ αp ∧

∧
i∈In

¬(∃ȳ1
i β

c1
i ∧ αc1 ∧ αc2

1 ∧ αp)),

30

Thus the rule 25 is correct in T .
Correction of rule 26 description:

¬7

[
∃x̄ αc ∧ αp ∧ ϕ∧
¬8(∃ȳβc ∧ βp)

]
=⇒

[
¬7(∃x̄ αc ∧ αp ∧ ϕ ∧ ¬9(∃ȳβc1 ∧ βp))∧∧

i∈I ¬1(∃x̄ȳβp ∧ βc1 ∧ βc2∗
i ∧ ϕ0)

]

ϕ is such that every negation symbol ¬k has k ≥ 6, ϕ0 is obtained from ϕ by
replacing all occurrences of ¬k by ¬0 and all propagated-constraint sections by
true. Let β2 the formula obtained from βc2 by removing the multiple occur-
rences of typing constraints and for all the variables y which do not occur in an
inequation of βc2 we remove all relation num y or tree y which are both in βc1

and βc2. If β2 is the formula true then I = ∅, otherwise the βc2∗
i with i ∈ I are

obtained from β2 as follows: Since β2 ∈ A2 then it is of the form.[
(
∧

`∈L num z`) ∧ (
∧

k∈K tree vk)∧
((

∧
j∈J

∑n
i=1 aijxi < a0j) ∧

∧n
m=1 num xm)

]
,

thus ¬β2 is of the form(
∨

`∈L tree z`) ∨ (
∨

k∈K num vk) ∨ (
∨n

m=1 tree xm)∨∨
j∈J((

∑n
i=1 aijxi = a0j1 ∧

∧n
m=1 num xm)∨

(
∑n

i=1(−aij)xi < (−a0j)1 ∧
∧n

m=1 num xm))


Each element of this disjunction is a block and represents a formula βc2∗

i . Of
course we have T |= (¬β2) ↔

∨
i β

c2∗
i .

Proof: By the definition of ¬8, ∃ȳβc is decomposable into ∃ȳβc1 ∧ βc2 with
∃ȳβc1 ∈ A1. By the description of the rule, let β2 be the formula obtained from
βc2 by removing the multiple occurrences of typing constraints and for all the
variables y which do not occur in an inequation of βc2 we remove all relation
num y or tree y which are both in βc1 and βc2. The left-hand side formula of
the rule is equivalent to the formula

¬(∃x̄αc ∧ αp ∧ ϕ ∧ ¬(∃ȳβp ∧ βc1 ∧ β2))

According to the definition of A1, to Property 6.1.5, we have T |= ∃?ȳβc1

then T |= ∃?ȳβc1 ∧ βp. According to Property 6.1.2, the precedent formula is
equivalent to

¬(∃x̄αc ∧ αp ∧ ϕ ∧ ¬(∃ȳβp ∧ βc1)) ∨ ¬(∃x̄ȳβp ∧ βc1 ∧ ¬β2 ∧ ϕ)

The formula ¬β2 is equivalent to a disjunction
∨

i∈I β
c2∗
i (see descriptions of this

rule). By making a distribution of
∨

over ∧, the precedent formula is equivalent
to

¬(∃x̄αc ∧ αp ∧ ϕ ∧ ¬(∃ȳβp ∧ βc1)) ∧
∧
i∈I

¬(∃x̄ȳβp ∧ βc1 ∧ βc2∗
i ∧ ϕ)

The sub-formula ¬(∃ȳβp ∧ βc1) verifies the conditions of ¬9. Let us consider
the occurrences of ϕ inside

∧
i. Since in ϕ, each negation symbol ¬k has k ≥ 6,

by applying Property 6.1.13 from the most nested sub-working formulas of ϕ
to ϕ itself, all the propagated-constraint sections can be removed and replaced

31

by true. All symbol ¬k in theses occurrences of ϕ can be then replaced by ¬0.
This formula is then the right-hand side formula of the rule. The correction of
this rule is proved.

Correction of rule 28 description:

¬7


∃x̄ αc ∧ αp ∧ ϕ∧

¬8

 ∃ȳ βc ∧ βp∧∧
i∈I

¬9(∃z̄i γc
i ∧ γ

p
i)


 =⇒

 ¬7(∃x̄ αc ∧ αp ∧ ϕ ∧ ¬8(∃ȳ βc ∧ βp))∧∧
i∈I

¬6(∃x̄ȳz̄i δc
i ∧ δ

p
i ∧ ϕ0)



I 6= ∅, ϕ is such that every negation symbol ¬k has k ≥ 6, ϕ0 is obtained from ϕ
by replacing all occurrences of ¬k by ¬0 and all propagated-constraint sections
by true. The formula δp

i = αp, δc
i = γc

i ∧ βc ∧ αc.
Proof: By the definitions of ¬8 and ¬9, we have βp = αc ∧ αp and γp =

αc ∧αp ∧βc. The left hand side formula of the rule is equivalent to the formula

¬(∃x̄αc ∧ αp ∧ ϕ ∧ ¬(∃ȳβc ∧
∧
i∈I

¬(∃z̄iγc
i))) (20)

Also by the definition of ¬9, all variables of ȳ are reachable in ∃ȳβc. According
to Property 6.1.5, we have T |= ∃?ȳβc. According to Property 6.1.2, the formula
(20) is equivalent in T to

¬((∃x̄αc ∧ αp ∧ ϕ ∧ ¬(∃ȳβc)) ∨
∨
i∈I

(∃x̄ȳz̄iγc
i ∧ βc ∧ αc ∧ αp ∧ ϕ))

This formula is equivalent to the formula

¬(∃x̄αc ∧ αp ∧ ϕ ∧ ¬(∃ȳβc ∧ αc ∧ αp)) ∧
∧
i∈I

¬(∃x̄ȳz̄iγc
i ∧ βc ∧ αc ∧ αp ∧ ϕ)

Having βp = αc ∧ αp, δp
i = αp and δc

i = γc
i ∧ βc ∧ αc, the formula ¬(∃ȳβc ∧ βp)

satisfies the conditions of ¬9. Let us consider the occurrences of ϕ inside
∧

i.
Since in ϕ, each negation symbol ¬k has k ≥ 6, by applying Property 6.1.13
from the most nested sub-working formulas of ϕ to ϕ itself, all the propagated-
constraint sections can be removed and replaced by true. All symbol ¬k in
theses occurrences of ϕ can be then replaced by ¬0. Giving each negation an
appropriate number, we obtain the right-hand side formula of the rule. The
correction of this rule is proved.

At the end of the rules’ application, the eventual formula is in the
final working form Recall that the application of the rules starts with an
initial working formula ¬6(∃ε true ∧

∧
i∈I ϕi), where in ϕi all the negation sym-

bols are ¬0. In this situation, the only rule which can be applied is the rule 24.
With this rule, the top-down step of simplification and propagation is started
and is done by the rules 1 to 24. This step is done on a sub-working formula
independently from the transformation of the other sub-working formulas. At
the end of this step on a sub-working formula ϕ, the obtained sub-working
formula ϕ′ is such that all negation symbols are ¬7.

32

The rule 25

¬7

[
∃x̄ αc ∧ αp∧∧

i∈I ¬9(∃ȳiβ
c
i ∧ β

p
i)

]
=⇒ ¬8

[
∃x̄1αc1 ∧ αc2∗ ∧ αp∧∧

i∈I′ ¬9(∃ȳiβ
c
i ∧ β

p∗
i)

]

with I = ∅ can be applied on the most embedded sub-formulas of ϕ′. It changes
the negations ¬7 of this level to ¬8. The rule 26 thus can be applied

¬7

[
∃x̄ αc ∧ αp ∧ ϕ∧
¬8(∃ȳβc ∧ βp)

]
=⇒

[
¬7(∃x̄ αc ∧ αp ∧ ϕ ∧ ¬9(∃ȳβc1 ∧ βp))∧∧

i∈I ¬1(∃x̄ȳβp ∧ βc1 ∧ βc2∗
i ∧ ϕ0)

]

and it changes a sequence ¬7¬8 to ¬7¬9. This rule creates a conjunction of
working formulas with ¬1, on which the first step is restarted. Concerning the
sequence ¬7¬9, the rule 27 can be applied

¬7(∃x̄ αc ∧ αp ∧ ϕ ∧ ¬9(∃εtrue ∧ βp)) =⇒ true

or the rule 25 can be reapplied, in the last case the formula is changed to ¬8¬9.
Let us observe that if the most embedded level has the symbol ¬9, then the
immediate embedding level must have the symbol ¬8 and the others embedding
levels must have the symbol ¬7. If the symbol ¬7 of the embedding formula is
not the first symbol of the general working formula, the rule 28 can be applied,
which remove one embedded level ¬9

¬7


∃x̄ αc ∧ αp ∧ ϕ∧

¬8

 ∃ȳ βc ∧ βp∧∧
i∈I

¬9(∃z̄i γc
i ∧ γ

p
i)


 =⇒

 ¬7(∃x̄ αc ∧ αp ∧ ϕ ∧ ¬8(∃ȳ βc ∧ βp))∧∧
i∈I

¬6(∃x̄ȳz̄i δc
i ∧ δ

p
i ∧ ϕ0)


This rule cannot be applied on the first level of the working formula. Thus in
case of the symbol ¬7 being the first symbol of the working formula, a part of
this formula is of the form ¬7¬8¬9.

This procedure is repeated with the other parts, at the end, we obtain a
working formula of the form

¬7(∃ε true ∧
∧
i∈I

¬8(∃x̄i α
c
i ∧ α

p
i ∧

∧
j∈Ji

¬9(∃ȳij β
c
ij ∧ β

p
ij))),

which is a final working formula.

Property 4.4.2 Every formula is equivalent in T either to true or to false or
to a disjunction of general solved formulas, which has at least one free variable
and which is equivalent neither to true nor to false in T .

Proof L et ϕ be a formula. According to Property 4.3.1 the formula ϕ is
equivalent in T to a final working formula φ i.e. to a disjunction of general
solved formulas. If this disjunction is empty then φ is the formula false thus
T |= ¬ϕ. If the disjunction is not empty two cases arise:

• the disjunction φ contains at least a general solved formula φi without
free variables then according to Property 4.1.5 φi is the formula true then
according to the third point of our algorithm section 4.4 the formula φ is
reduced to true and thus T |= ϕ.

33

• the disjunction φ does not contain general solved formulas without free
variables, then according to Property 4.1.5 each of these general solved
formulas are neither equivalent to true nor to false thus neither T |= ϕ
nor T |= ¬ϕ.

Thus, in the particular case where ϕ has no free variables one at least of these
properties holds: T |= ϕ, T |= ¬ϕ and since T has at least a model [10] we have
either T |= ϕ or T |= ¬ϕ. Thus T is complete.

34

