
Computationally Equivalent

Elimination of Conditions

Traian Florin Şerbănuţă and Grigore Roşu

Department of Computer Science,
University of Illinois at Urbana-Champaign.

{tserban2,grosu}@cs.uiuc.edu

Abstract

An automatic and easy to implement transformation of conditional
term rewrite systems into computationally equivalent unconditional term
rewrite systems is presented. No special support is needed from the un-
derlying unconditional rewrite engine. Since unconditional rewriting is
more amenable to parallelization, our transformation is expected to lead
to efficient concurrent implementations of rewriting.

1 Introduction

Conditional rewriting is a crucial paradigm in algebraic specification, since it
provides a natural means for executing equational specifications. Many specifi-
cation languages, including CafeOBJ [DF98], ELAN [BCD+00], Maude [CDE+03],
OBJ [GWM+00], provide conditional rewrite engines to execute and reason
about specifications. It also plays a foundational role in functional logic pro-
gramming [Han94]. Conditional rewriting is, however, rather inconvenient to
implement directly. To reduce a term, a rewrite engine needs to maintain a con-
trol context for each conditional rule that is tried. Due to the potential nesting
of rule applications, such a control context may grow arbitrarily. The technique
presented in this paper automatically translates conditional rewrite rules into
unconditional rules, by encoding the necessary control context into data context.
The obtained rules can be then executed on any unconditional rewrite engine,
whose single task is to match-and-apply unconditional rules. Such a simplified
engine can be seen as a rewrite virtual machine, which can be even implemented
in hardware for increased efficiency, and our transformation technique can be
seen as a compiler. One can also simulate the proposed transformation as part
of the implementation of a conditional engine.

Experiments performed on two fast rewrite engines, Elan[BCD+00] and
Maude[CDE+03], show that performance increases can be obtained on current
engines if one uses the proposed transformation as a front-end. However, since

these rewrite engines are optimized for conditional rewriting, we expect signif-
icant further increases in performance if one just focuses on the much simpler
problem of developing optimized unconditional rewrite engines and use our tech-
nique. Moreover, one can focus on developing parallel rewrite machines without
worrying about conditions, which obstruct the potential for high parallelism.

On computational equivalence. Let us formalize the informal notion of
“computationally equivalent elimination of conditions”. Consider a conditional
term rewriting system (CTRS) R over signature Σ and an (unconditional) term
rewriting system (TRS) R′ over signature Σ′. Also, assume some mapping ϕ
from Σ-terms to Σ′-terms and some partial mapping ψ from Σ′-terms to Σ-terms
that is an inverse to ϕ (i.e., ψ(ϕ(s)) = s for any Σ-term s). ϕ can be thought
of as translating input terms for R into input terms for R′, while ψ as taking
results of rewritings in R′ into corresponding results for R. In other words, ϕ
and ψ can wrap a Σ′ rewrite engine into a Σ rewrite engine. Σ′-terms ϕ(s) are
called initial, while terms t′ with ϕ(s) →∗

R′ t′ are called reachable in R′. The
(partial) mapping ψ only needs to translate reachable Σ′-terms into Σ-terms.
Typically, ϕ and ψ are straightforward linear translators of syntax.
R′ is complete for R iff any reduction in R has some corresponding reduction

in R′: s →∗
R t implies ϕ(s) →∗

R′ ϕ(t). Completeness is typically easy to prove
but, unfortunately, has a very limited practical use; it only allows to disprove
reachability tasks in R by disproving corresponding tasks in R′. R′ is sound
for R iff any reduction in R′ of an initial term corresponds to some reduction
in R: ϕ(s)→∗

R′ t′ implies s→∗
R ψ(t′). The soundness of R′ allows to compute

partial reachability sets in R: applying ψ to all t′ reached from ϕ(s) in R′, we
get Σ-terms (not necessarily all) reachable from s in R. The soundness and
completeness of R′ gives a procedure to test reachability in the CTRS R using
any reachability analysis procedure for the TRS R′: s→∗

R t iff ϕ(s)→∗
R′ ϕ(t).

Soundness and completeness may seem the ideal properties of a transfor-
mation. Unfortunately, they do not yield the computational equivalence of the
original CTRS to (the wrapping of) the resulting TRS. By computational equiv-
alence of R′ to R we mean the following: if R is intended as a computational
engine, that is, if it terminates on a given term s admitting a unique normal
form t, then R′ also terminates on ϕ(s) and for any of its normal forms t′, we
have that ψ(t′) = t. In other words, the unconditional R′ can be used trans-
parently to perform computations for R. Example 3 shows that the soundness
and completeness of a transformation do not imply computational equivalence,
even if the original CTRS is confluent and terminates! Note that termination
of R is not required. Indeed, termination of the CTRS may be too restrictive
in certain applycations, e.g., in functional logic programming [ABH03].

On Termination. Rewriting of a given term in a CTRS may not terminate
for two reasons [Ros04]: the reduction of the condition of a rule does not termi-
nate, or there are some rules that can be applied infinitely often on the given
term. In rewrite engines, the effect in both situations is the same: the system

2

loops forever or crashes running out of memory. For this reason, we do not make
any distinction between the two cases, and simply call a Σ-rewriting system op-
erationally terminating [LMM05] on Σ-term s iff it always reduces s to a normal
form regardless of the order rules apply. Note that this notion is different from
effective termination [Mar96]; Example 6 shows a system that is confluent and
effectively terminating but not operationally terminating. Operational termi-
nation is based on the assumption that, in general, one cannot expect a rewrite
engine to be “smart” enough to pick the right rewrite sequence to satisfy a con-
dition. Formally, a CTRS R is operationally terminating on s if for any t, any
proof tree attempting to prove that s→∗

R t is finite. Operational termination is
equivalent to decreasingness for normal CTRSs (and with quasi-decreasingness
for deterministic CTRSs) [LMM05].

We give an automatic transformation technique of CTRSs into TRSs, taking
ground confluent normal CTRSs R into computationally equivalent TRSs R′.
This technique can be extended to more general CTRSs including ones with
extra variables in conditions (Section 6). Experiments show that the resulting
TRSs yield performant computational engines for the original CTRSs. On the
theoretical side, we show several results: the completeness of our transforma-
tion (Theorem 1); ground confluence (Theorem 2) or left linearity (Theorem
3) of R implies the soundness of R′; if R is left-linear, then ground confluence
of R implies ground confluence of R′ on reachable terms (Theorem 4) and op-
erational termination of R on s implies termination of R′ on ϕ(s) (Theorem
5); if R is finite, ground confluent and operationally terminating on s then R′
is ground confluent on reachable terms and terminating on ϕ(s) (Theorem 7).
The latter implies the computational equivalence of our transformation. Addi-
tionally, we show that left linearity and ground confluence of R′ on reachable
terms implies ground confluence of R (Proposition 6), and termination of R′
on reachable terms implies operational termination of R (Proposition 8); these
results potentially enable one to use confluence and/or termination techniques
on unconditional TRSs to show confluence and/or operational termination of
the original CTRS, but this was not our purpose and consequently have not
experimented with this approach.

Section 2 discusses previous transformations of CTRSs into TRSs. We only
focus on ones intended to be computationally equivalent and discuss their lim-
itations. Section 3 presents our transformation. Section 4 shows it at work
on several examples; some of these examples have been expiremented with on
two rewrite engines, Elan [BCD+00] and Maude [CDE+03], with promising per-
formance results. Section 5 is concern with the theoretical results. Section 6
discusses extensions of our transformation technique to more general CTRSs
(with extra variables in conditions and matching modulo equations). Finally,
Section 7 concludes the paper.

3

2 Previous transformations

Stimulated by the benefits of transforming CTRSs into equivalent TRSs, there
has been much research on this topic. Despite the apparent simplicity of most
transformations, they typically work for restricted CTRSs and their correct-
ness, when true, is quite involved. We focus on transformations that generate
TRSs intended to be transparently used to reduce terms or test reachability in
the original CTRSs. Significant efforts have been dedicated to transformations
preserving only certain properties, e.g., termination or confluence [Ohl02]; we
do not discuss these here. We use the following two examples to illustrate the
different transformations and to analyze their limitations.

Example 1 [Mar96, Ohl02]. The CTRS Rs will be used to test if a trans-
formation is sound and Rt to test if it preserves termination. Let Rs be the
CTRS

A→ h(f(a), f(b)) g(d, x, x)→ B
h(x, x)→ g(x, x, f(k)) f(x)→ x if x→ e

a→ c b→ c c→ e d→ m
a→ d b→ d c→ l k → l

k → m

Let Rt be Rs ∪ {B → A}; then A 6→∗
Rt

B and Rt operationally terminates. ut

Example 2 [ABH03]. The two-rule canonical CTRS {f(g(x)) → x if x →
0, g(g(x)) → g(x)} will be used to test whether a transformation preserves
confluence. ut

Bergstra&Klop. The first CTRS-to-TRS transformation appeared in [BK86]:
start with a rule Ix → x and to each rule ρi : l → r if cl → cr associate rules
ρ′i : l → σi(cl)r and ρ′′i : σi(cr) → I. The transformation is proved to be com-
plete in [BK86] and claimed to also be sound Let us apply this transformation
on Rs in Example 1. Rule f(x)→ x if x→ e is replaced by f(x)→ σ1(x)x and
σ1(e)→ I, and rule Ix→ x is added. Then:

A→ h(f(a), f(b))→ h(σ1(a)a, f(b))→ h(σ1(a)d, f(b))→ h(σ1(c)d, f(b))
→ h(σ1(c)d, σ1(b)b)→ h(σ1(c)d, σ1(b)d)→ h(σ1(c)d, σ1(c)d)
→ g(σ1(c)d, σ1(c)d, f(k))→ g(σ1(e)d, σ1(c)d, f(k))→ g(Id, σ1(c)d, f(k))
→ g(d, σ1(c)d, f(k))→ g(d, σ1(l)d, f(k))→ g(d, σ1(l)m, f(k))
→ g(d, σ1(l)m,σ1(k)k)→ g(d, σ1(l)m,σ1(l)k)→ g(d, σ1(l)m,σ1(l)m)→ B

So this transformation is not sound. Transforming Rt, we can see that this
transformation does not preserve termination, because A →+ A. For the sys-
tem in Example 2, f(g(x)) → x if x → 0 is replaced by f(g(x)) → σ1(x)x and
σ1(0) → I, so f(g(g(0))) → f(g(0)) → σ1(0)0 → I0 → 0 and f(g(g(0))) →
σ1(g(0))g(0), both of them normal forms. Thus the resulting TRS is not con-
fluent. Consequently, this transformation does not produce computationally
equivalent TRSs.

4

Giovanetti&Moiso. The transformation in [GM87] (suggested in [DP88]) re-
places each rule ρi : l → r if cl → cr by l → ifi(Var(l), cl) and ifi(Var(l), cr)→
r. However, this transformation is complete and computationally equivalent
only when the original CTRS is safely transformable [GM87], that is, has no
superposition, is simply terminating, and is non-overlapping on conditions. The
“safely transformable” CTRSs are too restrictive; our transformation yields
computationally equivalent TRSs imposing only ground confluence (safely trans-
formable CTRSs are ground confluent) on the original CTRS.

Hintermeier [Hin94] proposes a technique where an “interpreter” for a CTRS
is specified using unconditional rewrite rules, defining the detailed steps of the
application of a conditional rewrite rule including rewrite-based implementa-
tions of matching and substitution application. Although this is an interesting
result, it has little practical relevance (the “meta” stepwise simulation of a
rewrite system using another rewrite system leads to dramatic performance
loss).

Marchiori’s Unravellings. An abstract notion of transformation, called un-
ravelling, and several concrete instances of it, were introduced by Marchiori in
[Mar96]; these were further studied [Mar97, Ohl99, Ohl02, NSS04]. An unrav-
eling is a computable map U from CTRSs to TRSs over the same signature,
except a special operation Uρ for each rule ρ, such that ↓R⊆↓U(R) (↓ stands
for “join”, i.e., →;←) and U(T ∪ R) = T ∪ U(R) if T is a TRS. The concrete
instance transformations are similar to that in [GM87]: each conditional rule
ρ : l → r if cl → cr is replaced by its unravelling, rules l → Uρ(cl,Var(r))
and Uρ(cr,Var(r)) → r. Completeness holds, but soundness does not hold
without auxiliary hypotheses [Mar96] (see Example 1) such as left linearity
[Mar96, Ohl02]. Also, (quasi) decreasingness and left linearity of the CTRS
imply termination of the corresponding TRS.

Example 3 A sound and complete transformation does not necessarily yield
computational equivalence even if the original CTRS is canonical. The unravel-
ling of the system in Example 2 is {f(g(x))→ U1(x, x), U1(0, x)→ x, g(g(x))→
g(x)}. The original CTRS is left-linear, so the unravelling is sound and com-
plete, but is not computationally equivalent: f(g(g(0))) reduces to U1(g(0), g(0)),
a normal form with no correspondent normal form in the original CTRS. ut

Unfortunately, unravellings do not preserve confluence as seen above, and, in-
deed, they do not yield computationally equivalent TRSs. Therefore, it is not
surprising that the more recent transformations discussed next, including ours,
are not unravellings (they significantly modify the original signature).

Viry. The transformation in [Vir99] (inspired form [AGM90]) inspired all sub-
sequent approaches. It modifies the signature by adding to each operation as
many arguments as conditional rules having it at top of their lhs. Two un-
conditional rules replace each conditional rule, one for initializing the auxiliary

5

arguments and the other for the actual rewrite step. Formally: let ρσ,i denote
the ith rule whose lhs is topped in σ; add as many arguments to σ as the num-
ber of rules ρσ,i; let cσ,i be the number arity(σ) + i, corresponding to the ith

auxiliary argument added to σ; transform each rule ρσ,i : l→ r if cl→ cr into

ρ′σ,i : l̃[cσ,i ←⊥]→ l̃[cσ,i ← [cl,Var(l)]] and ρ′′σ,i : l∗[cσ,i ← [cr,Var(l)]]→ r,

where “⊥” is a special constant stating that the corresponding conditional rule
has not been tried yet on the current position, s lifts a term by setting all
new arguments to ⊥, s̃ lifts a term with fresh variables on the new arguments,
and s∗ = s replaces all variables in s̃ with fresh variables. Structures [u,−→s]
comprise the reduction status of conditions (u) together with corresponding
substitutions (−→s) when were started. The substitution is used to correctly ini-
tiate the reduction of the rhs of the original conditional rule. Viry proved in
[Vir99] his transformation sound and complete and that it preserves termina-
tion. We believe the completeness indeed holds, but have counter-examples for
the other properties. Let us transform the CTRS Rs from Example 1. First,
rules h(x, x) → g(x, x, f(k)) and g(d, x, x) → B are replaced by h(x, y) →
g(x, x, f(k)) if eq(x, y) → true and g(d, x, y) → B if eq(x, y) → true to resolve
non-left-linearity, where eq(x, x) → true is the only non-left-linear rule allowed
[Vir99]. Then the above conditional rules, together with f(x)→ x if x→ e and
A→ h(f(a), f(b)) are transformed into:

f(x,⊥)→ f(x, [x, x]) h(x, y,⊥)→ h(x, y, [eq(x, y), x, y]
f(y, [e, x])→ x h(z, w, [true, x, y])→ g(x, x, f(k,⊥),⊥)
h(d, z, w, [true, x, y])→ B g(d, x, y,⊥)→ g(d, x, y, [eq(x, y), x, y]

A→ h(f(a,⊥), f(b,⊥),⊥)

The following is a valid sequence in the generated unconditional TRS:

A → h(f(a,⊥), f(b,⊥),⊥)→ h(f(a, [a, a]), f(b,⊥),⊥)
→ h(f(d, [a, a]), f(b,⊥),⊥)→ h(f(d, [c, a]), f(b,⊥),⊥)
→ h(f(d, [c, c]), f(b,⊥),⊥)→ h(f(d, [c, c]), f(b, [b, b]),⊥)
→ h(f(d, [c, c]), f(d, [b, b]),⊥)→ h(f(d, [c, c]), f(d, [c, b]),⊥)
→ h(f(d, [c, c]), f(d, [c, c]),⊥)
→ h(f(d, [c, c]), f(d, [c, c]), [eq(f(d, [c, c]), f(d, [c, c])), f(d, [c, c]), f(d, [c, c])])
→ h(f(d, [c, c]), f(d, [c, c]), [true, f(d, [c, c]), f(d, [c, c])])
→ g(f(d, [c, c]), f(d, [c, c]), f(k,⊥),⊥)→ g(f(d, [e, c]), f(d, [c, c]), f(k,⊥),⊥)
→ g(f(d, [e, e]), f(d, [c, c]), f(k,⊥),⊥)→ g(d, f(d, [c, c]), f(k,⊥),⊥)
→ g(d, f(m, [c, c]), f(k,⊥),⊥)→ g(d, f(m, [l, c]), f(k,⊥),⊥)
→ g(d, f(m, [l, l]), f(k,⊥),⊥)→ g(d, f(m, [l, l]), f(k, [k, k]),⊥)
→ g(d, f(m, [l, l]), f(m, [k, k]),⊥)→ g(d, f(m, [l, l]), f(m, [l, k]),⊥)
→ g(d, f(m, [l, l]), f(m, [l, l]),⊥)
→ g(d, f(m, [l, l]), f(m, [l, l]), [eq(f(m, [l, l]), f(m, [l, l])), f(m, [l, l]), f(m, [l, l])])
→ g(d, f(m, [l, l]), f(m, [l, l]), [true, f(m, [l, l]), f(m, [l, l])])
→ B

Hence, Viry’s transformation is not sound. Using Rt instead of Rs, whose cor-
responding TRS just adds rule B → A to that of Rs, we can notice that it does

6

not preserves termination either. Let us now transform the CTRS in Example 2
to {f(g(x),⊥) → f(g(x), [x, x]), f(x, [0, y]) → y, g(g(x)) → g(x)}; note that R′
is not confluent [ABH03] (with or without Viry’s conditional eagerness [Vir99])
f(g(g(0)),⊥) can be reduced to both 0 and f(g(0), [g(0), (g(0))]). Therefore, this
transformation does not fulfill the requirements of computational equivalence.

Antoy,Brassel&Hanus proposed in [ABH03] a simple fix to Viry’s tech-
nique, namely to restrict the input CTRSs to constructor-based (i.e., the lhs
of each rule is a term of the form f(t1, . . . , tn), where f is defined and t1, . . . , tn
are all constructor terms) and left-linear ones. Under these restrictions, they
also show that the substitution needed by Viry’s transformation is not neces-
sary anymore, so they drop it an prove that the new transformation is sound
and complete; moreover, if the original CTRS is additionally weakly orthogo-
nal, then the resulting CTRS is confluent on reachable terms. It is suggested
in [ABH03] that what Viry’s transformation (or their optimized version of it)
needs to generate computationally equivalent TRSs is to reduce its applicabil-
ity to only constructor-based, weakly orthogonal and left-linear CTRSs. While
constructor-baseness and left linearity are easy to check automatically, we be-
lieve that it is an unnecessary strong restriction on the input CTRS, which may
make the translation useless in many situations of practical interest (see, e.g.,
the bubble-sort algorithm in Section 4). In this paper we show that our transfor-
mation, which can also be regarded as a variant of Viry’s, needs only the ground
confluence of the CTRS, a property expected to hold in practice, including in
logical functional programming that the transformation in [ABH03] is aimed at.

Roşu. The transformation in [Ros04] requires the rewrite engine to support
some simple contextual rewriting strategies, namely an if(, ,) eager on the
condition and an equal? eager on both arguments. As in Viry’s transforma-
tion, additional arguments are added to each operation σ for each conditional
rule ρσ,i, but they only need to keep truth values. The distinctive feature of
this transformation is the introduction of the { } operation, which allows the
rewriting process to continue after a condition got stuck provided changes occur
in subterms. A rule ρσ,i : l → r if cl↓cr is encoded by ρσ,i : l̃[cσ,i ← true] →
if (equal?({cl}, {cr}), {r}, l̃[cσ,i ← false]). The bracket clears the failed condi-
tions on the path to the top: σ(x1, .., {xi}, .., xarity(σ), y1, .., ym)→ {σ(x1, .., xi, ..,

xarity(σ), true, .., true)} It is shown in [Ros04] that the transformation is sound
and that operational termination is preserved and implies completeness and
preservation of ground confluence, that is, computational equivalence. Left lin-
earity needs not be assumed. Although most modern rewrite systems support
the rewrite strategies required by the transformation in [Ros04], we argue that
imposing restrictions on the order of evaluation makes a rewrite engine less
friendly w.r.t parallelism and more complex; in some sense, contextual strate-
gies can be seen as some sort of conditional rules: apply the rule if the context
permits.

Our transformation basically integrates Rosu’s { } operation within Viry’s

7

transformation, which allows us to also eliminate the need to carry a substitu-
tion. We recently found out1 that a related approach was followed by Brassel in
his master thesis [Bra99], but we can’t relate our results since we were unable
to obtain an English translation of his results.

3 Our Transformation

Like in the last three transformations above, auxiliary arguments are added to
some operators to maintain the control context information. Let R be any Σ-
CTRS. A σ-conditional rule [Vir99] is a conditional rule with σ at the top of its
lhs, i.e., one of the form σ(t1, . . . , tn) → r if cl → cr. Let kσ be the number of
σ-conditional rules and let ρσ,i denote the ith σ-conditional rule in R.

The signature transformation. Let Σ be the signature containing: a fresh
constant ⊥; a fresh unary operator { }; for any σ ∈ Σn (i.e., σ ∈ Σ has n
arguments), an operation σ ∈ Σn+kσ

(the additional kσ arguments of σ are
written to the right of the other n arguments). An important step in our
transformation is to replace Σ-terms by corresponding Σ-terms. The reason
for the additional arguments is to pass the control context (due to conditional
rules) into data context: the additional i-th argument of σ at some position in a
term maintains the status of appliance of ρσ,i; if ⊥ then that rule was not tried,
otherwise the condition is being under evaluation or is already evaluated. Thus,
the corresponding Σ-term of a Σ-term is obtained by replacing each operator
σ by σ with the kσ additional arguments all ⊥. Formally, let X be an infinite
set of variables and let · : TΣ(X) → TΣ(X) be defined inductively as: x = x

for any x ∈ X and σ(t1, . . . , tn) = σ(t1, . . . , tn,⊥, . . . ,⊥) for any σ ∈ Σn and
any t1, . . . , tn ∈ TΣ(X). Let us define another map, ·̃X : TΣ(X) → TΣ(X),
this time indexed by a finite set of variables X ⊆ X , as x̃X = x for any x ∈

X, and as ˜σ(t1, . . . , tn)
X

= σ(t̃1
X
, . . . , t̃n

X
, b1, . . . , bkσ) for any σ ∈ Σn and

t1, . . . , tn ∈ TΣ(X), where b1, . . . , bkσ
∈ X − X are some arbitrary but fixed

different fresh variables that do not occur in X or in t̃1
X
, . . . , t̃n

X
. Therefore,

t̃X transforms the Σ-term t into a Σ-term by replacing each operation σ ∈ Σ by
σ ∈ Σ and adding some distinct fresh variables for the additional arguments,
chosen arbitrarily but deterministically.

The rewrite rules transformation. Given a Σ-CTRS R, let R be the Σ-
TRS obtained as follows. For each conditional rule ρσ,i: l → r if cl → cr over
variables X in R, add to R two rules, namely ρσ,i : l̃X [cσ,i ←⊥] → l̃X [cσ,i ←
{cl}] and ρ′σ,i : l̃X [cσ,i ← {cr}]→ {r}, where cσ,i is the number arity(σ)+i corre-
sponding to the ith conditional argument of σ. For each unconditional rule l→ r
in R, add rule l̃X → {r} to R. For each σ ∈ Σn and each 1 ≤ i ≤ n, add to R a
rule σ(x1, .., xi−1, {xi}, xi+1, .., xn, b1, .., bkσ

) → {σ(x1, .., xi−1, xi, xi+1, .., xn,⊥
1from a private communication with Brent Brassel.

8

, ..,⊥)}, intuitively stating that a condition tried and potentially failed in the
past at some position may hold once an immediate subterm changes; the op-
eration { }, symbolizing the change, also needs to be propagated bottom-up.
The applicability information of an operation can be updated from several of its
subterms; to keep this operation idempotent, we add {{x}} → {x} to R. The
size of R is 1+u+2×c+

∑
n≥0 n× |Σn|, where u is the number of unconditional

rewrite rules and c is the number of conditional rewrite rules in R.

4 Examples and Experiments

We next illustrate our transformation on several examples.

Confluence is preserved. Let us transform the CTRS in Example 2:

f(g(x),⊥)→ f(g(x), {x}) f(g(x), {0})→ {x} g(g(x))→ {g(x)}
g({x})→ {g(x)} f({x}, b)→ {f(x,⊥)} {{x}} → {x}

The problem that appeared in Viry’s transformation is avoided in our trans-
formation by the rules of {·}, which allow the evaluation of a condition to be
restarted at the top of a term once a modification occurs in a subterm. Thus,
given the Σ-term {f(g(g(0)),⊥)}, even if a rewrite engine first tries to evalu-
ate the condition at the top, a “correct” rewriting sequence is eventually ob-
tained: {f(g(g(0)),⊥)} →R {f(g(g(0)), {g(0)})} →R {f({g(0)}, {g(0)})} →R
{{f(g(0),⊥)}}, and now the condition can be tried again and this time will
succeed.

Odd/Even [Ros04]. Let us consider natural numbers with 0 and successor
s, constants true and false and the following on purpose inefficient conditional
rules defining odd and even operators on natural numbers:

o(0)→ false
e(0)→ true

o(s(x))→ true if e(x)→ true
e(s(x))→ true if o(x)→ true

o(s(x))→ false if e(x)→ false
e(s(x))→ false if o(x)→ false

In order to check whether a natural number n, i.e., a term consisting of n
successor operations applied to 0, is odd, a conditional rewrite engine may need
O(2n) rewrites in the worst case. Indeed, if n > 0 then either the second or
the third rule of odd can be applied at the first step; however, in order to apply
any of those rules one needs to reduce the even of the predecessor of n, twice.
Iteratively, the evaluation of each even involves the reduction of two odds, and
so on. Moreover, the rewrite engine needs to maintain a control context data-
structure, storing the status of the application of each (nested) rule that is
being tried in a reduction. It is the information stored in this control context
that allows the rewriting engine to backtrack and find an appropriate rewriting
sequence. As shown at the end of this section, current rewrite engines perform
quite poorly on this system. Let us apply it our transformation. Since there are

9

two odd-conditional rules and two even-conditional rules, each of these operators
will be enriched with two arguments. The new TRS is (for aesthetical reasons
we overline only those operations that change; C1 and C2 are variables):

o(0, c1, c2)→ {false}
o(s(x), {false}, c2)→ {false}
o(s(x), c1, {true})→ {true}
o(s(x),⊥, c2)→ o(s(x), {e(x,⊥,⊥)}, c2)
o(s(x), c1,⊥)→ o(s(x), c1, {e(x,⊥,⊥)})

e(0, c1, c2)→ {true}
e(s(x), {false}, c2)→ {false}
e(s(x), c1, {true})→ {true}
e(s(x),⊥, c2)→ e(s(x), {o(x,⊥,⊥)}, c2)
e(s(x), c1,⊥)→ e(s(x), c1, {o(x,⊥,⊥)})

s({x})→ {s(x)} o({x}, c1, c2)→ {o(x, c1, c2)}
{{x}} → {x} e({x}, c1, c2)→ {e(x, c1, c2)}

If one wants to test whether a number n, i.e., n consecutive applications of
successor on 0, is odd, one should reduce the term {odd(n,⊥,⊥)}.

Quotient/Reminder [Ohl02]. The CTRS below computes the quotient and
reminder of two numbers:

x < 0→ false
0 < s(x)→ true
s(x) < s(y)→ x < y
0− s(y)→ 0
x− 0→ x

s(x)− s(y)→ x− y
s′(〈x, y〉)→ 〈s(x), y〉
%(0, s(y))→ 〈0, 0〉
%(s(x), s(y))→ 〈0, s(x)〉 if x < y → true
%(s(x), s(y))→ s′(%(x− y, s(y))) if x < y → false

The corresponding TRS is the following:

x < 0→ {false}
0 < s(x)→ {true}
s(x) < s(y)→ {x < y}
0− s(y)→ {0}
x− 0→ {x}
s(x)− s(y)→ {x− y}
s′(〈x, y〉)→ {〈s(x), y〉}

%(0, s(y), c1, c2)→ {〈0, 0〉}
%(s(x), s(y),⊥, c2)→ %(s(x), s(y), {x < y}, c2)
%(s(x), s(y), {true}, c2)→ {< 0, s(x) >}
%(s(x), s(y), c1,⊥)→ %(s(x), s(y), c1, {x < y})
%(s(x), s(y), c1, {false})→ {s′(%(x− y, s(y),⊥,⊥))}
%({x}, y, c1, c2)→ {%(x, y,⊥,⊥)}
%(x, {y}, c1, c2)→ {%(x, y,⊥,⊥)}

{{x}} → {x} s({x})→ {s(x)}
{x} < y → {x < y} x < {y} → {x < y}
{x} − y → {x− y} x− {y} → {x− y}

s′({x})→ {s′(x)}
〈{x}, y〉 → {〈x, y〉}
〈x, {y}〉 → {〈x, y〉}

Bubble sort. The following one-rule CTRS sorts lists of numbers (we assume
appropriate rules for numbers) implementing the bubble sort algorithm.

·(x, ·(y, l))→ ·(y, ·(x, l)) if x < y → true

This CTRS is ground confluent but not constructor-based. Its translation is:

·(x, ·(y, l, c),⊥)→ ·(x, ·(y, l, c), {x > y})
·(x, ·(y, l, c), {true})→ {·(y, ·(x, l,⊥),⊥)}

{{l}} → {l}
·(x, {l}, c)→ {·(x, l,⊥)}

10

Experiments. Our major motivation to translate a CTRS into a computa-
tionally equivalent TRS that can run on any unrestricted unconditional rewrite
engine was the potential to device highly parallelizable rewrite engines. It was
therefore an unexpected and a pleasant surprise to note that our transformation
can actually bring immediate benefits if implemented as a front-end to exist-
ing rewrite engines. Note, however, that current rewrite engines are optimized
for both conditional and unconditional rewriting; an engine optimized for just
unconditional rewriting could probably be more efficient.

We next give some numbers regarding the speed of the generated TRS. We
used Elan and Maude as rewrite engines and the examples Odd/Even and Quo-
tient/Reminder. We have tested how long it took for a term to be rewritten to
a normal form. In the table below, Cond shows the results using the original
system, Ucond those using the presented transformation and Ucond* those us-
ing a simple but practical optimization which is described below. Times were
obtained on a machine with 2 GHz Pentium 4 CPU and 512MB RAM.

Odd/Even
reducing odd(22)

Elan Maude
Cond Uncond Uncond*
1286s 151s ∼0s

Cond Uncond Uncond*
20s 6s ∼0s

Quotient/Reminder
1275000/130

Elan Maude
Cond Uncond Uncond*
5.8s 3.1s 3s

Cond Uncond Uncond*
5.9s 7.5s 5s

Bubble-sort
(Maude)

100 100 10000
Cond Uncond
18ms 11ms

Cond Uncond
1475ms 955ms

Cond Uncond
206s 139s

A relatively good computation speed-up is obtained for the odd/even exam-
ple. The optimized transformation, overcame the speed of computation of the
original CTRS in all our experiments. We actually expect our transformation
to be significantly better on parallel rewrite engines.

The simple and practical optimization is as follows: if two or more σ-condi-
tional rules have the same lhs and their conditions also have the same lhs, then
we can add only one auxiliary argument to σ in σ for all of these and only one
rule in the TRS for starting the condition. With this, e.g., the optimized TRS
generated for the odd/even CTRS is:

o(0, c1)→ {false}
e(0, c1)→ {true}
{{x}} → {x}
s({x})→ {s(x)}

o(s(x), {false})→ {false}
o(s(x), {true})→ {true}
e(s(x), {false})→ {false}
e(s(x), {true})→ {true}

o(s(x),⊥)→ o(s(x), {e(x,⊥)})
e(s(x),⊥)→ e(s(x), {o(x,⊥)})
o({x}, c1)→ {o(x, c1)}
e({x}, c1)→ {e(x, c1)}

5 Theoretical aspects

5.1 Technical preliminaries.

We recall some basic notions of (conditional) rewriting we will use in the sequel,
referring the interested reader to [Ohl02] for more details. An (unsorted) signa-

11

ture Σ is a finite set of operational symbols, each having zero or more arguments.
We let Σn ⊆ Σ denote the set of operations of n arguments. Operations of zero
arguments in Σ0 are called constants. We assume an infinite set of variables X .
Given a signature Σ and a set of variables X ⊆ X , we let TΣ(X) denote the
algebra of Σ-terms over variables in X. We let TΣ denote the algebra TΣ(∅) of
ground terms. A map θ : X → TΣ(X) can be uniquely extended to a morphism
of algebras θ : TΣ(X) → TΣ(X), called substitution, replacing each x ∈ X by a
term θ(x). A conditional Σ-rewrite rule has the form l → r if cl → cr, where
l, r, cl and cr, are Σ-terms in TΣ(X). The term l is called the left-hand-side
(lhs), r is called the right-hand-side (rhs), and cl → cr is called the condition
of the rule. We disallow rewriting rules whose lhs is a variable and assume that
the lhs contains all the variables that occur in the rule. Following the terminol-
ogy in [MH94], our rules are of type 1. An unconditional rewrite rule has the
form l → r. A conditional (unconditional) Σ-term rewrite system R = (Σ, R),
abbreviated CTRS (TRS), consists of a finite set R of conditional (uncondi-
tional) Σ-rewrite rules. We here use only a restricted form of normal CTRSs
(see [DOS88]), i.e., ones whose rhs of the condition is a constant not which is
not a lhs for any of the rules. Section 6 discusses possible extensions. We say
that a rewrite rule is left-linear if its lhs has no multiple occurrences of the same
variable.

A multi-context is a term γ in TΣ({∗}). If γ has n occurrences of ∗ then
γ[t1, . . . , tn] denotes the term obtained by substituting ∗ with t1, . . . , tn from
left to right in γ. If γ has a single occurrence of ∗ then we simply call it context

Any Σ-rewrite systemR = (Σ, R) generates a relation→R on TΣ(X), defined
as follows. For any θ(:)X → TΣ(X), γ[θ(l)] →R γ[θ(r)] whenever θ(cl) →∗

R cr,
where γ is context, i.e., a term having one occurrence of a special variable ∗,
γ[θ(l)] is the term obtained by substituting ∗ with θ(l) in γ, and →∗

R is the
reflexive and transitive closure of →R. Note that →∗

R is the least relation on
TΣ(X) closed under reflexivity, transitivity, congruence and R-substitution. We
will also use the notion of multi-context rewriting, which allows a multi-context
to be used in the definition above. We let ⇒R denote the relation associated
with multi-context rewriting on system R. Note that →∗

R=⇒∗
R.

Positions are strings of numbers describing paths to subterms. Let t|α denote
the subterm at position α in a term t. We have that σ(t1, . . . , . . . , tn)|iα = ti|α
and t|ε = t. A rewrite step occurred at position α in a term t when γ is obtained
from t by replacing its subterm at position α by ∗. We may let t[α← s] denote
the term obtained by substituting the subterm at position α in t by s.

Σ-terms are more complex than the Σ-terms. There can even be some Σ-
terms that do not resemble any Σ-term. We next define and discuss several
classes of Σ-terms that will be used in the sequel. A Σ-term t′ is structural
iff t′ = x where x is a variable, or t′ = {t′′} where t′′ is structural, or t′ =
σ(t′1, . . . , t

′
n, C1, . . . , Ckσ

) where σ ∈ Σn and t′i is structural for each 1 ≤ i ≤ n.
We say that a position α is structural for t′, where t′ is a structural term,
iff α is empty, or t′ = {t′′} and α = 1α′ with α′ being structural for t′′, or

12

t′ = σ(t′1, . . . , t
′
n, C1, . . . , Ckσ) with σ ∈ Σn and α = iα′ where 1 ≤ i ≤ n and

α′ is structural for t′i. A position α is conditional for t′, where t′ is a structural
term, iff α = α′cσ,i such that α′ is structural for t′ and t′α′ = σ(−→u). A ground
Σ-term t′ is reachable iff there is some ground Σ-term t such that {t} →∗

R {t
′}.

Note that the lhs and rhs of any (unconditional) rule in R are structural. The
set of all conditions started for a reachable term t′, written cond(t′), is defined
as

⋃
C({s′|α} ∪ cond(s′|α)) where C is the set of conditional positions α in s′

such that s′|α 6=⊥.
In proofs, we will denote by t the linear variant of t̃X , that is the one also

replacing the variables of t with fresh ones, giving distinct variables for distinct
occurrences of the same variable.

Proposition 1 1. Any subterm of a structural term on a structural position
is also structural.

2. If t′ is a structural term with variables on structural positions and θ is
a substitution giving structural terms for variables of t′ then θ(t′) is also
structural.

3. Structural terms are closed under R.

4. Any reachable term is also structural.

5. Reachable terms are closed under R.

6. Let t′ be a reachable term and s be a Σ-term such that {s} ⇒k
R {t

′}. Let tt
be a Σ-term with variables and θt a Σ-substitution giving for any variable
in tt a subterm of t′ on a structural position. Then there exists a Σ-term
st such that {st} ⇒k′

R {θt(tt)} with k′ ≤ k.

7. Let t′ be a reachable term and t be a Σ-term such that {t} ⇒k
R {t

′}. Let
s′ be a subterm of t′ in a structural position. Then there exists a Σ-term
s such that {s} ⇒k′

R {s
′} and k′ ≤ k.

Proof:

1. We will prove that for all Σ-terms t′ and all structural positions α in
t′, the subterm s′ at position α is also structural by induction over the
length of α. If α is empty, then s′ = t′ and thus it is structural. Now
suppose that α = iα′. If t′ = {t′′} then i is 1; since t′′ is structural we
apply the induction hypothesis for t′′ and α′ getting that s′ is structural.
Otherwise, assume that t′ = σ(t′1, . . . , t

′
n, C1, . . . , Ckσ

) with σ ∈ Σn and
t′1, . . . , t

′
n structural, then apply the induction hypothesis for t′i and α′

getting that s′ is structural.

2. Let X be a set of variables, t′ a structural term with variables from X
and θ a substitution from X to structural terms. We’ll prove that θ(t) is
structural by induction on the structure of t′. If t′ is a variable then it’s

13

obvious, since θ′ substitutes variables by structural terms. Now suppose
that t′ = σ(t′1, . . . , t

′
n, C1, . . . , Ckσ

). Applying the induction hypothesis for
each t′i, 1 ≤ i ≤ n. we get that θ′(t′i) is structural. Then θ(t′) must also
be structural since

θ(t′) = θ(σ(t′1, . . . , t
′
n, C1, . . . , Ckσ)) = σ(θ′(t′1), . . . , θ

′(t′n), C1, . . . , Ckσ)

and the latter is obviously structural. Finally, if t′ = {t′1} we can apply in-
duction hypothesis for t′1 and get that θ′(t′1) is structural. Then obviously
θ({t′1}) must also be structural.

3. Let s′ be a structural term, let t′ a Σ-term such that s′ →R t′ and let
α be the position of s′ where the rewriting step occurred. If α is a non-
structural position then t′ must also be structural, since the definition
of structural terms is done using only structural positions. Let us now
prove that for any structural s′ and any Σ-term t′ such that s′ →R t′ the
rewriting step occurring at the structural position α we have that t′ is also
structural. We do that by induction on the length of α. If α = iα′ then
either s′ = {s′1}, i = 1 and t′ = {t′1} or s′ = σ(s′1, . . . , s

′
n, C1, . . . , Ckσ

),
1 ≤ i ≤ n and t′ = σ(s′1, . . . , s

′
i−1, t

′
i, s

′
i+1, . . . , s

′
n, C1, . . . , Ckσ). Also, we

must have that s′i is structural and s′i →R t′i using the same rule and the
same substitution a position α′. Applying the induction hypothesis for we
get that t′i is structural, whence t′ is structural. If α is the empty word,
then let l′ → r′ be the rule used and θ′ be the substitution used. If l′ → r′

is of form:

• {{x}} → {x} then since structural terms are closed under SS, θ′(x)
is structural, whence t′ = {θ′(x)} is also structural;

• σ(x1, . . . , xi−1, {xi}, xi+1, . . . , xn, C1, · · · , Ckσ
)→

→ {σ(x1, . . . , xi−1, xi, xi+1, . . . , xn,⊥, · · · ,⊥)} then since variables
xj , 1 ≤ j ≤ n are in structural positions, θ′(xj) is structural and we
apply that structural terms are closed under CΣ for σ(x1, . . . , xn);

• l̃[cσ,i ←⊥] → l̃[cσ,i ← {{cl}], then we don’t have anything to prove
since nothing changes on structural positions;

• l̃[cσ,i ← {cr}] → {r} or l̃ → {r}, then since all variables in l are
on structural positions in l̃ we have that θ′(x) is structural for each
variable x occurring in l then we can apply that structural terms are
closed under CΣ for r.

4. s is structural and structural terms are closed under R.

5. Obvious from the definition of reachable terms.

6. We prove the affirmation by well founded induction on k. Let tt be a Σ-
term with variables from Xt = {x1, . . . , xn} and θt a Σ-substitution with
variables from Xt such that θt(xi) = t′i for each 1 ≤ i ≤ n. Then there
exists a Σ-term st such that {st} ⇒k′

R {θt(tt)} with k′ ≤ k.

14

Let s′ be a Σ-term such that {s} ⇒k−1

R {s′} ⇒R {t′}. We will show that
there exist a Σ-term ts with variables from Xs and a Σ-substitution θ()s
giving for each variable in Xs a subterm of s′ on a structural position and
that θ()s(ts) = θt(tt) or θ()s(ts)⇒R θt(tt).

Let c be a Σ multi-context, l′ → r′ be a rule in R with variables in a set X
and θ be a Σ-substitution such that s′ = c[θ(l′)] and t′ = c[θ(r′)]. Let us
build the set Xs, a substitution θ′ giving for any variable in Xt a Σ-term
with variables form X ∪ Xt and a set of positions P. For any x ∈ Xt,
perform the following operation. Let β be the position of θt(x) in t′.

• If β is a position in c then
– if c|β doesn’t contain any variables, then s′|β = t′|β . Add x to
Xs and let θ′(x) = x.

– otherwise, we have that s′|β = c|β [θ(l′)] and t′|β = c|β [θ(r′)].
Add then x to Xs, let θ′(x) = x and for each position γ of x in
tt and each position δ of a variable in c|β add to P the position
γδ.

• If β is not a position in c then
– If β = αγδ where α is a position of a variable in c and γ is a

position of a variable y in r′, then let γ′ be a position of y in l′.
We have that s′|αγ′δ = t′|αγδ. Add x to Xs and let θ′(x) = x.

– If β = αγ where α is a position of a variable in c and γ is a non-
empty non-variable position in r′, then let’s analyze the possible
cases for l′ → r′:
(a) {{x}} → {x}

(b)
σ(x1, . . . , xi−1, {xi}, xi+1, . . . , xn, C1, . . . , Ckσ

)→
→ {σ(x1, . . . , xi−1, xi, xi+1, . . . , xn,⊥, . . . ,⊥)}

(c) l̃[cσ,i ←⊥]→ l̃[cσ,i ← cl]
(d) l̃[cσ,i ← {cr}]→ {r}
(e) l̃→ {r}
(a) is impossible since the only position in {x} are the one of x
and the empty one. Since (c) changes only an auxiliary param-
eter of the operation on the top of l̃ we will have that s′β = t′β .
Then add x to Xs and let θ′(x) = x.
For (b), (d), and (e) we will have that r′β = u for some Σ-term u
with variables form X. Add then var(u) to Xs and let θ′(x) = u.

Let ts = θ′(tt) and let θ()s be defined as follows:

θ()s(x) =
{

θt(x) if x ∈ Xt

θ(x) if x ∈ X

We then have that for any x ∈ Xs, θ()s(x) is a subterm of s′ on a structural
position. Also if P is empty then θ()s(ts) = θt(tt); otherwise θ()s(ts)⇒R
θt(tt) using rule and substitution θ at any position in P.

15

Applying the induction hypothesis, the proposition is proved.

7. Apply 6 for tt = x and θt(x) = s′.
ut

Before we formalize the relationship between CTRSs and their unconditional
variants, let us define a partial map on terms, ·̂ : TΣ(X)→ TΣ(X) only defined
for Σ-structural terms:

• x̂ = x for any variable x.

• {̂t′} = t̂′

• ̂σ(t′1, . . . , t′n, C1, . . . , Ckσ
) = σ(t̂′1, . . . t̂′n)

Therefore, t̂′ forgets all the auxiliary arguments of each operation occurring in
t′. Note in particular that t̂ = t for any t ∈ TΣ.

R rewrite sequences. A Σ-term s′ is almost empty if all its conditional
positions are ⊥ but has proper subterms topped in {·}. A Σ-term s′ is a proof
term if s′ = {ŝ′}[πcσ,i ← c′] where πcσ,i is a conditional position in s′ and c′ is
either ⊥, a proof term or an almost empty term. A rewriting sequence s′ →∗

R t′

is called a proof sequence if: s′ = {ŝ′} and t′ = {ŝ′}, all terms in the rewriting
sequence are either almost empty or proof terms and a rule in R encoding a rule

from R is only applied at a position α in a term u when u|α = û|α. Basically,
proof sequences exactly encode the way a proof for ŝ′ →∗

R t̂′ is done as we shall
see in the following section.

Let us next introduce the notion of safe rewrite sequences, a relaxation of the
notion of proof sequences. We say that a rewrite sequence {s} →∗

R t′ is safe if
for any rewriting step u→ v occurring in the sequence using rule ρ′ at position
α we have that for any prefix βcσ,i of α such that cσ,i is a conditional position
corresponding to ρσ,i; l→ r if cl→ cr in u|β we have that u|β [cσ,i ←⊥]→∗

R u|β
can be extracted from the original sequence {s} →∗

R u and furthermore, each
term w in the thus obtained sequence it is topped in σ and satisfies that w|j =

ŵ|j for each 1 ≤ j ≤ arity(σ).
Another notion we will use in the sequel is that of structural rewriting step.

A rewriting step s′ →R t′ is structural if it occurs at a structural position in
s′ and either uses a rule of form ρ′σ,i or one corresponding to an unconditional
rule in R. Note that this notion is not closed under any context. For example
if u|α = s′, then u →R u[α ← t′] is only structural if α is also structural.
Therefore, let us distinguish these contexts as structural contexts.

The two notions introduced are related by the following proposition:

Proposition 2 For any safe sequence {s} →∗
R t′ there exists a proof sequence

{s} →∗
R {t̂

′}. having the same number of structural steps

16

Proof: By induction on k, the length of the safe sequence. If k = 0 there is
nothing to prove. Else, suppose k > 0 and let u be such that {s} →k−1

R u→R t′.
Applying the induction hypothesis for u we obtain the proof sequence {s} →∗

R
{û}. If û = t̂ there is nothing more to do. If the step applied corresponds
to a unconditional rewrite step, we can simply apply the same rule to u, then
propagate the resulting bracket until it is dissolved.

The only case left is when u→R t′ using a rule ρ′σ,i corresponding to the rule
ρσ,i : l → r if cl → cr using substitution θ′ at position α. Since the sequence

is safe, we must have that θ′({cl}) = { ̂θ′({cl})} and also that θ′({cl})→k′

R {cr}
with k′ < k whence we can apply the induction hypothesis to obtain a proof
sequence for θ′({cl})→k′

R {cr}. We can now use this proof sequence to continue
{s} →∗

R {û} by first applying rule ρσ,i and at the end applying rule ρ′σ,i. We
then get the desired form by simply propagating the resulting bracket until it
is dissolved. ut

Lemma 1 Let s′ be a reachable term and s be a Σ-term such that {s} ⇒k
R {s

′}.
Let α be a structural position in s′, ρσ,i : l → r if cl → cr a rule in R and θ′ a
Σ substitution such that s′|α = θ′(l) and s′|αcσ,i 6=⊥

Then there exists a substitution θ0 and Σ-terms s0, sx for each variable x
in l such that {s0} ⇒k0

R θ0({cl}) ⇒k1

R θ′({cl}), with k0 + k1 < k and {sx} ⇒
kx
0

R
θ0({cl})⇒

kx
1

R θ′(x) with kx
0 + kx

1 < k

Proof: Let us first show the following:

Let s′ and t′ be two structural terms such that s′ ⇒R t′ using the
rule l′ → r′ ∈ R, the multi-context c and the substitution θ. Let β
be a structural position in t′, ρσ,i : l → r if cl → cr a rule in R and
θ′′ a Σ substitution such that t′|β = θ′′(l) t′|βcσ,i

6=⊥.

Then there exists a structural position α of s′ and a Σ-substitution
θ′ such that s′|α = θ′(l) and θ′(l) = θ′′(l) or θ′(l)⇒R θ′′(l).

If β is a position in c then if c|β doesn’t contain any variables, we can consider
α = β, θ′(=)θ′′; otherwise, for any variable x of l on a structural position γx we
must have that βγx is also a position in c (otherwise the structure of l would
have changed). We can then take α = β and θ′(x) = θ′′(c|βγx).

If β is not a position in c, then β = β′γ where β′ is a position of a variable
in c. Then γ must be of the form γ = δε where δ is a position of a variable x in
r′ (because otherwise we couldn’t have t′|βcσ,i

6=⊥). Let then δ′ be a position
in l′ of the same variable x, and take α = β′δ′ε and θ′(=)θ′′.

We can now apply the statement above repeatedly as long as its hypothesis is
satisfied, meaning as long as t′|βcσ,i 6=⊥. We know that it must reach an ⊥ in at
most k steps, since s has nothing but ⊥s on any non-structural position. Let s′⊥
be the term where the above proposition cannot be applied anymore and ks its
position in the rewriting sequence s ⇒k

R t′. We have thus obtained a sequence
of terms l′1 ⇒R l′2 ⇒R . . . ⇒R l′k′ with k′ ≤ k − ks and all terms matching l.

17

Furthermore, l′k′ = s′|α and l′1 is the only one in sequence matching l[cσ,i ←⊥].
Since also l′1 ⇒R l′2 we must have that l′1 matches l̃[cσ,i ←⊥] since this is the
only way to change the ith auxiliary variable of σ from ⊥ to something different
from ⊥ - by applying the ρσ,i rule.

Let θ0 be the substitution such that θ0(l̃) = l′1. Since θ0(l̃[cσ,i ←⊥])⇒k′

R s′|α
it must be that θ0((){cl}) ⇒k′′

R s′|αcσ,i
with k′′ < k′. We can use Proposition

1.6 to verify the existence of an s0 satisfying the needed property.
Also we have that for each variable x occurring in l θ0(x) ⇒

kx
1

R θ′(x) with
kx
1 < k′. We can use Proposition 1.7 to verify the existence of sx. ut

The following result gives a good intuition of why { } is good.

Proposition 3 Let {s′} be a reachable term on which no bracket rule can be
applied. Then there exists a safe rewriting sequence ŝ′ →∗

R s′.

Proof: We will prove the affirmation by induction on the number of subterms
on conditional positions which are not ⊥. Take a minimal length conditional
position 1αcσ,i such that {s′}|1αcσ,i 6=⊥. Also consider ρσ,i : l → r if cl → cr
be the corresponding rule. Since no bracket operations can be applied on s′,
no rule on the structure could have been applied on any proper subterm of
{s′}|1α since the condition was started; otherwise, the bracket generated by a
rule changing the structure would have propagated to dissolve the condition.
That means we can consider the term s′⊥ such that ŝ′⊥ = ŝ′|α, s′⊥|αcσ,i

=⊥ and
σ′⊥ →k

R s′|α, k being minimal with this property. Notice that s′⊥ has strictly less

conditions started than s′. Let θ′⊥ be the substitution for which θ′⊥(l̃[cσ,i ←⊥
]) = s′⊥. Define θ′′⊥ by θ′′⊥(x) = θ̂′⊥(x) for variables in l and ⊥ for all conditional

variables. We have that θ′′(l̃[cσ,i ←⊥]) = ŝ′⊥, whence we can apply rule ρσ,i to

obtain ŝ′⊥[cσ,i ← {θ′′⊥(cl)}]. We can now apply the induction hypothesis for each

variable x to get that θ̂′⊥(x)→∗
R θ′⊥(x), hence {θ′′⊥(cl)} →∗

R {θ
′
⊥(cl)} →∗

R s′|cσ,i
.

Same reasoning applies for any position cσ,j such that s′|cσ,j
6=⊥. Also, se can

apply the induction hypothesis for any proper structural subterm of s′|j to

obtain that ŝ′|j →∗
R s′|j . Putting them all together, we can now start with ŝ′,

rewrite its top conditions, then rewrite its proper structural subterms to finally
obtain s′. ut

5.2 Soundness and Completeness

Completeness means that rewriting that can be executed in the original
CTRS can also be simulated on the corresponding TRS. This is a natural result;
all transformations are defined with completeness as their primary goal. We
show that “everything that can be done on a term s in R can also be done on
the term {s} in R”.

Theorem 1 Completeness. s→k
R t iff there exists a proof sequence {s} →R

{t} having k structural steps.

18

Proof: First, let us prove the direct implication. Rewriting relation can be
defined as the least relation closed under R (reflexivity), T (transitivity), CΣ
(compatibility with the operations) and SubR (R-substitution). We will show
that the relation:

D = {(s, t) ∈ TΣ × TΣ | {s} →∗
R {t} is a proof sequence}

is closed under the above rules whence it contains→∗
R. Closure under reflexivity

and transitivity is obvious. For proving the closure under SubR let us first
formally describe it:

For any rule l → r if cl → cr in R and any Σ-substitution θ such
that (θ(cl), cr) ∈ D we have that (θ(l), θ(r)) ∈ D.

Let ρσ,i : l → r if cl → cr be a rule in R, θ be a Σ-substitution such that
(θ(cl), cr) ∈ D. Consider the Σ-substitution θ′ defined as θ′(x) = θ(x). for any
variable x occurring in ρσ,i and θ′(x) =⊥ for any new variable occurring in ρσ,i.
We then have that θ′(t) = θ(t) for t ∈ {l, r, cl}. We then can apply rule ρσ,i on
{θ(l)} using the substitution θ′ and the context {·}, getting {θ(l)[cσ,i ← {cl}]}.
Now we use that (θ(cl), cr) ∈ D which means that {θ(cl)} →∗

R {cr}, whence

{θ(l)[cσ,i ← {θ(cl)}]} →∗
R {θ(l)[cσ,i ← {cr}]} →∗

R {θ(r)}

Finally let us prove that D is closed under CΣ, that is: if (s, t) ∈ D then
for any operation σ ∈ Σn, for any Σ-terms tj , 1 ≤ j ≤ n and for any 1 ≤ i ≤ n
we have that: (σ(t1, . . . , ti−1, s, ti+1, . . . , tn), σ(t1, . . . , ti−1, t, ti+1, . . . , tn)) ∈ D.
In order to prove it we first have to observe that for any Σ-terms s′ and t′, if
{s′} →∗

R {t
′}, then s′ →∗

R t′ or s′ →∗
R {t

′}. This is obvious since the only rule
containing {·} which has effect on the term in the brackets is that dissolving
another bracket.

Since σ(t1, . . . , ti−1, s, ti+1, . . . , tn) = σ(t1, . . . , ti−1, s, ti+1, . . . , tn,⊥, . . . ,⊥),
it follows that one can rewrite {σ(t1, . . . , ti−1, t, ti+1, . . . , tn)} to one of this two:
{σ(t1, . . . , ti−1, t, ti+1, . . . , tn,⊥, . . . ,⊥)} or {σ(t1, . . . , ti−1, {t}, ti+1, . . . , tn,⊥, . . . ,⊥
)}. In the first case our proof is complete, in the second we just need to apply
the rule for propagating {·} up and then the one for dissolving one {·} at the
top.

For the converse, let us do an induction on k, the length of the sequence
{s} →k

R {t}. If k = 0 then obviously, s = t. Suppose now that k 6= 0 and
consider s′ such that {s} →R s′ →k−1

R {t}. The first rule applied must be
either corresponding to an unconditional rule, or of the form ρσ,i. If the rule
applied is corresponding to an unconditional one, then we can also apply it to
s to obtain s →R ŝ′. Also, since it is a proof sequence, we have that s′ →k′

R

{ŝ′} →k−k′−1

R {t}, thus we can apply the induction hypothesis for {ŝ′} →k−k′−1

R
{t} and get that ŝ′ →∗

R t. If it is corresponding to ρσ,i : l → r if cl → cr
and is applied at position 1α using substitution θ′ then it must also be that
s|α = θ̂′(l). Also, s′|1αcσ,i

= {θ′(cl)}. Since {s} →∗
R {t} is a proof sequence,

19

we can infer that we can extract a subsequence s′ →k′

R s′[1αcσ,i ← {cr}] →R

s′′ →k′′

R {ŝ′′} →k−k′−k′′−1

R {t}. This further says that {θ′(cl)} →k′

R {cr} is a
proof rewrite sequence and since k′ < k we can apply the induction hypothesis
and obtain that θ̂′(cl) →∗

R cr whence we can apply the rule ρσ,i and obtain

s→R ŝ′′. Also we can apply the induction hypothesis for {ŝ′′} →k−k′−k′′−1

R {t}
and get that ŝ′′ →∗

R t. ut
Although it may not seem so, {s} →∗

R {t} does not generally imply that s→∗
R t:

Example 4 Consider the transformation for Rs from Example 1:

A→ {h(f(a,⊥), f(b,⊥))} f({x}, y)→ {f(x,⊥)}
h(x, x)→ {g(x, x, f(k,⊥))} h({x}, y)→ {h(x, y)}
g(d, x, x)→ {B} h(x, {y})→ {h(x, y)}
f(x,⊥)→ f(x, {x}) g({x}, y, z)→ {g(x, y, z)}
f(x, {e})→ {x} g(x, {y}, z)→ {g(x, y, z)}
{{x}} → {x} g(x, y, {z})→ {g(x, y, z)}

a→ {c}
a→ {d}
b→ {c}
b→ {d}
c→ {e}
c→ {l}

k → {l}
k → {m}
d→ {m}

Then the following rewrite sequence can be obtained in R:

{A} →∗
R {h(f(a,⊥), f(b,⊥)} →∗

R {h(f({d}, {c}), f(b,⊥))}
→∗
R {h(f({d}, {c}), f({d}, {c}))}
→∗
R {g(f({d}, {c}), f({d}, {c}), f(k,⊥))}
→∗
R {g(f({d}, {e}), f({d}, {c}), f(k,⊥))}
→∗
R {g(d, f({d}, {c}), f(k,⊥))} →∗

R {g(d, f({m}, {l}), f(k,⊥))}
→∗
R {g(d, f({m}, {l}), f({m}, {l}))}
→∗
R {B},

but it is not the case that A→∗
R B. ut

Even though Theorem 1 is too weak to give us a procedure in R to test
reachability in R, it still gives us a technique to test whether a term t is not
reachable from a term s in R: if it is not true that {s} →∗

R {t} then it is also
not true that s →∗

R t. Of course, in order for this to work, the set of terms
reachable from {s} must be finite. This does not give us much, but it is the
most we can get without additional restrictions on R.

Soundness means that any rewrite in R of a Σ-term of the form {s} where
s is a Σ-term, corresponds to a rewrite of s in R. Unfortunately, as shown
by Example 4, this result does not hold without restricting R. We show that
ground confluence or left linearity of R suffices.

Theorem 2 If R is ground confluent and s′, t′ are reachable terms such that
s′ →∗

R t′, then ŝ′ →∗
R t̂′. Moreover, if s′ →∗

R t′ has k structural steps, then
ŝ′ →k t̂′.

Proof: Since →∗
R=⇒∗

R and →∗
R=⇒∗

R we can change the affirmation in the
proposition the following way:

20

Let s′, t′ be reachable terms such that s′ ⇒∗
R t′. Then ŝ′ ⇒∗

R t̂′.

Since s′ is reachable there is some Σ-term s such that {s} →∗
R {s

′} equivalent
to {s} ⇒∗

R {s
′}. We will prove that for any Σ-term s and any Σ terms s′ and

t′ such that {s} ⇒p

R {s
′} ⇒k

R {t
′} we have that ŝ′ ⇒∗

R t̂′, by induction on
m = p+ k.

If k = 0 then s′ = t′ and there is nothing more to prove. If k 6= 0 let s′t
be a Σ-term such that s′ ⇒k−1

R s′t ⇒R t′. We then can apply the induction

hypothesis for s, s′ and s′t and get that ŝ′ ⇒∗
R ŝ′t. It suffices now to show that

ŝ′t ⇒∗
R t̂′.

If ŝ′t = t̂′ then our proof is done.If ŝ′t 6= t̂′ then it must be the case that
was applied either a rule of the form l̃ → {r} or one of the form ρ′σ,i : l̃[cσ,i ←
{cr}] → {r} using a substitution θ and a multi-context c having at least one
variable in a structural position. If a rule of the first type was applied, l → r

can also be applied to ŝ′t using the context ĉ and substitution θ̂ to obtain t̂′.
Suppose now that a rule ρ′σ,i was applied, at position α using the substitution

θ′. Applying Lemma 1 we obtain the substitution θ0 such that θ0({cl}) ⇒R
∗∗{cr} verifies the induction hypothesis, whence θ̂0(cl)→∗

R cr. Also, θ0(x)⇒∗
R

θ′(x) satisfies the induction hypothesis for each variable x of l, whence θ̂0(x)→∗
R

θ̂′(x). But this implies that θ̂0(cl) →∗
R θ̂′(cl) and using the confluence and the

fact that cr is a normal form we get that θ̂′(cl)→ cr whence we can apply rule
ρσ,i on ŝ′ using substitution θ̂′ to get t̂′. ut
The above claim may not hold if the original CTRS is not ground confluent:

Example 5 Consider the following CTRS and its corresponding TRS:

(R)

 a→ true
a→ false
f(x)→ true if x→ true

(R)


a→ {true} a→ {false}
f(x,⊥)→ f(x, {x}) f(x, {true})→ {true}
f({x}, y)→ {f(x,⊥)} {{x}} → {x}

The following sequence is valid inR, but it is not the case that f(false)→R true:

{f(a,⊥)} →R {f(a, {a})} →R {f({false}, {a})} →R {f({false}, {true})} →+

R {true}

ut

The next result shows that our transformation is also sound when the original
CTRS is left linear instead of ground confluent:

Proposition 4 R is left linear iff R is.

Proof: Obvious from the transformation (since the conditions’ rhs have no
variables) ut

Proposition 5 If {s} →∗
R t′ is a safe sequence having k structural steps, then

s→k
R t̂′.

21

Proof: Applying Proposition 2 we get a proof sequence {s} →∗
R t̂′ on which we

can apply Theorem 1.

Lemma 2 If R is left linear and {s} →∗
R t′, then there exists a safe rewrite

sequence {s} →∗
R t′ having at least the same number of structural steps.

Proof: The idea is to replay the rewritings from the transformed system in
the original one. What can happen is that while a condition is being evaluated,
rewriting is permitted in the transformed system but not in the original one. To
resyncronize, all one has to do is that whenever a condition that will eventually
be successfully solved is started, to record the rewriting steps occurring in vari-
able subterms and only replay them after the condition was solved and the rule
applied. The term on which condition has been started might be multiplied
by using non-right-linear rules but for each of the copies we know exactly if
the condition will be fullfill or not. For those copies for which we know that it
will be not rewritten, we can at this point apply the recording of rewritings in
variables.

The fact that the rewriting process continues as before is guaranteed by the
left-linearity of R - there is no need of synchronizing subterms; the rules will
match whatever subterms. ut

Theorem 3 If R is left linear and s→∗
R t′ then s→∗

R t̂′. Moreover, if s→∗
R t′

has k structural steps, then s→k′

R t̂′ with k′ ≥ k.

Proof: Apply Lemma 2, then Proposition 5. ut
Thus, our transformation is sound for Example 5. However, Example 4

shows that soundness may not hold if R is neither ground confluent nor left
linear.

Corollary 1 If R is ground confluent or left linear, then our transformation
is sound and complete, i.e., s→∗

R t iff {s} →∗
R {t} for any s, t ∈ TΣ.

Therefore, we can semi-decide reachability, s →∗
R, in a ground confluent

or left linear CTRS: (1) transform R to the TRS R; (2) do a breadth-first
search in R starting with {s}; (3) if {t} is reached then return true. The
breadth-first search may loop forever if there is no solution for the original
problem. However, it will return true iff the original problem has a solution.
This important reachability result is operationally important, since searching is
very difficult in CTRSs and it can sometimes lead to defectious implementations.

Example 6 Consider the following three-rule CTRS: a → c if a → b, a → b
and c→ b. A rewrite engine sensitive to the order in which rules are given, such
as Maude, may crash (an indeed, it does so if the rules are give in the order
above) when asked to verify a→∗

R c. The reason is that although Maude does
breadth-first search in general, it chooses not to do it within conditions. ut

22

This CTRS is transformed to: a(⊥) → a({a(⊥)}), c → {b}, a({b}) → {c},
a(x) → {b}, {{x}} → {x}. Although this TRS does not terminate either, we
can use any rewrite engine which supports breadth-first searching, including
Maude, to verify any reachability problem which has solutions in the original
system.

5.3 Simulation and confluence

The next result shows that ifR is left-linear, due to soundness and completeness,
ground confluence of R on reachable terms yield confluence of R.

Proposition 6 If R is left linear and ground confluent on reachable terms,
then R is ground confluent.

Proof: Consider ground Σ-terms s, u, v such that s →∗
R u and s →∗

R v. Then
we have that {s} →∗

R {u} and {s} →∗
R {v}. Since R is confluent on reachable

terms, there exists t′ such that {u} →∗
R t′ and {v} →∗

R t′. By Proposition 4
and Theorem 3 we obtain that u→∗

R t̂′ and v →∗
R t̂′. ut

Even though a transformation is sound and complete, one cannot simulate
R through R. We show that if R is ground confluent and left linear then ·̂
defines a simulation relation between R and R:

Proposition 7 (Simulation) If R is ground confluent and R is left linear
then R∗ restricted to reachable terms weakly simulates R∗, that is,
for any reachable term s′ such that ŝ′ →∗

R t, there exists a Σ-term t′ such that
t̂′ = t and s′ →∗

R t′. Also, if ŝ′ →R t, t′ can be chosen such that s′ = s′0 →R

. . .→R s′n →R t′0 →R . . .→R t′n = t′ with ŝ′i = ŝ′ and t̂′i = t̂′.
Moreover, cond(t′) ⊆ cond(s′).

Proof: Induction on the size |cond(s′)| of the set of started conditions in s′.
If s′ has no started conditions, we can apply Theorem 1.

If ŝ′ = t there is nothing to prove. Suppose now that the ŝ′ rewrites in one
step to t. If it is a non-conditional one, we can also apply it to s′. Else, we have
two cases: (1) if the evaluation of the corresponding condition has been started
for the rule applied in s′ and (2) if it has not.

1. In the first case, we can find s⊥ as in Lemma 1 and we will have that
θ0(cl) →R θ′(C) and θ0(()x) →R θ′(x), whence θ0(cl) →R θ′(cl). Ap-
plying Theorem 2 we get that θ̂0(cl) →R θ̂′(C) and θ̂0(cl) →R θ̂′(cl).
Also, we have that θ̂′(cl) →∗

R cr whence, using confluence, it must be
that θ̂′(C) →R cr. Since set of conditions for θ′(C) is strictly included
in the one for s′, we can apply the induction hypothesis on it and obtain
that θ′(C) →R {cr}, whence it follows that the conditional rule can be
potentially applied on s′ to obtain t′ with the desired properties.

2. Suppose now that the condition evaluation has not been started. Then we
can start it now and replay in R the rewriting process in R for satisfying

23

the condition. As long as the conditions which need to be satisfied are not
already started for the given term we can start them. However when we
need to fulfill an already started condition, we use the same reasoning as
for the first case and apply the induction hypothesis, since the condition
is the same as the one from s′, thus has less conditions started than s′.

We can see that the set of started conditions after any of the previous steps
is included in the set of conditions of s′. Thus, if the number of rewrite steps
from ŝ′ to t is bigger than 1 we can iterate the above reasoning.

Note that left linearity is needed here to assure that a matching that can be
performed on a term in the original system can be “lifted” to one on a enriched
term of the transformed one. Without left linearity, one would need first to join
the terms corresponding to the same variable, by joining their started conditions.

ut
Although the result above is interesting result by itself, we will also use in

the sequel one of its corallaries.

Corollary 2 If s′ is reachable and ŝ′ →∗
R c where c is a constant which is not

a lhs for any of the rules in R, then s′ →∗
R {c}

Proof: We can apply the Theorem 7 to obtain a term c′ such that ĉ′ = c and
s′ →∗

R c′. Since c′ is reachable it must be that it has brackets at top. also, since
ĉ′ = c, c′ can only consists on a bonded number of brackets over c. Then we
can apply the idempotency for the brackets to obtain {c}. ut

It is worthwhile noticing that the confluence of R does not imply the con-
fluence of R, as the following (counter-)example shows.

Example 7 Consider the confluent CTRS R consisting of one rule, f(x) →
x if g(x)→ false and its corresponding TRSR: f(x,⊥)→ f(x, {g(x)}), f({x}, y)→
{f(x,⊥)}, f(x, {false})→ {x}, {{x}} → {x}. Then f({false}, {false}) rewrites
in one step to {false}, which is in normal form, and f({false}, {false}) →R
{f(false,⊥)} →R {f(false, {g(false)})}, which is also in normal form. There-
fore, R is not confluent. ut

In fact, for computational equivalence purposes, R does not need to be
confluent. What is needed is its confluence on reachable terms. The next result
shows that in the presence of linearity, (ground) confluence is preserved.

Theorem 4 Suppose R is left linear. If R is ground confluent then R is ground
confluent on reachable terms, or, even stronger,
for any reachable terms s′1, s

′
2, If ŝ′1 and ŝ′2 are joinable in t then s′1 and s′2 are

joinable in t′ such that t̂′ = t.

Proof: Induction on |cond(s′1)| + |cond(s′2)|. First, we apply Proposition 7 to
obtain s′′1 and s′′2 such that s′j →∗

R s′′j , ŝ′′j = t and cond(s′′j) ⊆ cond(s′j) for
j = 1, 2. If |cond(s′′1)|+ |cond(s′′2)| = 0, the problem is already solved. Suppose
now that |cond(s′′1)|+ |cond(s′′2)| 6= 0.

24

Induction on the number of conditional positions s′′1 and s′′2 differ on (they are
the same on the structure). First, we can assume that no bracket propagating
rules can be applied. Let 1αcσ,i be a conditional position such that s′′1 |αcσ,i

6=
s′′2 |αcσ,i

. If both conditions are started then we have that |cond(s′′1 |αcσ,i
)| ≤

|cond(s′′1)| − 1 and |cond(s′′2 |αcσ,i
)| ≤ |cond(s′′2)| − 1. Note that we can anyway

consider that both conditions are started because, if only one of them is started,
say for s′′2 , then in one rewriting step we can start the other one too (the fact that
there are no brackets implies that s′′2 |α matches l̃ whence s′′1 |α must also). The
only difference is that in this case we will have that |cond(s′′1 |αcσ,i

)| ≤ |cond(s′1)|,
i.e., the inequality is not strict anymore. However, summing the number of
conditions fro both of them we still get a strict inequality, so if we can verify that
their coresponding Σ-terms are joinable, we can apply the induction hypothesis.

For each j = 1, 2 do the following. Let θj be such that θj (̃(l)) = s′′j |α.
Since s′′j |αcσ,i

6=⊥ we can apply Lemma 1 to obtain that there exists a reachable
substitution θj

0 such that θj
0({cl} →∗

R s′′j |αcσ,i and θj
0(x) →∗

R θj(x), whence

θj
0({cl} →∗

R θj({cl}. Applying Theorem 2 we get that θ̂j
0({cl} →∗

R ŝ′′j |αcσ,i and

θ̂j
0({cl} →∗

R θ̂j({cl}.

Now, noticing that θ̂1({cl} = θ̂2({cl} and applying confluence three times we
obtain that ŝ′′1 |αcσ,i

and ŝ′′2 |αcσ,i
are joinable. We can now apply the induction

hypothesis to obtain that s′′1 |αcσ,i
and s′′2 |αcσ,i

are also joinable.
Note that since we are joining conditions in a top-bottom manner, whenever

I have to join two conditional all of the conditional above are already joined, so
joining them does not affect the condition sets of the others not yet joined. ut

5.4 Termination and Computational Equivalence

Next, we show that termination of R on reachable terms implies operational
termination of R, and that the other implication does not hold without addi-
tional requirements on R. Moreover, we show that confluence or left linearity
of R suffices for the other implication to hold.

Proposition 8 If R terminates on {s}, then R operationally terminates on s.

Proof: Obvious, since, to any proof tree we can associate a proof sequence in
R, each deduction rule in the proof tree corresponding to a rewriting step in
R. ut

The other implication does not hold without additional restrictions on R.

Example 8 Consider the system Rt in Example 1. Since Rt = Rs∪{B → A},
its transformed version will be the same as the one in example 4, except adding
one more rule, B → {A}. Remember that, with the system R in example 4
we have obtained that {A} →∗

R {B}. With the new rule we therefore get that
{A} →+

R {A}, thus the transformed version is not terminating. However, the
original system is decreasing, so it is operationally terminating. ut

25

However, confluence or left-linearity of R preserves termination.

Theorem 5 If R is confluent and operationally terminates on s, then R ter-
minates on {s}.

Proof: Suppose that R is not terminating on s, that is, that there is some
infinite rewriting sequence starting with {s}. We will show that we can build
an infinite proof tree in R.

For any non-terminating sequence s′0 →R s′1 → R . . . →R s′n →R . . . it
must be that there exists a minimal index k such that for all n > k, ŝ′n = ŝ′k.
That is because otherwise we could use confluence to obtain, by Theorem 2,
an operational non-terminating sequence in R. Therefore, any nonterminating
sequence eventually stabilizes on structure.

For a reachable term s′ that can start a non-terminating sequence in R, let
ks′ be the smallest natural number at which some non-terminating sequence
starting with s′ stabilizes on structure after ks′ rewrite steps in R. In other
words, for any infinite sequence in R starting with s′ whose minimal index at
which it stabilizes on structure is k, it is the case that ks′ ≤ k, and, moreover,
ks′ is the largest with this property.

Consider prefix sequence (s′0,n)0≤n≤k0 with s′0,0 = s and k0 = ks. We then
have that:

• all conditions which have been started are terminating; otherwise, once
one of these sequences has been started we could have obtained a k lower
k0;

• since no further rewriting step can occur on the structure, it should be
that a non terminating condition will be eventually started.

Consider a rewrite sequence (s′1,n)k0≤n≤k1 with s′1,k0
= s′0,k0

and k1 is mini-
mal such that s′1,k1

starts a non-terminating condition2. Consider now the proof

tree associated to s→R ŝ′0,k0
. Also, let s1 be the term which could be obtained

from ŝ′1,k1
applying the rule corresponding to the non-terminating condition

started.
Consider the (incomplete) proof tree for s →+

R s1 having the final rule a
transitivity rule and above the line the tree for s→+

R ŝ′1,k1
and the tree having

ŝ′1,k1
→R s1 as root and θ̂(cl)→+

R cr.
Iterating on the above construction and using minimality to guarantee that

once a non-terminating condition has been started, no rewriting occurs elsewere
but inside it, we can keep on expanding the proof tree so that it can grow
arbitrary large. But this contradicts the operational-termination assumption.

ut

Theorem 6 If R is left-linear and operationally terminates on s, then R ter-
minates on {s}.

2One could potentially prove that k1 = k0 + 1 but, since this is not essential to our proof,
we chose not to.

26

Proof: The proof proceeds along the same lines of for the confluence case, using
Lemma 2 each time soundness is needed to ensure conditions of Theorem 3 are
fulfilled. ut
Finally, we prove that ground confluence yields computational equivalence:

Theorem 7 (Computational equivalence) If R is finite, ground confluent and
operationally terminates on s then R is ground confluent and terminates on
terms reachable from {s}. That is, R is computationally equivalent to R.

Proof: That R terminates on {s} we know from Theorem 5. This implies that
for each s′ reachable from {s}, the set of terms s′ can be rewritten to is finite.
Let |s′| denote the number of elements in this set.

Let us now state the confluence this way: for any triple s′, s′1, s
′
2 such that

s′ is reachable from {s}, s′ →∗
R s′1 and s′ →∗

R s′2 we have that there exists t′

such that s′1 →∗
R t′ and s′2 →∗

R t′. Moreover, if ŝ′1 = ŝ′2 then t′ can be chosen

such that ŝ′1 = ŝ′2 = t̂′. We will prove this by induction on |{s}|. Notice that for

any s′ reachable from {s} we have that (by soundness and completeness) {ŝ′}
is also reachable from {s}, thus, R terminates on {ŝ′} and

∣∣∣{ŝ′}∣∣∣ ≤ |{s}|.
Consider s, s′, s′1, s

′
2 as above. We can assume that no bracket rules can be

applied to s′1 and s′2 (otherwise, we can apply them). By Soundness Theorem
we have that ŝ′ →∗

R ŝ′1 and ŝ′ →∗
R ŝ′2 whence there exists t such that ŝ′1 →∗

R t

and ŝ′2 →∗
R t. Let’s prove that t′ can be chosen such that t̂′ = t by induction on

the sum of rewriting steps for meeting ŝ′1 and ŝ′2.
The base case is ŝ′1 = ŝ′2. Consider a conditional position αcσ,i with minimal

length such that s′1|αcσ,i 6= s′2|αcσ,i .

• Suppose first that neither of them is ⊥. Using Soundness and Com-
pleteness theorems we get that {s} →∗

R {ŝ
′
1} →R {ŝ′1}[αcσ,i ← θ({cl})]

and also {θ({cl})} →∗
R {ŝ

′
1|αcσ,i

}. Applying Proposition 3 we also get

that {ŝ′1|αcσ,i
} →∗

R s′1|αcσ,i
, whence {θ({cl})} →∗

R s′1|αcσ,i
. Using the

same reasoning for s′2 we get that {θ({cl})} →∗
R s′2|αcσ,i . Noticing that∣∣{θ({cl})}∣∣ < ∣∣∣{ŝ′1}∣∣∣ ≤ |{s}| we can apply the induction hypothesis for

θ(cl), {θ({cl})}, s′1|αcσ,i , s
′
2|αcσ,i to join the two conditions.

• If one of them, let’s say s′1|αcσ,i
is ⊥ then we again have two cases: either

ρσ,i is left-linear or it is not. If it is, then we can start the condition
right away, and then proceed as above. If it is not, take for example to
positions αβ and αγ which should represent the same variable x. We

have that (by Proposition 3) ŝ′1|αβ →∗
R s′1|αβ and ŝ′1|αγ →∗

R s′1|αγ . Also,

ŝ′1|αβ = ŝ′1|αγ and
∣∣∣∣{ŝ′1|αβ}

∣∣∣∣ < ∣∣∣{ŝ′1}∣∣∣ ≤ |{s}| whence we can apply the

induction hypothesis for ŝ′1|αβ , {ŝ′1|αβ}, {s′1|αβ}, {s′2|αγ} to obtain a term

27

{s′x} such that {s′1|αβ} →∗
R {s

′
x}, {s′1|αγ} →∗

R {s
′
x} and ŝ′x = ŝ′1|αβ . Since

R is terminating, it follows that s′1|αβ →∗
R s′x and s′1|αγ →∗

R s′x. Using
this iteratively, we can rewrite s′1 to s′′1 such that all equal variables in l
have corresponding equal subterms. This allows us to start the condition
applying rule ρσ,i and then to proceed as above.

We can iterate this process until all conditions are joined and thus our affirma-
tion holds for ŝ′1 = ŝ′2.

Suppose now that ŝ′1 6= ŝ′2. Then, assume for simplicity that ŝ′1 6= t (one of
them should satisfy this) and consider s1 such that ŝ′1 →R s1 →∗

R t and let ρ
be the rule applied at position α using substitution θ. If ρ is linear, Then we
can “lift” the substitution θ directly. If ρ is not left-linear we can use the result
proven above to do the same thing. Let θ′ be the substitution obtained.

Now, if ρ was unconditional, then we can apply the corresponding rule to
s′1 at position 1α using substitution θ′. Suppose now that the rule applied was
conditional, say ρσ,i. First, we can assume that s′1|1αcσ,i

6=⊥ (otherwise, we
can now apply rule ρσ,i at position 1α using substitution θ′). Using Sound-

ness and Completeness theorems we get that {s} →∗
R {ŝ

′
1} →R {ŝ′1}[1αcσ,i ←

θ({cl})] and also {θ({cl})} →∗
R {

̂s′1|1αcσ,i
}. Applying Proposition 3 we also

get that { ̂s′1|1αcσ,i
} →∗

R s′1|1αcσ,i
. Also we know that {θ({cl})} →∗

R {cr}. Since∣∣{θ({cl})}∣∣ < |{s}| (it is a subterm of a term reachable from {s} in more than one
step), we ca apply the induction hypothesis for θ(cl), {θ({cl})}, s′1|1αcσ,i

, {cr}.
Because {cr} is normal form in R it follows that s′1|1αcσ,i

→∗
R {cr}. This means

that s′1 →∗
R s′1[1αcσ,i ← {cr}]. We can now apply ρ′σ,i to s′1[1αcσ,i ← {cr}] at

position iα using substitution θ′. ut
Then one can simulate reduction in a confluent CTRS R by using the trans-

formed TRS R. Reducing a Σ-term t to its normal form in R can be done as
follows: start reducing {t}; if it does not terminate, there exists a way t might
have not terminate in R; if it terminates and fn({t}) is its normal form, then
̂fn({t}) is the normal form of t in R .

6 Transforming more complex CTRSs

It is shown in [DO90] that join CTRSs can be transformed into equivalent
normal ones. This is done by adding one rule equal?(x, x) → true and trans-
lating condition t↓t′ into equal?(t, t′) → true; multiple join conditions can be
translated to one normal condition by adding an ∧ operator and one rule
true ∧ true → true. Left-linearity of the original system is destroyed, but if
the system is constructor-based, equal? can be defined on constructors and left
linearity is preserved (see [ABH03], for example). A CTRS is deterministic if
any rule r0 → ln+1 if l1 → r1∧ . . .∧ ln → rn satisfies Var(lj) ⊆

⋃j−1
k=0 Var(rk). A

rewrite engine supporting DCTRS solves conditions from left to right, accumu-
lating the substitution. Usually, conditional rhs are restricted to strong normal

28

forms (strongly DCTRS) or to being constructor terms (syntactically DCTRS).
To simplify presentation, let us assume that input systems are syntactically
DCTRS. The conditional arguments now need to carry on the accumulated
substitution; second, we now need to allow evaluation of multiple conditions
for the same rule and we need to keep track which condition is currently under
evaluation. Basically, each rule ρσ,i : r0 → ln+1 if l1 → r1 ∧ . . .∧ ln → rn is now
transformed into the following n+ 1 rules (where Vj =

⋃j−1
k=1 Var(rj)):

r̃0[cσ,i ←⊥]→ r̃0[cσ,i ← δ1({l1},⊥)] r̃0[cσ,i ← δn({rn},Vn)]→ {ln+1}
r̃0[cσ,i ← δj({rj},Vj)]→ r̃0[cσ,i ← δj+1({lj+1},Vj+1)], for 1 ≤ j < n

Example 9 The following syntactically DCTRS (inspired form [Ohl02]):

split(x, y : L)→ 〈L<x, y : L≥x〉 if split(x, L)→ 〈L<x, L≥x〉 ∧ x ≤ y → true
split(x, y : L)→ 〈y : L<x, L≥x〉 if split(x, L)→ 〈L<x, L≥x〉 ∧ x ≤ y → false
split(x,nil)→ 〈nil,nil〉 qsort(nil)→ nil
qsort(x : L)→ qsort(L<x) : x : qsort(L≥x) if split(x, L)→ 〈L<x, L≥x〉

is transformed (using the optimization mentioned in Section 4) to the TRS

split(x, y : L,⊥)→ split(x, y : L, [{split(x, L,⊥)},⊥])
split(x, y : L, [{〈L<x, L≥x〉},⊥])→ split(x, y : L, [{x ≤ y}, (L<x, L≥x)])
split(x, y : L, [{true}, (L<x, L≥x)])→ {〈L<x, y : L≥x〉}
split(x, y : L, [{false}, (L<x, L≥x)])→ {〈y : L<x, L≥x〉}

split(x,nil, C)→ {〈nil,nil〉} qsort(nil, C)→ {nil}
qsort(x : L,⊥)→ qsort(x : L, [{split(x, L,⊥)},⊥])
qsort(x : L, [{〈L<x, L≥x〉},⊥])→ qsort(L<x,⊥) : x : qsort(L≥x,⊥)
{{x}} → {x} split({x}, L, C)→ {split(x, L,⊥)})
split(x, {L}, C)→ {split(x, L,⊥)}) qsort({L}, C)→ {qsort(L,⊥)}

ut

Operational termination is now equivalent to quasi-decreasingness and the left
linearity of R is equivalent to the semilinearity [Mar97] of DCTRSs. The proofs
of the results in Section 5 were engineered to also work for this extended trans-
formation.

7 Discussion and Future Work

We presented a technique to eliminate conditional rules by replacing them with
unconditional rules. The generated TRS is computationally equivalent with the
original CRTS provided that the CTRS is ground confluent. Besides the theo-
retical results, we have also empirically shown that the proposed transformation
may lead to the development of faster conditional rewrite engines. In the case
of constructor-based CTRSs, the operation { } is not needed, so our transfor-
mation becomes the same as the one in [ABH03]; thus, our theoretical results

29

imply that the transformation in [ABH03] preserves ground confluence, which
is a stronger result than the one proved in [ABH03].

One should not use our transformation for equational theorem proving, be-
cause it is not sound for this purpose. Indeed, consider the equational variant of
Example 7. Then one can deduce {false} = f({false}, {false}) = {f(false,⊥)}
in the transformed specification, which has no counterpart in the original spec-
ification. However, if the original equational specification is terminating and
confluent as a rewrite system, then one can use the transformed system to prove
equalities in the original system by reducing them to their normal forms. We
postulate here that, for obvious reasons, no transformation resembling ours can
escape this fact. And by resembling we mean one that adds control arguments
to the operations and use it to control the rewriting sequence. By obvious we
mean that such a system cannot avoid having a term with undesirable values
on those control arguments, i.e., non-reachable terms and from that undesirable
equalities may be proved as shown in the above example.

Techniques to compact the generated TRS are worthwhile investigating in
detail. Also, propagation rules for { } can destroy useful partial reductions; can
one adapt our transformation to restart only the conditions that are invalidated
when a rewrite step occurred? We believe that confluence is preserved even in
the absence of left linearity or termination but we have not been able to prove
it.

We have not considered here rewrite systems modulo equations, such as as-
sociativity, commutativity and/or idempotency; extending our transformation
to such CTRSs is expected to be a non-trivial task. While commutativity and
idempotency can easily be eliminated by multiplicating the rules containing
these kind of operations, delaing with associativity seems like highly non-trivial.
As it is, this transformation could be used to correctly transforms those systems
for which associative operations don’t occur in the lhs of any conditional rule,
or if they do occur, there is only one way to match the lhs at a given position.
However, this is a rather strong assumption on the given rewriting system and
one should consider some way to deal with the systems not satisfying it, as well.

References

[ABH03] Sergio Antoy, Bernd Brassel, and Michael Hanus. Conditional nar-
rowing without conditions. In PPDP’03, pages 20–31. ACM Press,
2003.

[AGM90] Hitoshi Aida, Joseph A. Goguen, and José Meseguer. Compiling
concurrent rewriting onto the rewrite rule machine. In CTRS’90,
volume 516 of Lecture Notes in Computer Science, pages 320–332.
Springer, 1990.

[BCD+00] Peter Borovanský, Horatiu Cirstea, Hubert Dubois, Claude Kirch-
ner, Hélène Kirchner, Pierre-Etienne Moreau, Christophe Ringeis-

30

sen, and Marian Vittek. ELAN V 3.4 User Manual. LORIA, Nancy
(France), fourth edition, January 2000.

[BK86] Jan A. Bergstra and Jan Willem Klop. Conditional rewrite rules:
Confluence and termination. Journal of Computer and System Sci-
ences, 32(3):323–362, 1986.

[Bra99] Bernd Brassel. Bedingte narrowing-verfahren mit verzögerter
auswertung. Master’s thesis, RWTH Aachen, 1999. In german.

[CDE+03] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Nar-
ciso Mart́ı-Oliet, José Meseguer, and Carolyn L. Talcott. Maude
2.0 Manual, 2003. http://maude.cs.uiuc.edu/manual.

[DF98] Răzvan Diaconescu and Kokichi Futatsugi. CafeOBJ Report:
The Language, Proof Techniques, and Methodologies for Object-
Oriented Algebraic Specification. World Scientific, 1998. AMAST
Series in Computing, volume 6.

[DO90] Nachum Dershowitz and Mitsuhiro Okada. A rationale for condi-
tional equational programming. Journal of Theoretical Computer
Science, 75(1&2):111–138, 1990.

[DOS88] Nachum Dershowitz, Mitsuhiro Okada, and G. Sivakumar. Canon-
ical conditional rewrite systems. In Ewing L. Lusk and Ross A.
Overbeek, editors, CADE’98, volume 310 of Lecture Notes in Com-
puter Science, pages 538–549. Springer, 1988.

[DP88] Nachum Dershowitz and David A. Plaisted. Equational program-
ming. In J. E. Hayes, Donald Michie, and J. Richards, editors, Ma-
chine Intelligence 11, pages 21–56. Oxford University Press, 1988.

[GM87] Elio Giovannetti and Corrado Moiso. Notes on the elimination of
conditions. In Stéphane Kaplan and Jean-Pierre Jouannaud, edi-
tors, CTRS’87, volume 308 of Lecture Notes in Computer Science,
pages 91–97. Springer, 1987.

[GWM+00] Joseph Goguen, Timothy Winkler, José Meseguer, Kokichi Futat-
sugi, and Jean-Pierre Jouannaud. Introducing OBJ. In Software
Engineering with OBJ: algebraic specification in action, pages 3–
167. Kluwer, 2000.

[Han94] Michael Hanus. The integration of functions into logic program-
ming: From theory to practice. The Journal of Logic Programming,
19 & 20:583–628, 1994.

[Hin94] Claus Hintermeier. How to transform canonical decreasing CTRSs
into equivalent canonical TRSs. In CTRS’94, volume 968 of Lecture
Notes in Computer Science, pages 186–205. Springer, 1994.

31

[LMM05] Salvador Lucas, Claude Marché, and José Meseguer. Operational
termination of conditional term rewriting systems. Information
Processing Letters, 95(4):446–453, August 2005.

[Mar96] Massimo Marchiori. Unravelings and ultra-properties. In Michael
Hanus and Mario Rodŕıguez-Artalejo, editors, ALP’96, volume
1139 of Lecture Notes in Computer Science, pages 107–121.
Springer, 1996.

[Mar97] Massimo Marchiori. On deterministic conditional rewriting. Com-
putation Structures Group, Memo 405, MIT Laboratory for Com-
puter Science, 1997.

[MH94] Aart Middeldorp and Erik Hamoen. Completness results for ba-
sic narrowing. Appl. Algebra Eng. Commun. Comput., 5:213–253,
1994.

[NSS04] Naoki Nishida, Masahiko Sakai, and Toshiki Sakabe. On simulation-
completeness of unraveling for conditional term rewriting systems.
In LA Symposium 2004 Summer, volume 2004-7 of LA Symposium,
pages 1–6, 2004.

[Ohl99] Enno Ohlebusch. Transforming conditional rewrite systems with
extra variables into unconditional systems. In Harald Ganzinger,
David A. McAllester, and Andrei Voronkov, editors, LPAR’99, vol-
ume 1705 of Lecture Notes in Computer Science, pages 111–130.
Springer, 1999.

[Ohl02] Enno Ohlebusch. Advanced Topics in Term Rewriting. Springer,
2002.

[Ros04] Grigore Rosu. From conditional to unconditional rewriting. In
WADT’04, volume 3423 of Lecture Notes in Computer Science,
pages 218–233. Springer, 2004.

[Vir99] Patrick Viry. Elimination of conditions. Journal of Symbolic Com-
putation, 28:381–401, September 1999.

32

