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Abstract

We consider model based estimates for set-up time. The general
setting we are interested in is the following: given a disk and a sequence
of read/write requests to certain locations, we would like to know the
total time of transitions (set-up time) when these requests are served in
an orderly fashion. The problem becomes nontrivial when we have, as
is typically the case, only the counts of requests to each location rather
then the whole input, and we can only hope to estimate the required
time. Models that estimate the set-up time have been suggested and
heavily used as far back as the sixties. However, not much theory exists
to enable a qualitative understanding of such models. To this end we
introduce several properties such as (i) super-additivity which means
that the set-up time estimate decreases as the input data is refined
(ii) monotonicity which means that more activity produces more set-
up time, and (iii) an approximation guarantee for the estimate with
respect to the worst possible time, by which we can study different
models.

We provide criteria for super-additivity and monotonicity to hold
for popular models such as the Partial Markov model (PMM). The cri-
teria show that the estimate produced by these models will be mono-
tone for any reasonable system. We also show that the independent
reference model (IRM) based estimate functions as a worst case esti-
mate in the sense that the estimate is guaranteed to be at least half of
the actual set-up time. Using our criteria we prove that PMM based
estimates are always super additive when applied to the special metrics
that correspond to seek times of disk drives.

To establish our theoretical results we use the theory of finite metric
spaces, and en route show a result of independent interest in that
theory, which is a strengthening of a theorem of J.B. Kelly [5] about
the properties of metrics that are formed by concave functions on the
line.
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1A preliminary version of this paper appears in the proceedings of COCOON 2006
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1 Introduction

Set-up times which are associated with moving a system from one state to
another play a major role in the performance analysis of systems. Perhaps
the most glaring example is provided by disk based storage systems in which
the states correspond to locations on the disk. In this case the total duration
of the movements of the disk’s head (from one location to another or from
one disk track to another), aka the set-up time is the dominant feature in
the total service time, and hence a lot of effort is put in order to minimize it
by means of reordering the disk’s content. Interestingly enough, in this and
in other real world applications this becomes a problem with partial input.
The reason is quite simple: to collect all transition information will be too
costly and will render the original optimization useless as the set-up time
will be second to the input collection time. Instead, the only information
typically available is the state counts, ie the number of times that each state
was requested. In graph language this is like finding out the length of a path
in a weighted graph where we only know the number of times that each node
was visited.

In order to estimate the set-up time, researchers have used stochastic
models, in other words a stochastic process with parameters that are inher-
ited from the observed count. The simplest of these models, the Independent
Reference Model (IRM) is very intuitive: the requests at any time are drawn
(independently of the previous state) from a distribution proportional to the
count vector. This simple model and its generalization, the Partial Markov
models (PMM) in which there is a bias toward “staying put”, are the most
popular models for the analysis of storage system performance; see for for
example [1, 3, 4, 8, 10, 12, 13, 16, 17, 18] among many.

In this paper we consider new and basic properties of set-up time esti-
mates and check whether they hold for models such as the IRM and PMM.
These properties relate the set-up time estimates to the worst case case and
examine the changes in the estimate due to a different way of collecting the
data. The applicability of these properties to various models is an evidence
to their quality, and moreover they allow for a rigorous study of models that
are heavily used, often with not enough underlying rationale. To put things
in perspective, it is interesting to note that while the IRM and PMM are
some of the oldest models of user access patterns, dating back to the six-
ties, the basic properties considered above have never been explored. What
follows is a brief description of these properties.

Given time intervals I ⊂ J it is obvious that a system suffers at least as
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much set-up time during J as it does during I. The monotonicity property
simply says that the set-up time estimate of the model reflects that fact, ie
it gives an estimate for J which is at least as big as the one for I. A model
is said to be super-additive if the addition of input information (by means
of higher resolution of measurements) does not increase the set-up time
estimate. It is almost immediate that super-additivity implies monotonicity
and that it applies to the worst case time which provides the largest possible
set-up time consistent with a given input data. The last property compares
the set-up time estimate with the worst case estimate (which is NP hard to
compute). Showing that the estimate of a model does not deviate much from
the worst case estimate is tantamount to showing that is not over optimistic.

Our results: We show that monotonicity applies to IRM and its extension
PMM, regardless of the metric involved. We further show that IRM set-up
time estimate is a 1/2 approximation to the worst case and that PMM based
estimates also approximate the worst case but with smaller approximation
constants. Our results concerning super-additivity have the following curi-
ous feature: Super additivity holds in the IRM and PMM models provided
that the “time-metric”, ie the times associated with the transition times be-
tween pair of states, belongs to the well studied class of metric spaces known
as square Euclidean metrics. Not all metric spaces belong to this class, but
surprisingly, the physical features of the motion of disk drives allows one to
show that their time-metrics are members of this class, whence providing a
proof of super additivity for IRM and PMM to these I/O systems. These
results show that the IRM and in certain cases the PMM can be used to
produce reliably conservative estimates which are easy to calculate and that
easily lend themselves to compactness-of-input/accuracy tradeoff. Follow-
ing these observations the first and second authors used the IRM and PMM
set-up time estimates as a central ingredient in a commercially available ap-
plication which dynamically reconfigures data in a disk array. Details of the
application and successful results from real production environments are to
be presented elsewhere.

Techniques: Our results are first proven for the IRM model. We later
provide a formula which expresses the PMM estimate in terms of the IRM
estimate by varying the model parameters. Consequently, several properties
of the IRM generalize to the PMM. The formula also provides a fast method
of computing the PMM estimate directly without computing the associated
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stationary distribution. Naturally, much of the notions and proofs come from
and use the theory of metric spaces. The classes of interest in this discussion
are `1-metrics and square Euclidean metrics, as well as the general class of
metrics. In the process of establishing our results we extend a result of Kelly
on the properties of invariant metrics on the real line coming from concave
functions.

Organization: The rest of the paper is organized as follows. Section 2
Introduces set-up times and discusses some basic definitions and facts from
the theory of metric spaces relevant to our discussion. Section 3 describes
the basic models which we will study and introduces the concepts of mono-
tonicity, super additivity, dominance and approximation. In section 4 we
prove criteria for monotonicity and super additivity of the IRM estimate in
terms of metric properties of the set-up time function. We also discuss the
relation between the IRM set-up time estimate and those of other models
such as the PPM. Finally, Section 5 discusses properties of metric arising
from the seek times in disk drives.

2 Preliminaries

2.1 Set-up time

Throughout the paper we let X represent the states of a system. In this
section we let n denote the number of states in X. Following [1] section 6.2,
we let the function d : X ×X −→ R+, be the set-up time function; namely,
for i, j ∈ X, d(i, j) = di,j represents the amount of time which is required
to switch the system from state i to state j.

The abstract notion of a state can acquire many different meanings in
different applications. For example, the states can refer to different tasks
that the system needs to accomplish as in production systems and proces-
sors, or, to physical locations where tasks should be conducted as in storage
systems. We assume that there is some process which generates a sequence
of requests for the states of X.

Given a time interval I let xI = x = x1, ..., xm be the sequence of requests
for states of X during I. The Total set-up time during time interval I is
simply the sum of the set-up times between consecutive requests

T (x) =
m−1∑

j=1

d(xj , xj+1)
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In some cases we are not given the sequence of requests (a trace) but
rather some partial information about the sequence x. We wish to estimate
the total set-up time of the sequence using the information available to us.
In this paper we shall assume that the partial information available to us is
the activity vector a = aI = (a1, ..., an), where ai is the number of requests
for state i during time interval I. We will assume that in general a can be
any vector with integer nonnegative entries. We let a =

∑
i ai be the total

number of requests.

2.2 Metric Spaces

The theory of finite metric spaces will be used in the statements and proofs
of our results. The following section provides some basic definitions and
facts about metric spaces which will be needed later on.

We continue with a few standard definitions. A pair (X, d) where X is
a set and d is a function d : X × X −→ R+ is called a metric-space if (i)
d(x, x) = 0 for all x ∈ X and d(x, y) > 0 for x 6= y, (ii) d(x, y) = d(y, x)
for all x, y ∈ X and (iii) d(x, y) + d(y, z) ≥ d(x, z) for all x, y, z ∈ X. If
instead of property (i) we only require that d(x, x) = 0 we say that (X, d)
form a semi-metric. If we do not require the symmetry property, we say
that (X, d) form a Pseudometric. One can “symmetrize” such an object by
taking d∗(x, y) = (d(x, y) + d(y, x))/2. It can be easily seen that d∗ satisfies
1’ and 3’ if d does. Set-up time functions can be reasonably assumed to
satisfy the triangle inequality since one way to switch from state x to state
z is to first switch from x to y and then from y to z. Set-up time functions
cannot always be assumed to be symmetric as can be seen from rotational
latency in disk drives.

Certain metric spaces are induced by norms. The `p norm on Rn is

‖x‖p = (
∑n
i=1 |xi|p)

1
p where x = (x1, . . . , xn). For two vectors in Rn x

and y this defines a distance dp(x,y) = ‖x − y‖p. A metric space (X, d)
is called an `p-metric if there exists a mapping φ : X −→ Rn such that
d(x, y) = ‖φ(x) − φ(y)‖p for all x, y ∈ X. We sometimes say Euclidean
metric instead of `2-metric. A space (X, d) is square Euclidean if (X,

√
d) is

Euclidean.

2.2.1 Some basic results about metric spaces

Assume (X, d) is a finite metric space, i.e., X = {x1, . . . , xn}. There are two
classical criteria for it to be Euclidean.
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• Schoenberg’s criterion: (X, d) is Euclidean if and only if for all n real
numbers v1, . . . , vn with

∑
i vi = 0 we have

∑
i,j vivjd

2
i,j ≤ 0.

• Cayley’s criterion: Consider the order n − 1 matrix M with entries
Mi,j = d2(xi, xn) + d2(xj , xn) − d2(xi, xj), i, j = 1, . . . , n − 1. Then
(X, d) is Euclidean if and only if the matrix M is positive semi definite,
ie, all of its eigenvalues are nonnegative.

We say that a metric (X, d) is L1 if there exist functions fx, x ∈ X such
that dx,y =

∫
R |fx(t)− fy(t)|dt. It is known that a finite metric space is L1

iff it is `1. Another well known fact we later use is that every `1-metric is
square Euclidean [7]. Square Euclidean distances do not necessarily satisfy
the triangle inequality. They do, however, have many desirable properties,
and have found much use in the theory of algorithms, especially in the
approximation of NP-hard problems; this is since it is possible to optimize
linear objective functions over these distances. The most celebrated example
is the recent paper of Arora, Rao and Vazirani [2] where an O(

√
log n)

approximation algorithm to sparsest-cut is presented. See also [9] for the
way square-Euclidean distances are harnessed to generate good algorithms.
In [6] it is shown, that some metric spaces are very far from any square
Euclidean metrics.

A distance function can be defined on the line given a real positive func-
tion F with certain properties. We define the distance dF between i and
j as dF (i, j) = F (|i − j|). This framework was introduced in [11, 14], and
is utilized in this paper. We note that if F is convex then dF satisfies the
triangle inequality and thus provides a metric.

3 Models and their properties

Recall that our input is an activity vector, that is the count of requests to the
different states; however, in order to know the total set-up time we need to
know the actual sequence of requests. A model to estimate a set-up time is an
interpretation of an activity vector as a distribution over sequences, and the
resulting estimate is then the expected set-up time for a random sequence
drawn from this distribution. For example some models will interpret an
activity vector (100, 100) as a uniform distribution of sequences that visit
either location 1 or 2, while other will consider the distribution in which
either all first 100 requests are for the first location or all of them were for
the other; clearly the two different models in the above example will produce
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very different time estimates. Formally, a model M is a map which assigns
to each activity vector a a probability measure µ(a) on sequences of requests
of length a =

∑
i∈x ai. Given a model M , a set-up time function d and a

time interval I with activity vector aI , the total set-up time during I is

T (a, d : M) = E(T ) =

∫

x
T (x)dµ(x)

We will refer to T (a, d;M) as the model (or model based) estimate. 2.

3.1 Examples of models and estimates

We now describe several models M and their associated set-up time esti-
mates.

The IRM (independent reference model) The IRM models indepen-
dent random requests to states in X, taking into account that the different
states are not uniformly popular. The model is parameterized by a probabil-
ity distribution p = pi on the set of states X. The model itself is then given
by the product measure on Xa. The product measure reflects an underlying
assumption that requests are generated independently of each other. To be
compatible with the observed activity vector we set the request probability
for state i to be pi = ai/a and the length of the generated sequence to be a.
For this model the expected total set-up time is

T (a, d; IRM) = a
∑

i,j

pipjdi,j =
1

a

∑

i,j

aiajdi,j

We will refer to T (a, d; IRM) as the IRM estimate. For ease of notation we
will sometimes use T (a, d) instead of T (a, d; IRM).

The worst case (supremum) model In the worst case model W we
assume that the sequence of states during time interval I was the sequence
which maximizes the total set-up time among all sequences which are con-
sistent with the vector a. The measure is thus a δ measure on the worst

2During time interval I there were a − 1 transitions between states. It turns out to
be more convenient to estimate the total time needed for a transitions, thus we add a
“virtual” transition between the last state and the first state. It is important to note that
in all cases of practical interest, a is a large number and the addition of the last “virtual”
transition has negligible effect.
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case sequence. Consequently,

T (a, d;W ) = max
a∑

i=1

dxi,xi+1

where the maximum is over all sequences of states in X, of length a that
agree with the frequency vector a and x1 = xa+1. We refer to T (a, d;W ) as
the worst case estimate.

The PMM (Partial Markov models) A Partial Markov model, or
PMM for short is a Markov chain which models a “lazy” walk of the IRM.
In other words, at a state i there is a probability ri of not moving to an-
other state, and in the event of a move, the next state is j with probability
qj , independent of the current requested state. Consequently, the transi-
tion probabilities of moving from i to j are pi,j = (1 − ri)qj for i 6= j and
pi,i = ri + (1 − ri)qi. Here 0 ≤ ri, qi ≤ 1. We call the vector r = (ri) the
locality vector of the model. Given a locality vector r and an observed ac-
tivity vector a for some time interval I there exists a unique partial Markov
model P which is compatible with r and a. By compatibility we mean that
r is the locality vector of P and a/a is the stationary distribution of P which
expresses the expected reference probabilities in the model P . Fix the vector
r = (ri). We let P r denote the partial Markov model which for each interval
I uses the model P compatible with r and aI to model the request stream
during I (note that P 0 is simply the IRM). The P r estimate is

T (a, d;P r) = a(
∑

i,j

(ai/a)P r
i,jdi,j)

Partial Markov models are useful in capturing locality of reference phe-
nomenon, [1, 3], which means that a request to state i is likely to be followed
by another request to state i within a short time span. Many applications
naturally exhibit this type of behavior. The larger the entries of the lo-
cality vector r, the more likely states are to repeat in succession. In the
partial Markov model the number of repetitive successions is distributed
geometrically.

3.2 Properties of models

We introduce notions which will allow us to examine the behavior of model
based estimates with regards to changes in the input data and to compare
estimates for different models.
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super additivity Let I be a time interval and let I1, ..., Ik be a subdivision
of I into subintervals. Accordingly, we have aI =

∑
j = 1kaIj . A model M

is said to be super additive with respect to a set-up time function d if the
inequality

T (aI , d;M) ≥
k∑

j=1

T (aIj , d;M) (1)

always holds. Super additivity may be interpreted as stating that the ad-
dition of input information, namely, aIj instead of aI , never increases the
estimate.

monotonicity We say that a vector a = (ai) dominates a vector b = (bi)
if for all i, ai ≥ bi. We use the notation a ≥ b to denote dominance. A
model M is said to be monotone with respect to d if for any pair of time
intervals I ⊂ J we have T (aI , d;M) ≤ T (aJ , d;M), or stated otherwise, for
any pair of vectors a,b with nonnegative entries and such that a ≥ b we
have

T (a, d;M) ≥ T (b, d;M) (2)

dominance We say that a model M1 dominates a model M2 with respect
to a set-up time function d, if for all activity vectors a we have

T (a, d;M1) ≥ T (a, d;M2) (3)

approximation Let 0 < α < 1. Given a set up function d, a model M1

is said to be provide an α approximation to a model M2 (and vice versa) if
for any activity vector a we have

α ≤ T (a, d;M1)

T (a, d;M2)
≤ 1

α
(4)

We say that a model M is conservative if it α approximates the worst case
model W for some α > 0.

4 Metric space criteria for properties of models

In this section we establish criteria for monotonicity and super additivity of
the IRM and PMM estimates in terms of metric properties of the set-up time
function d. We also establish a criterion for the IRM estimate to be a 1/2
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approximation to the worst case estimate and study the relation between
the IRM estimate and the PMM estimate.

Theorem 1 (A criterion for Super additivity of the IRM) The IRM esti-
mate is super additive with respect to d if and only if d is square Euclidean

proof: It is enough to establish super additivity for a subdivision of I
into two subintervals, that is to show that for all nonnegative vectors a =
(ai),b = bi,

T (a + b, d) ≥ T (a, d) + T (b, d) (5)

Let a =
∑
i ai and b =

∑
i bi. Then

T (a + b, d)− T (a, d)− T (b, d)

=
∑

i6=j

(ai + bi)(aj + bj)dij
a+ b

−
∑

i6=j

aiajdij
a

−
∑

i6=j

bibjdij
b

=
1

ab(a+ b)

∑

i6=j
dij(aibjab+ ajbiab− aiajb2 − bibja2)

=
1

ab(a+ b)

∑

i6=j
dij(aib− bia)(bja− ajb)

= − ab

a+ b

∑

i6=j
dij

(
ai
a
− bi
b

)(
aj
a
− bj

b

)
.

Setting vi =
ai
a
− bi
b

, we get

T (a + b, d)− T (a, d)− T (b, d) = − ab

a+ b

∑

i6=j
dijvivj . (6)

We note that
∑
i vi = 0, hence by Schoenberg’s criterion the IRM estimate

is super additive if d is square Euclidean. Conversely if the IRM estimate is
super additive then ∑

i,j

dijvivj ≤ 0

for all v of the form a/a−b/b where a,b are vectors with integer non nega-
tive entries. After scaling we may deduce that the property holds whenever
a,b have rational non negative entries and by density of the rationals for
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all a,b with non negative entries. Every vector v = (v1, . . . , vh) such that∑
i vi = 0 has a multiple of the form 1

aa− 1
bb, where a,b have non negative

entries. Indeed if ai = max{vi, 0} and bi = max{−vi, 0}, then a = b and
1
aa− 1

bb = 1
av, hence Schoenberg’s criterion holds and d is square Euclidean.

q.e.d

Theorem 2 (Comparison of the IRM and PMM estimates and criteria for
monotonicity)

1. If a is an activity vector and r a locality vector, let ar be the vector
with entries ar

i = ai(1− ri), then

T (a, d;P r) = T (ar, d; IRM)

2. The IRM estimate is monotone with respect to d if and only if for any
pair of locality vectors r and s, such that r ≤ s, P r dominates P s and
in particular the IRM estimate dominates the set of PMM estimates
with respect to d.

3. The IRM estimate is monotone with respect to d if and only if the
matrices B(k, d)i,j = di,k + dk,j − di,j define a nonnegative quadratic
form when restricted to vectors with nonnegative entries. In particular,
if d is a pseudo metric or square Euclidean then the IRM estimate is
monotone with respect to d.

4. If the IRM estimate is monotone with respect to d then
√
d satisfies

the triangle inequality.

5. All PMM P r are super additive with respect to square Euclidean met-
rics.

proof: Let a = aI be an activity vector. Recall that in a PMM, each state
has two parameters ri, qi and the transition matrix Mi,j is (1− ri)qj if i 6= j
and ri + (1− ri)qi if i = j. Let π be the stationary distribution of the chain,
namely πM = π. By the requirement of compatibility with the observed
activity vector we have π = a/a. We can now express the qi-s in terms of π
and the ri-s :

πj =
∑

i

πiMij = πjMjj +
∑

i6=j
πiMij = πjrj +

∑

i

πi(1− ri)qj .
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Note that ar
i = aπi(1−ri). We get that qj = ar

j/a
r for all j where ar =

∑
i a

r
i .

Using the fact that dii = 0 we get that

T (a; d, P r) = a(
∑

i,j

πiP
r
ijdij) = a(

∑

i,j

πi(1− ri)qjdij)

=
∑

i,j

ar
ia

r
j

ar
· dij = T (ar, d; IRM)

proving the first statement of the theorem.
It is easy to see that if b ≤ a then there is a locality vector r such

that b = ar. Conversely, if r ≥ s then ar ≥ as. These simple observations
together with part 1 imply part 2.

To prove part 3, we check the sign of the partial derivatives of T (a, d)
with respect to ak (where k ∈ X is an arbitrary element).

∂

∂ak
T (a, d)

=
a(
∑
i aidik +

∑
j ajdjk)−

∑
i,j aiajdij

a2

=
1

a2

∑

i,j

aiaj(dik + djk − dij) =
1

a2
aBat

where B = B(k, d) is the matrix with ij entry dik + djk − dij . Assume that
for all k, B(k, d) is positive semi definite on vectors with nonnegative entries
then ∂

∂ak
T (a, d) ≥ 0 for all k and all activity vectors a. It follows from the

Mean-value Theorem that if a ≥ b then T (a, d) ≥ T (b, d). Conversely if
there are a ≥ 0 and k such that aB(k, d)at < 0 then taking b which is
identical to a except that bk is slightly smaller than ak we get T (a, d) <
T (b, d), which proves the first statement of part 3.
If d is a semi-metric then B has nonnegative entries and so aB(k, d)at ≥ 0
and if d is square Euclidean then by Cayley’s criterion aB(k, d)at ≥ 0 which
completes part 3.

To prove part 4, we assume that
√
d is not a metric and show that the

IRM estimate is not monotone with respect to d. Without loss of generality√
d12 +

√
d13 <

√
d23. Let a1 =

√
d23, a2 =

√
d13, a3 =

√
d12 and ai = 0

for i > 3. We claim that the transition-time in the IRM estimate is strictly
smaller than that of a PMM with r1 > 0 and ri = 0 for i > 1. Indeed,

T (P r,a; d)
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=
a1(1− r1)a2d12 + a1(1− r1)a3d13 + a2a3d23

a1(1− r1) + a2 + a3

=
√
d12d13d23 ·

(1− r1)(
√
d12 +

√
d13) +

√
d23

(1− r1)
√
d23 +

√
d13 +

√
d12

=
√
d12d13d23 ·

(
√
d12 +

√
d13 +

√
d23)− r1(

√
d12 +

√
d13)

(
√
d12 +

√
d13 +

√
d23)− r1

√
d23

>
√
d12d13d23

= T (a; d).

The inequality is due to
√
d12 +

√
d13 <

√
d23 and r1 > 0. Finally, part 5

is proven by using Theorem 1, part 1 of the current theorem, and the fact
that ar + br = (a + b)r. q.e.d

We next show that the IRM estimate is a 1/2 approximation to the worst
case.

Theorem 3 (Comparison of the IRM estimate and worst case estimate) If
d satisfies the triangle inequality then for all activity vectors a we have

2T (a, d; IRM) ≥ T (a, d;W ) (7)

where W is the worst case model.

proof: Assume first that the activity vector is the vector (1, 1, . . . , 1). The
IRM estimate here is 1

n

∑
i,j di,j , while the worst case estimate is the length of

the longest Hamiltonian cycle in the complete graph on X with edge weights
given by d. Assume without loss of generality that the longest Hamiltonian
path in X is 1, 2, . . . , n. Since d satisfies the triangle inequality we have for
1 ≤ i < n and for j ∈ X di,i+1 ≤ di,j + dj,i+1 (the n+ 1 point coincides with
the first point). Summing over all i, j we get

n
n∑

i=1

di,i+1 ≤ 2
∑

i,j

di,j .

Therefore 2T (a, d; IRM) ≥ T (a, d;W ). To complete the proof we need to
consider a general activity vector (a1, . . . , an). Let X ′ be the metric space
with a points that is composed of groups of aj points of type j. Given d
on X we induce a metric on X ′ by letting the distance between a point of
type i and a point of type j be di,j . Clearly X ′ also satisfies the triangle
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inequality. We have thus reduced the problem to the case of the activity
vector (1, 1, . . . , 1) and are done. q.e.d

The following result is easily derived from the last two

Theorem 4 Let P r be a PMM. Let rmax = Maxiri be the maximal entry
of the locality vector r. If d satisfies the triangle inequality then P r estimate
is a 1−rmax

2 approximation to the worst case estimate and in particular P r

is conservative.

proof: By part 1 of theorem 1 we have T (a, d;P r) = T (ar, d; IRM). Let
b = (1 − rmax)a then by definition of rmax b ≤ ar. Since d satisfies the
triangle inequality the IRM is monotone with respect to d by part 3 of
theorem 1, Combining with theorem 3 we get

T (a, d;P r) = T (ar, d; IRM) ≥ T (b, d, IRM)

= (1− rmax)T (a, d, IRM) ≥ 1− rmax
2

T (a, d;W )

as desired. q.e.d

5 Set-up Time Functions of a Disk

5.1 Super additivity

In this section we show that the radial seek time function of a disk drive,
which is the standard set-up function in storage system research is an l1-
metric and in particular is square Euclidean. From this we conclude that the
IRM and PMM estimates are super additive when applied to disk seek times.
Data on disk drives resides on tracks which form concentric circles of varying
radii r around the center of a platter. To get from a track at radius r1 to
another track at radius r2 the head of the device performs a radial motion.
The time it takes the disk head to perform this radial motion is known as
(radial) seek time. The head starts and ends with no radial velocity and
must first accelerate, reach a maximal speed, and then decelerate towards
the targeted track. The acceleration and deceleration processes are invariant
under translation. Furthermore as the distance |r1 − r2| grows the head
spends more time at higher speeds and so the average velocity during the
transition increases. Consequently the time it takes to seek from r1 to r2

has the form
dF (r1, r2) = F (|r1 − r2|)
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where F is a concave non decreasing function (note that the slope of F is
inverse-proportional to the peak velocity during the transition).

The radial seek function dF is the standard set-up time function for disk
where F is determined by the physical characteristics of the drive itself. If
we let X be the set of data locations on the disk then a theorem of Kelly
proved in [5] can be interpreted as stating that (X, dF ) is square Euclidean.
We prove a stronger result of independent interest using a much simpler
proof.

Theorem 5 Let F be a concave nondecreasing function with F (0) = 0 and
let X ⊂ R. Then (X, dF ) is an l1 metric space.

proof: Let X = {x1, . . . , xn}. Consider

Y = {|xi − xj | : 1 ≤ i, j ≤ n}

the set of possible distances in X, and order the elements of Y as 0 = y0 <
y1 < y2 < . . . < ym. let G be the piecewise linear function which

(i) coincides with F on Y

(ii) is linear on all intervals [yi, yi+1] and

(iii) is constant on [ym,∞) (that is, gets the value F (ym) there).

Obviously (X, dF ) = (X, dG) since F = G on the set of all relevant values
Y , so it is enough to prove the claim for G, which is also non decreasing and
concave. We now define functions Hs,t as follows.

Hs,t(x) = sx if x < t and st otherwise.

We also let si = G(yi)−G(yi−1)
yi−yi−1

be the sequence of slopes of G. We now
claim that G is a convex combination of functions of the form Hs,t.

The proof proceeds by induction on m. If m = 0 then G = H1,0 =
0. For m > 0, look at the function G̃ = G − Hsm,ym . It is not hard
to see that G̃(0) = 0, G̃ is constant beyond ym−1 and is piecewise linear
with breakpoints y1, . . . , ym−1. A piecewise linear function is concave and
nondecreasing if and only if its slopes are decreasing and nonnegative, and
so s1 ≥ s2 ≥ . . . ≥ sm ≥ 0, and similarly s1 − sm ≥ s2 − sm ≥ . . . ≥
sm−1 − sm ≥ 0. But, these are the slopes of G′ and it is therefore concave
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and nondecreasing. We may now apply the induction hypothesis to G̃ and
this proves the claim.

Since a sum of `1-metrics is also an `1-metric, we are left with the task
of showing that for a function F = Hs,y, the resulting metric dF is an `1-
metric. Notice that dF (i, j) = s ·min{|i− j|, y}. Let fi = 1

2sχ[xi,xi+y] be the

function whose value is 1
2s on the interval [xi, xi + y] and zero otherwise. It

is easy to see that for any i, j ∈ R

dF (i, j) = s ·min{|i− j|, y} =

∫

R
|fi(x)− fj(x)|dx

This shows that dF is an L1 metric and hence l1. q.e.d

Combining theorem 1 part 5 with theorem 5 we get

Theorem 6 All PMM models and in particular the IRM are super additive
with respect to the seek time function dF for any physical disk drive.

Remark 1: Radial motion in a disk is one dimensional. It is natural to
replace R in Theorem 5 by Rn and thus consider motion along straight lines
in higher dimensions with acceleration and deceleration. This may describe
for instance the movement of a robot in the plane. This problem has been
studied in detail by Von Neumann and Schoenberg, [11, 14]. They present a
complete, yet implicit, characterization of functions F which lead to square
Euclidean metrics in terms of spherical functions. In particular it can be
shown from their results that even for n = 2 the functions Hs,t do not yield
square Euclidean metrics. On the other hand the functions F (x) = xc,
0 < c < 2 do yield square Euclidean functions for all n. We conjecture that
all translation invariant metrics on the line are square Euclidean.

6 Conclusions and future work

We have introduced several natural properties of set-up time estimates and
studied them for the IRM and PMM. We have shown that the IRM estimate
satisfies monotonicity which is a “sanity check” for set-up time estimates,
and further that the IRM is an easily computable approximation to the
worst case estimate. We have also related the PMM with IRM estimates
showing that the first inherits many of the properties of the second. In the
specific but important context of seek functions in disk drives we showed
that the IRM and PMM share another formal property that holds for worst
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case estimates namely super additivity. It would be interesting to explore
monotonicity, super additivity and various approximation and dominance
relations among other models. One interesting class of examples are the
renewal models which were suggested by Opderbeck and Chu in [8]. The
IRM is a special case of such models where the renewal model is based
on exponential inter-arrival times. It would be interesting to investigate
other cases such as hyperexponential, gamma or Pareto bounded heavy tail
distributions. Such an investigation will likely require refined definitions for
properties such as monotonicity and super additivity since the associated
models are not Markovian.
Acknowledgments: We would like to thank Timothy Chow for helpful
discussions regarding a preliminary version of this paper.
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