Skip to main content

Enhancing a Reconfigurable Instruction Set Processor with Partial Predication and Virtual Opcode Support

  • Conference paper
Reconfigurable Computing: Architectures and Applications (ARC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3985))

Included in the following conference series:

Abstract

A previously proposed Reconfigurable Instruction Set Processor (RISP) architecture, which tightly couples a coarse-grain Reconfigurable Functional Unit (RFU) to a RISC processor, is considered. Two architectural enhancements, namely partial predicated execution and virtual opcode are presented. An automated development framework for the introduced architecture is proposed. In order to evaluate both the architecture and the development framework a complete MPEG-2 encoder application is used. The efficiency of the predicated execution is proved and impressive speedup of the application is produced. Also, the use of virtual opcode to alleviate the opcode space explosion is demonstrated.

This work was supported by PENED 2003 programme of the General Secretariat for Research and Technology of Greece and the European Union.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. DeHon, A., Wawrzynek, J.: Reconfigurable Computing: What, Why, and Implications for Design Automation. In: DAC 1999, pp. 610–615 (1999)

    Google Scholar 

  2. Vassiliadis, N., Kavvadias, N., Theodoridis, G., Nikolaidis, S.: A RISC Architecture Extended by an Efficient Tightly Coupled Reconfigurable Unit. In: ARC 2005, pp. 41–49 (2005)

    Google Scholar 

  3. Mahlke, S., Hank, R., McCormick, J., August, D., Hwu, D.: A comparison of full and partial predicated execution support for ILP processors. In: ISCA 1995, pp. 138–150 (1995)

    Google Scholar 

  4. Callahan, T.J., Hauser, J.R., Wawrzynek, J.: The Garp Architecture and C Compiler. IEEE Computer 33(4), 62–69 (2000)

    Article  Google Scholar 

  5. Gokhale, M.B., Stone, J.M.: NAPA C: Compiling for a Hybrid RISC/FPGA Architecture. In: FCCM 1998, p. 126 (1998)

    Google Scholar 

  6. Vassiliadis, S., Wong, S., Gaydadjiev, G., Bertels, K., Kuzmanov, G., Moscu Panainte, E.: The MOLEN Polymorphic Processor. IEEE Trans. on Computers 53(11), 1363–1375 (2004)

    Article  Google Scholar 

  7. Miyamori, T., Olukotun, K.: REMARC: Reconfigurable Multimedia Array Co-Processor. IEICE Trans. Information Systems E82-D(2), 389–397 (1999)

    Google Scholar 

  8. Goldstein, S.C., Schmit, H., Moe, M., Budiu, M., Cadambi, S., Taylor, R., Laufer, R.: Piperench: A Coprocessor for Streaming Multimedia Acceleration. In: ISCA 1999, pp. 28–39 (1999)

    Google Scholar 

  9. Razdan, R., Smith, M.D.: A High-Performance Microarchitecture with Hardware-Programmable Functional Units. MICRO 27, 172–180 (1994)

    Google Scholar 

  10. Ye, Z.A., Shenoy, N., Baneijee, P.: A C compiler for a Processor with a Reconfigurable Functional Unit. In: FPGA 2000, pp. 95–100 (2000)

    Google Scholar 

  11. La Rosa, A., Lavagno, L., Passerone, C.: Software Development for High-Performance, Reconfigurable, Embedded Multimedia Systems. IEEE Design and Test of Computers 22(1), 28–38 (2005)

    Article  Google Scholar 

  12. Machine-SUIF research compiler, See website: http://www.eecs.harvard.edu/hube/research/machsuif.html

  13. Kavvadias, N., Nikolaidis, S.: Automated Instruction-Set Extension of Embedded Processors with Application to MPEG-4 Video Encoding. In: ASAP 2005, pp. 140–145 (2005)

    Google Scholar 

  14. Alippi, C., Fornaciari, W., Pozzi, L., Sami, M.: A DAG Based Design Approach for Reconfigurable VLIW Processors. In: DATE 1999, pp. 778–779 (1999)

    Google Scholar 

  15. Optimization Passes for Machine Suif, See website: http://lapwww.epfl.ch/dev/machsuif/opt_passes/

  16. Lee, C., Potkonjak, M., Mangione-Smith, W.H.: MediaBench: A Tool for Evaluating and Synthesizing Multimedia and Communications Systems. In: MICRO, pp. 330–335 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vassiliadis, N., Theodoridis, G., Nikolaidis, S. (2006). Enhancing a Reconfigurable Instruction Set Processor with Partial Predication and Virtual Opcode Support. In: Bertels, K., Cardoso, J.M.P., Vassiliadis, S. (eds) Reconfigurable Computing: Architectures and Applications. ARC 2006. Lecture Notes in Computer Science, vol 3985. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11802839_30

Download citation

  • DOI: https://doi.org/10.1007/11802839_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36708-6

  • Online ISBN: 978-3-540-36863-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics