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Abstract. We consider the problem of placing a maximal number of
disks in a rectangular region containing obstacles such that no two disks
intersect. Let α be a fixed real in (0, 1]. We are given a bounding rectangle
P and a set R of possibly intersecting unit disks whose centers lie in P .
The task is to pack a set B of m disjoint disks of radius α into P such that
no disk in B intersects a disk in R, where m is the maximum number of
unit disks that can be packed. Baur and Fekete showed that the problem
cannot be solved in polynomial time for any α < 1, unless P = NP. In
this paper we present a polynomial time algorithm for α = 2/3.

1 Introduction

Obnoxious facility location problems consider the placement of facilities of which
clients consider it undesirable to be in the proximity, for instance, nuclear power
plants or garbage dumps. There are several models for and variations to the
problem; see the survey by Cappanera [2]. Consider the following variant. Given
a bounding rectangle P , a set R of n points in P (the red points), and an integer
k, construct a set B of k (blue) points such that the minimum distance from a
blue point to another point (either red or blue) is maximized over all points
in B. If the optimal distance is denoted by ropt, then we can reformulate the
problem as follows. Given a set of n centers of possibly overlapping red disks
with unknown radius ropt, determine ropt and find a set of k blue disks with
radius ropt such that no blue disk overlaps any other disk, whether red or blue.

The problem of packing objects into a bounded region is one of the classic
problems in mathematics and theoretical computer science, see for example the
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monographs [10, 12] which are solely devoted to this problem, and the survey
by Tóth [11]. In this paper we consider problems related to packing disks into
a polygonal region. As pointed out by Baur and Fekete in [1], even when the
structure of the region and the objects are simple, only very little is known, see
for example [5, 8].

Consider the following decision problem corresponding to our optimization
problem. Given a set R of n points in P , an integer k and a radius r, decide
whether r > ropt or r ≤ ropt. In the latter case, we must also give a set B of k blue
disk with radius r such that no blue disk overlaps any other disk. If we had an
algorithm at our disposal that solves the decision problem in polynomial time,
then we could solve the original optimization problem in polynomial time by
applying Megiddo’s parametric search [9]. Unfortunately, the decision problem
is known to be NP-complete [4]. Therefore we are looking for an algorithm that
approximates the decision problem in the following sense. If m disks of radius
r can be placed, then our algorithm places m disks of radius αr, for some fixed
α ∈ (0, 1]. If m < k, then we know that r > ropt, and if m ≥ k, then either
r ≤ ropt, or r > ropt and αr ≤ ropt. In other words, placement of at least k disks
of radius less than αropt is guaranteed.

Obviously, we would like to maximize α while keeping a polynomial running
time. Given such an algorithm we can use it to compute an α-approximation to
the original optimization problem, again by using parametric search, albeit in a
somewhat non-standard way.

P

R

(a) (c)(b)

Fig. 1. (a) The input is a rectangle P and a set of (possibly overlapping) unit disks
R. (b) An optimal solution where m unit disks are packed. (c) Illustrating a 3/4-
approximation of m disks (radius of the disks is 3/4).

By rescaling r to 1, we can regard the decision problem as that of packing
m ≥ k unit disks into a rectangle that is already partially covered by n unit
disks. In this paper, we consider the following problem (see Fig. 1):

Problem 1 (ApproxSize) Let α ∈ (0, 1] be a fixed real. Given a bounding
rectangle P and a set R of possibly intersecting unit disks whose centers lie
in P , pack at least m non-intersecting disks of radius α into P , where m is the
maximal number of unit disks that can be packed in P .
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Note that we do not know the value of m a priori. For α = 1/2, the problem
can be solved by placing disks with radius 1/2 greedily, i.e., as long as there is
space to place a disk, we place one at an arbitrary feasible position. The following
simple charging argument shows that we will place at least m disks of radius 1/2
in this way. Consider an arbitrary placement of m unit disks, and charge a disk
C with radius 1/2 to a unit disk D if the center c of C lies inside D. After the
greedy algorithm has finished, all of the m unit disks have a charge of at least
one. If not, we can place a disk with radius 1/2 in an uncharged unit disk such
that their centers coincide. This contradicts the termination condition of the
greedy algorithm, thus the greedy algorithm is a 1/2-approximation algorithm.

In their pioneering work [6] Hochbaum and Maas gave a polynomial-time
approximation scheme (PTAS) for the problem of packing a maximal number
of unit disks into a region. The problem is known to be NP-complete [4]. Even
though the corresponding geometric dispersion problem looks very similar, in-
approximability results have been shown. Baur and Fekete [1] proved hardness
results for a variety of geometric dispersion problems, and their results can be
modified to our setting with a bit of effort. For the case when the packed objects
are unit squares, they show that ApproxSize cannot be solved in polynomial
time for any side length that exceeds 13/14, unless P = NP. By the same proof
technique they also showed that ApproxSize cannot be solved in polynomial
time for any α < 1. Furthermore, for the case when the objects are squares,
Baur and Fekete gave an O(n38)-time 2/3-approximation algorithm. Our algo-
rithm follows the same scheme of Baur and Fekete. First they compute a set S
of at least 2/3 · m unit squares, using the algorithm by Hochbaum and Maas.
Then they identify a set containing at least m squares of side length 2/3 with S.

However, because a square is a simpler shape and easier to place than a disk
their arguments cannot be generalized to disks. The main contribution of this
paper is a polynomial-time 2/3-approximation algorithm.

ApproxSize has applications in non-photorealistic rendering system, see
Fig. 2, where 3D models are to be rendered in an oil painting style, as well as in
random examinations of, e.g., soil or water.

2 Algorithm outline

We now give a rough outline of our algorithm DiskPacking, see Algorithm 1.
We use the term r-disk as shorthand for a disk of radius r. For r > 0 and a set
R ⊆ R

2 let the r-freespace of R, denoted Fr(R), be the set of the centers of all
r-disks that are completely contained in R. By F⊗

r (R) we denote the Minkowski
sum of Fr(R) and an r-disk.

We first compute the sets F1 = F1(P \ ⋃R) and F⊗
1 = F⊗

1 (P \ ⋃R), see
Fig. 3. Then, we apply the PTAS of Hochbaum and Maas [6] to F⊗

1 . For any
positive integer t, the PTAS places at least (1 − 1/t)2 · m unit disks into F⊗

1 in
O(nt2) time, where m is the maximum number of unit disks that can be packed
into F⊗

1 and n is the minimum number of unit squares whose union covers F⊗
1 .

Setting t = 26 we obtain in O(n676) time a set B of m′ ≥ 12/13 · m unit disks.
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Fig. 2. The packing problem we consider in this paper occur in non-photorealistic
rendering systems. For example, when a model should be rendered in an oil painting
style.

Note that the approximation scheme by Hochbaum and Maas can be modified
such that the algorithm is strongly polynomial with respect to the size of our
input. If the number of disks that can be packed is not polynomial in the size
of P and R then there must exist a huge empty square region within P . This
can be “cut out” and packed almost optimally by using a näıve approach. The
added error obtained is bounded by O(1/ñ2) where ñ is the optimal number of
disks that can be packed in the square. This step can be repeated until there are
no more large empty squares. If the algorithm is required to output the placed
disks then we have to add a term that is linear with respect to the number of
placed disks.

Given B we compute a set B2/3 of disks of radius 2/3 that has cardinality at
least 13/12 · m′ ≥ m and is contained in P \ ⋃R. We obtain B2/3 in two steps.
First, we compute a sufficiently large matching in the nearest-neighbor graph
G = (B, E) of B with respect to a metric dist(·, ·) that we will specify later.
Second, we define a region for each pair of matching unit disks such that we
can place three 2/3-disks in each region (see Fig. 4) and all regions are pairwise
disjoint. For each unmatched unit disk D we place a 2/3-disk D′ such that the
centers d and d′ of D and D′, respectively, coincide.

In the next sections we describe each step of Algorithm DiskPacking in
more detail.

3 The freespace and a metric on unit disks

We briefly recall the setting. We are given a set R of unit disks whose centers
lie in a rectangle P , see Fig. 1(a). The disks in R are allowed to intersect. We
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Fig. 3. The 1-freespace F⊗
1 (light shaded) and

a shortcut vv′ (dashed) between the connected
components C and C′ of F1.

4

4/3

Fig. 4. Packing three 2/3-disks in
the region spanned by a pair of
unit disks.

Algorithm 1: DiskPacking

1. Compute the freespace F1.
2. Use HM’s algorithm [6] to compute a set B of

at least 12
13

m unit disks in F1.
3. Introduce a metric dist(·, ·) on the set B of unit disks.
4. Compute the nearest neighbor graph

G = (B, E) with respect to d.
5. Find a sufficiently large matching in G.
6. For each matching pair of unit disks do
7. Pack three 2

3
-disks in B2/3.

8. For each unmatched unit disk do
9. Pack one 2

3
-disk in B2/3.

first compute the freespace F1(P \ ⋃R). According to Kedem et al. [7] the
union of s disks can be computed in O(s log2 s) time and its complexity is linear
in s. Applying their algorithm to the disks in R scaled by a factor of 2 and
intersecting the resulting union with P shrunk by 1 unit, we can compute F1 in
O(|R| log2 |R|) time, where |R| is the cardinality of R.

Next, we want to introduce a metric dist(·, ·) on unit disks in F⊗
1 . The idea of

our algorithm is to use the connected components of F1to identify all maximal
regions where we can place 2/3-disks. To guarantee that all such regions are
discovered we need to join components of F1that are not connected but still can
hold 2/3-disks in the region between them. To make this possible we next define
“shortcuts”.

By |pq| we denote the Euclidean distance between two points p and q in the
plane.

Definition 1. Let C and C ′ be two connected components of F1, and let v and v′

be vertices on the boundaries of C and C ′, respectively. We say that the straight
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line segment vv′ is a shortcut if |vv′| ≤ √
11 · 2/3 ≈ 2.21. Let S(C,C ′) be the

set of all shortcuts induced by C and C ′. We set

F+
1 = F1 ∪

⋃

C,C′∈F1
s∈S(C,C′)

s.

Figure 3 depicts F1, F⊗
1 , and a shortcut vv′. Throughout the paper we will

use upper-case letters to denote disks and the corresponding lower-case letters
to denote their centers. Now, we are ready to define our metric for a connected
component of F+

1 , see Fig. 5(a)–(c).

Definition 2. Let D and D′ be unit disks in F⊗
1 , with centers d and d′, respec-

tively. The distance dist(D,D′) of D and D′ is the length of the geodesic g(d, d′)
of d and d′ in F+

1 . The tunnel T (D,D′) of D and D′ is the union of all points
in P \ ∪R within distance 1 of a point on g(d, d′).

From the definition of F⊗
1 it is easy to see that any 2/3-disk D2/3 centered at

a point of g(d, d′) does not intersect any disk in R. (This will also follow from
Lemma 2.) Thus D2/3 is contained in the tunnel T (D,D′). Since R is the union
of a set of unit disks the geodesic between two points in F+

1 can only consist of
line segments and arcs of radius 2, see Fig. 5(b).

Recall that our algorithm will compute a matching in the nearest-neighbor
graph G = (B, E) induced by the metric dist(·, ·) on the set B of unit disks
that we get from the PTAS by Hochbaum and Maas. For each pair {D,D′} in
the matching we define a region T2/3(D,D′) into which we will then place three
2/3-disks as in Fig. 4. An obvious way to define T2/3(D,D′) would be to take the
union of all 2/3-disks centered at points of the geodesic between d and d′ in F2/3.
Our definition is unfortunately not that straight-forward, however our definition
will simplify the proof of the main theorem in Section 4. The theorem states
that T2/3(D,D′) and T2/3(F, F ′) are disjoint if D, D′, F , and F ′ are pairwise
disjoint. This is needed to ensure that the 2/3-disks that we will place in the
tunnels T2/3 are disjoint.

Definition 3. Let D and D′ be unit disks in F⊗
1 . Let g2/3(d, d′) be a geodesic

from d to d′ in F2/3(T (D,D′)). The 2/3-tunnel T2/3(D,D′) of D and D′ is the
union of all points in P \ ∪R within distance 2/3 of a point on g(d, d′).

According to Chang et al. [3] the geodesics g(d, d′) and g2/3(d, d′) from d to
d′ can be computed in O(|R|2 log |R|) time.

4 The nearest-neighbor graph

Recall that m is the maximum number of disjoint unit disks that fit in F⊗
1 . For

t = 26 the (1 − 1/t)2-approximation of Hochbaum and Maas [6] yields a set B
of m′ ≥ 12m/13 unit disks in F⊗

1 . Our idea is to compute the nearest-neighbor
graph G = (B, E) induced by the metric dist(·, ·), find a matching of sufficient
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D D′

T (D,D′)

T (D,D′)D

D′

T2/3(D, D′)

D′

g2/3(d, d′)

T (D, D′)

R ∈ R

D

T2/3(D, D′)

T2/3(D, D′)

g(d, d′) = g2/3(d, d′)

g(d, d′) = g2/3(d, d′)

v′

v

(a) (c)(b)

Fig. 5. Illustrating the geodesic g(d, d′) (a) in the unrestricted case, (b) in the case
when obstacles are present and, (c) in the special case of a shortcut.

size in G, and finally place three 2/3-disks in the 2/3-tunnel T2/3(C,D) for each
pair {C,D} in the matching. We show that if we place another 2/3-disk for each
unmatched disk in B, then we placed at least 13m′/12 ≥ m disks of radius 2/3
in total.

By construction, two unit disks D1 and D2 whose centers lie in different
components of F+

1 have an empty intersection, so we can consider each connected
component of F+

1 separately.
Note that G is a directed graph, where an edge (C,D) is in G if D is the

nearest neighbor of C, for C,D ∈ B. In case of a tie, we pick any of the nearest
neighbors of C, so every vertex in G has only one outgoing edge.

After running the algorithm of Hochbaum and Maas we greedily add to B
disjoint unit disks in F⊗

1 \⋃B until no more disks can be added. This is needed
to ensure the following lemma:

Lemma 1. The nearest-neighbor graph G = (B, E) (w.r.t. dist) is planar and
has maximum degree 6.

Proof. Let C ∈ B be an arbitrary unit disk, let C ′ ∈ B be the nearest neighbor
of C in B, and let D = {D1, . . . , Dk} ⊆ B be the neighbors of C in B for which
C is their nearest neighbor. If k ≤ 5 then the degree bound obviously holds, thus
we only have to consider the case when k ≥ 6. For each disk Di, 1 ≤ i ≤ k, place
a unit disk D′

i with center on g(c, di) such that |cd′
i| = 2, i.e., D′

i touches C, see
Fig. 6. From the definition of the nearest-neighbor graph it follows that every
point on g(c, di) is closer to C or Di than to any other unit disk in B \ {C,Di}.
As a result the set D′

1, . . . , D
′
k and C ′ has to be disjoint. Using a simple packing
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argument it follows that k = 6 and that C ′ ∈ D, and thus the degree bound
stated in the lemma holds.

Finally, G is planar since no two edges in a nearest-neighbor graph can in-
tersect. 	


C

D1
D2

D3

D4D5

C ′
D′

1 D′
2

D′
3

D′
4D′

5

D′
6

Fig. 6. Illustration for the proof of Lemma 1.

From now on we will call {C,D} ⊆ B a nearest pair if either (C,D) or
(D,C) is an edge in G, i.e., either D is the nearest disk in B to C or C is the
nearest disk in B to D. For every nearest pair {C,D} we define A(C,D) to
be C ∪ D ∪ T2/3(C,D). As the nearest pair {C,D} is a potential candidate to
become a matching pair, we want to ensure that we can use A(C,D) to pack
three 2/3-disks in it such that all the packed 2/3-disks are pairwise disjoint.
Thus, we have to prove:

(i) three 2/3-disks fit into A(C,D) and
(ii) for any nearest pair {E,F} where C,D,E and F are pairwise disjoint

A(C,D) ∩ A(E,F ) = ∅.
Note that we do not have to care whether A(C,D) intersects A(C,E) because
the matching will choose at most one pair out of {C,D} and {C,E}. Three
2/3-disks obviously fit into A(C,D) since C and D do not intersect, thus, (i) is
fulfilled. The remaining part of the paper will focus on proving (ii).

We split the proof into two parts. The first part (Lemma 4) shows that
T2/3(C,D) does not intersect any disk other than C and D. The second part
(Theorem 1) shows that no two 2/3-tunnels T2/3(C,D) and T2/3(E,F ) intersect.
We start with two technical lemmas that we need to prove the first part.

Lemma 2. Let C and D be two unit disks in F⊗
1 . If |cd| ≤ 2

3

√
11 then g2/3(c, d)

is a straight line segment.

Proof. Let T ′
2/3(C,D) be the Minkowski sum of a 2/3-disk and the line segment

cd, see Fig. 7(a). If g2/3(c, d) is not a line segment, then a disk E in B ∪ R
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e
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2
3π
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3

R ∈ R

5
3

(a) (b)T ′
2/3(C,D)

E

R ∈ R

e

S ∈ R

v D

C
c

dd

Fig. 7. Illustrations for (a) the proofs of Lemmas 2-3. (b) Illustrating case 2 in the
proof of Lemma 4.

intersects T ′
2/3(C,D). We establish a lower bound on |cd| for this to happen.

Note that C, D and E are pairwise disjoint as C and D are disks in B.
Clearly, the minimum distance between c and d is attained if E and T ′

2/3(C,D)
only intersect in a single point and furthermore, both E and C as well as E and
D intersect in a single point. This means that |ce| = |de| = 2. Moreover, the
Euclidean distance between e and the straight-line segment cd is 1 + 2

3 = 5
3 .

By Pythagoras’ theorem we calculate |cd| to be at least 2
3

√
11. This means that

T ′
2/3(C,D) is contained in P \ R.

If C and D belong to different components of F1then they must be connected
via a shortcut according to Definition 1. Thus, g2/3(c, d) is a line segment. 	


Lemma 3. Let D and E be two unit disks in F⊗
1 that are infinitesimally close

to each other. Then dist(D,E) ≤ 2
3π.

Proof. For simplicity we assume that D and E touch, as illustrated in Fig. 7(a).
The length of the curve g(D,E) is maximized if there is an obstacle disk R that
touches D and E and no shortcut could be taken. In this case g(D,E) describes
a circular arc of radius 2 spanning 60◦, thus its length is 1

6 · 2 · 2π = 2
3π. 	


Now, we are ready to prove the first part:

Lemma 4. Let {C,D} ⊆ B be a nearest pair. No disk of B∪R\{C,D} intersects
T2/3(C,D).

Proof. From the definition of freespace and Definitions 2 and 3 it immediately
follows that neither T (C,D) nor T2/3(C,D) are intersected by a disk in R. Thus,
it remains to prove that apart from C and D no disk in B intersects T2/3(C,D).

W.l.o.g. let C be the disk in R closest to D. The proof is done by contradic-
tion, i.e, we assume that there is a disk E ∈ B that intersects T2/3(C,D).
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First, we move a unit disk on g(C,D) from the position of D to the first
position in which it hits E, denote the disk in this position by D. We claim
that the length of g(d, e), within F+

1 , is shorter than g(c, d). This obviously
contradicts C being the nearest neighbor of D, and would thereby complete the
proof of the lemma.

We have to consider two cases for the upper bound on the length of g(d, e).
Case 1: If d is in F1 then the length of g(d, e) is maximized if there is an

obstacle disk R ∈ R that touches D and E and, g(d, e) is an arc, denoted A,
of radius 2 and spanning 60◦. Lemma 3 yields g(d, e) ≤ 2

3 . It might be that A
does not lie entirely within F1. However, as D,E ⊆ F⊗

1 , there must then be a
shortcut that would shorten the length of g(d, e) even further.

Next we give a lower bound on the length of g(c, d). Since E touches T2/3(C,D)
and D it follows that C and D are disjoint, otherwise E could not intersect
T2/3(C,D). Consequently C,D and E are pairwise disjoint and, according to
Lemma 2, the Euclidean distance between c and d is greater than 2

3

√
11. Putting

the two bounds together we get:

g(d, e) ≤ 2
3

<
2
3

√
11 < g(c, d).

Case 2: If d is not in F1 then d must lie on a shortcut vv′ and the unit
disk D intersects at least one disk in R. Let v be the endpoint of the shortcut
(v, v′) closest to E and let D2/3 be the 2/3-disk centered at d. Note that v must
lie in the same component as e, thus g(d, e) consists of a straight line segment
from d to v followed by the geodesic g(v, e). The length of g(d, e) is maximized
if the angle ∠vde is maximized. This is the case if a unit disk R ∈ R touches
E and D2/3 and a unit disk S ∈ R touches D2/3 such that d, r and s are
collinear, as shown in Figure 7(b). By parametrization it follows that the length
of g(d, e) is maximized if the length of dv is maximized, which is bounded by
1/3

√
11, according to Lemma 2. By Pythagoras’ theorem we can now compute

the coordinates of e, they are ≈ (−1.8182,−0.8333), where the coordinate system
is fixed by d = (0, 0) and r = (0,−5/3). The geodesic g(v, e) consists of an arc
of radius 2, applying the cosine theorem then yields that the length of g(v, e) is
approximately 1.1105, which gives that g(d, e) < 1

3

√
11 + 1.105.

Next we need a lower bound on the length of g(c, d). Using the same ideas
as above, the position of c can be computed by Pythagoras’ theorem to be
≈ (−1.9356, 1.1632) and the length of the geodesic g(c, v) is at least 1.4607
using the cosine theorem. Thus,

g(d, e) ≤ 1
3

√
11 + 1.105 <

1
3

√
11 + 1.4607 < g(c, d).

Since g(d, e) has been shown to be shorter than g(c, d), in all cases, d must be
closer to c than to e, which is a contradiction to the initial assumption. This
completes the proof of the lemma.

Note that the disks involved in this construction can be moved such that the
lengths of g(d, e) and g(c, d) changes. However, the above construction minimizes
their difference. 	


10



(b)(a)
R

C
D

F

p

E

S

R

C
D

E F

p
4
3

(0, 7
3 )

(0,− 7
3

1

S

pCD

Fig. 8. Illustrating the proof of (a) Theorem 1 and (b) case (ii) in the proof of Theo-
rem 1.

Lemma 4 proves that no other disks apart from C and D intersect T2/3(C,D).
It remains to prove that no two 2

3 -tunnels T2/3(C,D) and T2/3(E,F ) intersect.

Theorem 1. Let {C,D}, {E,F} ⊆ B be two nearest pairs such that C,D,E
and F are pairwise disjoint, it holds that T2/3(C,D) ∩ T2/3(E,F ) = ∅.

Proof. The proof is by contradiction again. Assume that T2/3(C,D) and T2/3(E,F )
intersect.

Note that the geodesics g2/3(c, d) and g2/3(e, f) cannot intersect. If they did
it would immediately follow that g(c, d) and g(e, f) also intersect. Let i be one
of the intersection points of g(c, d) and g(e, f). This implies that the lengths of
g(c, i), g(d, i), g(e, i) and g(f, i) must all be equal. Then, however, either g(c, d)
or g(e, f) could not be a geodesic–a contradiction. Thus, we an assume that
T2/3(C,D) and T2/3(E,F ) intersect but the do not cross. Note that this also
includes the case when g(c, d) and g(e, f) follows the same shortcut. Thus, it
is enough to prove the theorem for the case in which the tunnels intersect in a
single point p, see Fig. 8(a).

Thus, p lies in F1 and neither g(c, d) nor g(e, f) takes a shortcut containing
p and we can w.l.o.g. assume that no shortcut is taken at all. Again, we will
show that {C,D} and {E,F} can not be nearest pairs at the same time. We
observe that at least one of the disks {C,D,E, F} intersects the unit disk P
with center p; otherwise there would be another disk in B located in the space
between C,D,E and F which would immediately contradict {C,D} as well as
{E,F} being nearest pairs. W.l.o.g. let C be a disk that intersects P .

Let pCD be the point on g2/3(C,D) such that |ppCD| = 2/3, see Fig. 8(a).
Define pEF correspondingly. We will assume that there is a vicinity of pCD and
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pEF in which g2/3(C,D) and g2/3(E,F ) are arcs. The case when one vicinity
of pCD and pEF is a straight-line is easier and can be handled using similar
arguments.

The curvature of g2/3(C,D) and g2/3(E,F ) in a vicinity of pCD and pEF

induces the existence of two disks R,S ∈ R as illustrated in Fig. 8(a). Since R
and S forces the curvature of g2/3(C,D) and g2/3(E,F ) we may introduce the
following coordinate system. The origin is p and the coordinates of r and s are
(0, 7

3 ) and (0,− 7
3 ), respectively.

As a consequence of Lemma 2 we get that g2/3(C,D) and g2/3(E,F ) start
with a straight-line segment of length at least 1

3

√
11, again see Fig. 8(a). Thus,

the curvature of g2/3(C,D) in pCD infers that |cpCD| ≥ 1
3

√
11 holds, which

means that C either lies completely to the left of the y-axis or to the right. This
holds analogously for the other disks. W.l.o.g. we assume that C and E lie to
the left of the y-axis and D and F lie to the right, see Fig. 8(a).

Note that we have to take care which relationship inferred the pairs {C,D}
and {E,F} are nearest pairs, e.g. C could be the nearest neighbor of D or D
could be the nearest neighbor of C. We will prove the following:

(i) dist(C,E) < dist(E,F )
(ii) dist(C,E) < dist(C,D)
(iii) dist(D,F ) < dist(C,D)

Item (i) says that C is closer to E than F is. Thus, in order for {E,F} to be
a nearest pair, E must be the nearest neighbor of F . We use this fact to show
that (ii) and (iii) hold. Together, (ii) and (iii) comprise the contradiction: (ii)
says that D is not the nearest neighbor of C, while (iii) says that C is not the
nearest neighbor of D. Hence, {C,D} cannot be a nearest pair.

(i): To prove that dist(C,E) < dist(E,F ) we will argue that T (E,F ) inter-
sects C, i.e. there is a unit disk E whose center lies on g(E,F ) that intersects
C and not F . Let E be defined by the left and bottommost point e on g(E,F )
such that E intersects C. This is illustrated in Fig. 8(b). The proof of (i) can
then be completed by showing that dist(C,E) < dist(E,F ).

First we prove that there exists a position of e such that E intersects C, i.e,
a unit disk cannot pass between C and S without intersecting C. This could
only be achieved by maximizing |cs|. Recall that C intersects P , thus, |cs| is
maximized if C touches R and P , i.e. C takes its left and topmost position, as
shown in Fig. 8(b). Using Pythagoras’ theorem we can compute the coordinates
of c for this setting to be ≈ (−1.62, 1.17). From now on we will omit the sign ≈
when stating results of the calculations. Hence, it holds that |cs| ≤ 3.86 which in
turn yields that no unit disk can pass between C and S since this would require
|cs| ≥ 4.

Next, we try to minimize the distance dist(E,F ) in order to get F to be
closer to E than to C. For this E should take its rightmost position, which is
attained if C is as far as possible from S, i.e. takes position (−1.62, 1.17) again.
Using Pythagoras’ theorem, the coordinates of e is (−1.29,−0.80). This means
that |epEF | ≥ 1.29 and thus dist(E,F ) ≥ 1.29+ 1

3

√
11 as |pEF F | ≥ 1

3

√
11 holds.
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According to Lemma 3 dist(C,E) ≤ 2
3π, and we have:

dist(C,E) ≤ 2
3
π < 1.29 +

1
3

√
11 ≤ dist(E,F ),

which concludes (i).
(ii): To prove that dist(C,E) < dist(C,D) always holds we first establish

a lower bound on dist(C,D) and then an upper bound on dist(C,E). For the
lower bound on we try to push C and D as close as possible together under the
restriction that E can still be the nearest neighbor of F . To minimize dist(C,D),
C should take its right and bottommost position and D should take its left and
bottommost position.

For the bound on D we only use that D is not allowed to intersect the tunnel
T (E,F ). If it did we would get dist(D,E) < dist(E,F ) by a similar argument
as in (i). (Here, the corresponding point f can even lie further to the right
than (1.29,−0.80) as D does not have to intersect P .) However, dist(D,E) <
dist(E,F ) together with (i) would immediately contradict {E,F} to be a nearest
pair. Disk D takes its left and bottommost position without intersecting T (E,F )
if D touches R and is infinitesimal close to T (E,F ). For simplicity we assume
that D touches T (E,F ), see Fig. 9(a). Standard trigonometric calculations give
the left and bottommost coordinates of d to be (1.70, 1.29).

For the right and bottommost position of C we use the following arguments.
Let f be the rightmost point on g(E,F ) such that F touches either C or E.
We use that E has to be touched by C otherwise C is closer to F than E. We
compute the right and bottommost position of C if F touches C and E at the
same time, see Fig. 9(b). Note, that this actually yields a position in which C
is closer to F than E (w.r.t. metric d). Again, standard trigonometry gives that
the right and bottommost coordinates of c is (−1.35, 0.86).

Now a lower bound on |cd| is the Euclidean distance between (1.70, 1.29) and
(−1.35, 0.86) which is 3.08. We obtain the final lower bound on dist(C,D) by
noting that both C and D touch R, if not the Euclidean distance between c and
d could be shortened, hence the geodesic has to follow the circular arc around
R, thus we get dist(C,D) > 3.49.

By Pythagoras’ theorem we can also compute the coordinates of f to be
(0.25,−0.35) – we will need them in the proof of (iii).

To prove (ii) it remains to show an upper bound on dist(C,E) which is less
than 3.49. We try to push C and E as far away from each other as possible,
under the restriction that E is still the nearest neighbor of F . It is clear that C
has to take its left and topmost position which we already know is (−1.62, 1.17),
from (i), while E should take its left and bottommost position. Again, we only
use that on the rightmost point f on g(E,F ) such that either C or E is touched
by F , it must be E that is touched. First, we compute the rightmost point f
on g(E,F ) where F touches C taking position (−1.62, 1.17) and touches S. As
we know the coordinates of c and s, we can compute the coordinates of f by
Pythagoras’ theorem. It holds that f is (−0.33,−0.36), see Figure 10(a). Now, E
takes its left and bottommost position if it touches S and F . Using Pythagoras’
again, we get that e = (−1.87,−1.64). This yields the upper bound on |ce| of
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Fig. 9. Illustration of the proof of the lower bound on |cd| in case (ii).

2.82. However, g(C,E) may have to curve around S so we get dist(C,E) < π.
Putting it together we get:

dist(C,E) < π < 3.49 < dist(C,D),

and we are done with (ii).
(iii): We use the lower bound on dist(C,D) that was derived in (ii). Thus,

we only have to show an upper bound on dist(D,F ) which is less than 3.49.
For the upper bound we try to push D and F as far away from each other as
possible, under the restriction that E can still be the nearest neighbor of F . For
this, D has to take its right and topmost position while F has to take its right
and bottommost position. We can assume that D takes position (1.70, 1.29), the
position of D which was responsible for the lower bound on dist(C,D). This
assumption is justified since, if D does not take position (1.70, 1.29), we move
D on g(C,D) to this position, say D, and show that dist(D,F ) < 3.49 Then,
dist(D,F ) < dist(C,D) also holds since dist(C,D) > 3.49.

To maximize dist(D,F ) we need F to take its bottommost position. Consider
the disk P ′ that touches C and S and lies to the right of cs, see Figure 10(b).
For the right and bottommost position of C, which is (−1.35, 0.86), we already
computed the position of P ′ to be (0.25,−0.35). This implies that D does not
intersect P ′ as |dp′| > 2 (recall that the position of D was decided in the previous
section). We have shown that C, D and E do not intersect P ′, however, then
F has to intersect P ′ otherwise there would be another disk in B located in the
space between C,D,E and F which would immediately contradict {C,D} as well
as {E,F} being nearest pairs. The disk F now takes its right and bottommost
position if it touches P ′ and S. Using Pythagoras’ theorem the position of F is
shown to be (1.84,−1.55).
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As a result we get |df | < 2.84 but since g(D,F ) may have to curve around
some other disk we get dist(D,F ) < 3.18. Putting it together we get:

dist(D,F ) < 3.18 < 3.49 < dist(C,D) ≤ dist(C,D),

and we are done with (iii) and, hence also the theorem. 	
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Fig. 10. (a) The upper bound on |ce| in case (ii). (b) Illustrating the proof of case (iii).

5 The set B2/3

After computing B and the nearest neighbor graph G = (B, E), we compute a
matching in G. Let m′ = |B| be the number of unit disks in B. We show that we
can find a matching in G where the number of matched disks is at least 1

6 · m′.
Observe that G can consist of more than one connected component. We look
at each connected component, denoted C, separately. From Lemma 1 it follows
that C contains a spanning tree of degree at most 6. It is easy to see that there
is a matching in C that matches at least 1

6 · c disks, where c is the number of
disks in C. Doing this for each connected component yields a matching in G that
contains at least 1

6 · m′ matched disks.
According to Theorem 1 and Lemma 4 we can pack three 2/3-disks in

A(C,D) for every matched pair {C,D} such that these 2/3-disks are pairwise
disjoint. For each of the remaining unmatched disks we pack one 2/3-disk in each
disk. The set of all the placed disks is denoted B2/3. By construction, there are
no interferences between these sets belonging to different connected components
of F+

1 . Thus, the cardinality of B2/3 is at least 1
6 · 3

2 ·m′ + 5
6 ·m′ = 13

12 ·m′. Since
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the cardinality of B is at least 12
13 ·m, the set B2/3 contains at least m 2/3-disks

and we can conclude with the following theorem:

Theorem 2. Algorithm DiskPacking is a polynomial-time 2/3-approximation
for the problem ApproxSize.

6 Conclusion

Naturally our result is purely of theoretic interest. The bottleneck for the running
time is the application of Hochbaum and Maas’ PTAS with approximation factor
12/13. To obtain an algorithm with better running time, it seems unavoidable to
use a completely different approach. For future work it would also be desirable
to narrow the gap between the approximation factor of 2/3 of our algorithm and
the inapproximability result of Baur and Fekete [1]. We conjecture that, unless
P = NP, the lower bound of 2/3 is indeed tight. However, by Baur and Fekete’s
approach one gets only an inapproximability result which is slightly smaller than
1.
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