
Formal Verification of Infinite State Systems Using Boolean Methods∗

Randal E. Bryant
Carnegie Mellon University
School of Computer Science
Pittsburgh, PA 15213 USA
Randy.Bryant@cs.cmu.edu

Abstract

The UCLID project seeks to develop formal verification
tools for infinite-state systems having a degree of automa-
tion comparable to that of model checking tools for finite-
state systems. The UCLID modeling language describes
systems where the state variables are Booleans, integers,
and functions mapping integers to integers or Booleans.
The verifier supports several forms of verification for prov-
ing safety properties. They rely on a decision procedure that
translates a quantifier-free formula into an equi-satisfiable
Boolean formula and then applies a Boolean satisfiability
solver. UCLID has successfully verified a number of hard-
ware designs and protocols.

Most successful automated formal verification tools are
based on a bit-level model of computation, where a set of
Boolean state variables encodes the system state. Using
powerful inference engines, such as Binary Decision Dia-
grams (BDDs) and Boolean satisfiability (SAT) checkers,
symbolic model checkers and similar tools can analyze all
possible behaviors of very large, finite-state systems.

For many hardware and software systems, we would like
to go beyond bit-level models to handle systems that are
truly infinite state, or that are better modeled as infinite-state
systems. Examples include programs manipulating integer
data, concurrency protocols involving arbitrary numbers of
processes, and systems containing buffers where the sizes
are described parametrically.

Historically, much of the effort in verifying such sys-
tems involved automated theorem provers, requiring con-
siderable guidance and expertise on the part of the user. We
would like to devise approaches for these more expressive
system models that retain the desirable features of model
checking, such as the high degree of automation and the
ability to generate counterexamples.

We have developedUCLID [1], a prototype verifier for

∗This research was supported by the Semiconductor Research Corpo-
ration, Contract RID 1029.001

infinite-state systems. TheUCLID modeling language ex-
tends that of SMV [9], a bit-level model checker, to include
state variables that are integers, as well as functions map-
ping integers to integers and integers to Booleans. Func-
tional state variables can be used to define array and mem-
ory structures, including arrays of identical processes, FIFO
buffers, and content-addressable memories.

System operation is defined inUCLID in terms of the ini-
tial values and next-state functions of the state variables.
Integer operations include linear arithmetic and relational
operations. Functions can be defined using uninterpreted
function symbols, as well as via a restricted form of lambda
expression. The underlying logic is reasonably expressive,
yet it still permits a decision procedure that translates the
formula into propositional logic and then uses a SAT solver
[7].

UCLID supports multiple forms of verification, requiring
different levels of sophistication in the handling of quan-
tifiers. All styles verify that a safety property of the form
∀XP (s) holds for some set of system statess, whereX de-
notes a set of integerindex variables. Index variables can
be used to express universal properties for all elements in
an array of identical processes, all entries in a FIFO buffer,
etc.

The simplest form ofbounded property checkingallows
the user to determine that property∀XP (s) holds for all
states reachable within a fixed number of stepsk from an
initial state. Verifying such a property can be done by direct
application of the decision procedure. In practice, the effort
required to verify such a property grows exponentially ink,
limiting the verification to around 10–20 steps. However, it
provides a useful debugging tool. In our experience, most
errors are detected by this approach.

Of course, it is important to verify that properties hold
for all reachable states of the system. Unfortunately, the
standard fixed-point methods for bit-level model checking
do not work for infinite-state systems. In many cases, the
system will not reach a fixed point within a bounded num-
ber of steps. Even for those that do, checking convergence is



undecidable, and our efforts to implement incomplete meth-
ods for this task have had limited success [2].

To prove that property∀XP (s) holds for all reach-
able statess, UCLID supportsinductive invariantchecking,
where the user provides an invariantQ such thatQ holds
for all initial states,Q implies P , and any successor for a
state satisfyingQ must also satisfyQ. This latter condition
requires proving the validity of a formula containing exis-
tentially quantified index variables. Although this problem
is undecidable for our logic, we have successfully imple-
mented an incomplete approach using quantifier instantia-
tion [8].

A more automated technique is to derive an inductive
invariant viapredicate abstraction[4]. Predicate abstrac-
tion operates much like the fixed-point methods of symbolic
model checking, but using the concretization and abstrac-
tion operations of abstract interpretation [3] on each step.
We have generalized predicate abstraction to handle the in-
dexed predicates supported byUCLID [6]. Each step re-
quires quantifier elimination to eliminate the current state
variables, much like the relational product step of symbolic
model checking. We implement this step by performing
SAT enumeration on the translated Boolean formula.

As a final level of automation, we can automatically dis-
cover a set of relevant predicates for predicate abstraction
based on the propertyP and the next-state expressions for
the state variables [5].

We have successfully verified a number of systems with
UCLID, including out-of-order microprocessors, distributed
cache protocols, and distributed synchronization protocols.

References

[1] R. E. Bryant, S. K. Lahiri, and S. A. Seshia. Modeling
and verifying systems using a logic of counter arithmetic
with lambda expressions and uninterpreted functions. In
E. Brinksma and K. G. Larsen, editors,Computer-Aided Ver-
ification (CAV ’02), LNCS 2404, pages 78–92, 2002.

[2] R. E. Bryant, S. K. Lahiri, and S. A. Seshia. Convergence
testing in term-level bounded model checking. InCorrect
Hardware Design and Verification Methods (CHARME ’03),
LNCS, September 2003.

[3] P. Cousot and R. Cousot. Abstract interpretation : a unified
lattice model for the static analysis of programs by construc-
tion or approximation of fixpoints. InPrinciples of Program-
ming Languages (POPL ’77), pages 238–252, 1977.

[4] S. Graf and H. Saı̈di. Construction of abstract state graphs
with PVS. In O. Grumberg, editor,Computer-Aided Verifica-
tion (CAV ’97), LNCS 1254, pages 72–83, 1997.

[5] S. K. Lahiri and R. E. Bryant. Indexed predicate discovery
for unbounded system verification. InComputer-Aided Veri-
fication (CAV ’04), LNCS 3114, pages 135–147, 2004.

[6] S. K. Lahiri and R. E. Bryant. Indexed predicate abstraction.
ACM Transactions on Computational Logic, To appear.

[7] S. K. Lahiri and S. A. Seshia. The UCLID decision proce-
dure. InComputer-Aided Verification (CAV ’04), LNCS 3114,
pages 475–478, 2004.

[8] S. K. Lahiri, S. A. Seshia, and R. E. Bryant. Modeling and
verification of out-of-order microprocessors in UCLID. In
M. D. Aagaard and J. W. O’Leary, editors,Formal Methods
in Computer-Aided Design (FMCAD ’02), LNCS 2517, pages
142–159, 2002.

[9] K. McMillan. Symbolic Model Checking. Kluwer Academic
Publishers, 1992.


