
Characterizing Propagation Methods for
Boolean Satisfiability

Eric Hsu and Sheila A. McIlraith

University of Toronto, Canada
{eihsu,sheila}@cs.toronto.edu

Abstract. Iterative algorithms such as Belief Propagation and Survey
Propagation can handle some of the largest randomly-generated sat-
isfiability problems (SAT) created to this point. But they can make
inaccurate estimates or fail to converge on instances whose underly-
ing constraint graphs contain small loops–a particularly strong concern
with structured problems. More generally, their behavior is only well-
understood in terms of statistical physics on a specific underlying model.
Our alternative characterization of propagation algorithms presents them
as value and variable ordering heuristics whose operation can be codi-
fied in terms of the Expectation Maximization (EM) method. Besides
explaining failure to converge in the general case, understanding the
equivalence between Propagation and EM yields new versions of such
algorithms. When these are applied to SAT, such an understanding even
yields a slight modification that guarantees convergence.

1 Introduction

The Survey Propagation (SP) algorithm [1] is one of the most exciting cur-
rent approaches to the Boolean Satisfiability problem, rapidly solving problems
with millions of variables under the most critically constrained settings of the
clauses-to-variables ratio. Other successful applications of SP include coding
and learning [2–4], while the older Belief Propagation (BP) framework that SP
extends has been applied to Constraint Satisfaction Problems (CSPs) [5, 6, 2].
Nonetheless, both SP and BP are subject to some shortcomings that make them
best-suited to large, randomly generated SAT instances.

In particular, these propagation algorithms do not always converge, or if they
do, can converge to inaccurate estimates that eliminate valid solutions–especially
on smaller or structured problems that contain short feedback cycles in their
underlying constraint graphs. In such cases SP and BP cannot provide useful
information to a surrounding search framework, necessitating a random restart.
More generally, their behavior on loopy graphs is not been well-understood out-
side of a statistical physics interpretation [7, 8] that is founded on Markov Ran-
dom Fields. Within the constraint-based reasoning field, their behavior has been
partially explained in terms of discrete inference for the special case of extreme
values [9], but no more general understanding has emerged.

2

The contribution of this paper is to supplement existing mathematical presen-
tations of propagation methods with informal intuition, elucidating connections
to related concepts. The most significant product is an alternative derivation
of BP and SP in terms of the Expectation Maximization (EM) framework, one
that is not dependent on the groundwork of existing physical explanations. This
allows a new version of the BP and SP algorithms that always converges.

These results are demonstrated in BP for clearer exposition, but can be
expressed in SP via the transformation shown in [1]. To that end, Section 2
provides background to our approach to characterizing BP and SP, and Section
3 presents necessary notation. In Section 4 we explain the two algorithms based
on the background provided in Section 2, supplementing the equations provided
in [1]. Finally, in Section 5 we present the EM algorithm in standard form, and
then consider a formulation for SAT in Section 6. This produces a convergent
update rule for solving SAT instances. The results of implementing this process
appear in Section 7, followed by discussion in Section 8.

2 Approach

In this paper, we characterize SP in alternative terms, translating existing de-
scriptions into familiar concepts, founded on insights into its behavior in the
context of SAT. Specifically, we contend that SP works best as a variable and
value ordering heuristic within a simple search framework. It can be roughly un-
derstood as an extension of BP into ternary space, where variables are positive
in some fraction of the solutions, negative in another fraction, and recognized
as in a third proportion of solutions [1]. (The usefulness of such logics has been
independently noted in completely different approaches [10].) Efforts in statis-
tical physics to battle loops by clustering nodes together tend to parallel AI
techniques for finding join-graphs, cluster-trees, etc. [11–13].

Familiar local search techniques find probabilistic variable settings Θ to max-
imize the probability P (SAT |Θ) that all clauses are satisfied, just as MAXSAT
approximations target an expectation E[SAT |Θ] on the number of satisfied
clauses [14–16]. In contrast, the BP and SP propagation algorithms can be viewed
as estimators of P (Θ|SAT), the probability that the variables are configured a
certain way given that all clauses are satisfied. Thus, SP can help detect the most
prescient “backdoor” variables whose correct assignments trivialize the remain-
ing problem, while BP settles for “backbone variables,” which are constrained
to be always positive or always negative in the majority of solutions [17, 18].
So, propagation methods serve as heuristics that guide the search; if they were
always right (and always converged) the search would be backtrack-free.

Such insights enable a final conclusion: that propagation methods actually
perform a slightly altered version of the well-known Expectation Maximization
(EM) algorithm, which seeks out posterior likelihoods complicated by hidden
interactions [19]. This understanding engenders further comparison with La-
grangian optimization approaches to SAT, through known connections to EM
[20]. Similarly, it provides for the development of specialized propagation meth-

3

ods based on EM variants for sparse problems and partial optimizations [21, 22].
Perhaps the most interesting observation, though, is that EM always converges.

3 Problem and Notation

Definition 1. A SAT instance is a set C of m clauses, constraining a set V of
n Boolean variables. Each clause c ∈ C is a disjunction of literals built from the
variables in V . An assignment X ∈ {0, 1}n to the variables satisfies the instance
if it makes at least one literal true in each clause. The sets V +

c and V −c contain
the indexes of the variables appearing positively and negatively in a clause c,
respectively. The sets C+

v and C−v contain the indexes of the clauses that contain
positive and negative literals for variable v, respectively.

Definition 2. A variable bias θv ∈ IR, 0 ≤ θv ≤ 1, represents the probability
that variable v will be positive rather than negative. Θ ∈ IRn denotes a vector of
biases for all n variables.

In general, capitalized variables will correspond to vectors, and lower-case
variables with subscript indexes will be their components.

4 The BP and SP Algorithms

BP and SP are message-passing algorithms that attempt to sample from the
space of satisfying assignments. Here we explain the algorithms at an intuitive
level, to supplement the formulas in [1]. The only concrete artifact that is nec-
essary for our purposes is the BP update rule appearing in equation (1).

Imagine a listing of all solutions to a given SAT problem. Clearly the chance
to simply read from that list is wishful thinking for a polynomial algorithm, as
this ability would instantly provide a solution if one existed. But what if it were
possible to compile statistics over the contents of that list, despite being blind
to the list itself? This would be very useful for guiding search, and comprises
the goal of propagation methods as applied to SAT. BP and SP attempt this
by repeatedly updating estimated biases, hopefully until convergence to a local
maximum in likelihood. For BP this means a bias θv for each variable, indicating
the estimated proportion of solutions in which the variable must be positive
rather than negative. SP extends this space with a third state where a variable
is not constrained to take either value; with BP the mass for this case ends up
proportionately distributed between the positive and negative.

4.1 Sample Space for Determining Bias

In this section, we differentiate the sample space for determining the variable
biases that BP and SP are estimating. To borrow terminology from Section 6.2,
BP codifies a simplifying assumption that in any satisfying assignment, every
variable is the “sole support” of some clause. That is, each variable believes that

4

+/−+

0

−

(a)

C5C4

C3

C2

V2

C6

C7

V3

C1

V1

: var appears negatively in clause

: var appears positively in clause

(b)

Fig. 1. (a) Probability Space for Variable Bias under BP; (b) Factor Graph Fragment.

it is satisfying at least one clause that would otherwise be left totally unsatisfied
by all of its other variables.

Figure 1(a) is a Venn diagram depicting the bias space for a given variable,
as the shaded region. The area of the diagram as a whole spans the space of
all satisfying assignments to the variables. The left circle, labeled “+”, denotes
those assignments where there exists some clause that is wholly dependent on
the variable being positive. That is, the considered variable appears positively in
some clause whose other literals all hold unsatisfactory values under the current
assignment. Likewise, the right circle indicates that some clause requires the
variable to be negative. Their intersection, labeled “+/−”, is eliminated from
the probability space, as no satisfying assignment could require a single variable
to be both positive and negative.

Thus BP’s goal is to determine, for each variable, the proportion of solutions
in which it lies in the positive half of the shaded area, versus the negative half.
In comparison, the power of SP lies in additionally considering region “0”, where
all clauses are already satisfied by variables other than the one under considera-
tion. Stated differently, BP determines the bias of each variable, in terms of the
chances that it would appear positively or negatively if a satisfying assignment
were randomly drawn from the otherwise inaccessible list of solutions.

4.2 Algorithmic Framework

At a high level, the BP and SP algorithms accomplish the described task by
passing messages over a given SAT problem’s factor graph representation, as
depicted in Figure 1(b).

Nodes representing variables connect to nodes representing clauses in which
they appear. Edges can be distinguished, conceptually, by whether the variables

5

appear as positive or negative literals in the clauses. The edges carry clause-to-
variable messages in one direction, and variable-to clause messages in the other.

Each variable is randomly seeded with an initial bias, and informs all of
its clauses by passing variable-to-clause messages along the edges. The clauses
compile such reports and determine whether they are poorly supported–that is,
they calculate the probability that their variables will jointly end up failing to
satisfy them. From here they signal each variable as to whether they need their
support by passing messages back along the edges, in the opposite direction.
The variables weigh such requests, and begin a new iteration by updating and
reporting their new biases. Equations (13-16) in [1] represent this process. A
crucial detail is that a variable tells a clause what its bias would be in the absence
of that clause. Likewise, clauses do not broadcast identical distress messages
along all their outgoing edges. Rather, along each edge they report whether they
are unlikely to be satisfied in the absence of the corresponding variable. This is
what makes the algorithm exactly the same as Pearl’s original BP, also known
as the Sum-Product algorithm [5, 6].

Thus, consider a state for Figure 1(b) where c6 and c7 have both informed v3

that they are unlikely to be supported by their other variables. Consequently, v3

sees that they need v3’s help, and tells c1 that in its absence, v3 would probably
have to be negative. Likewise, if v2 is getting stronger messages from c4 and c5
than from c2 and c3, then v2 can report to c1 that v2 will also not be of much
help. Thus, c1 will send a strong message to v1, whether or not v1 is already
positively biased. This message could be interpreted as either “I need you to
come support me” or “don’t listen to your other clauses, I’m highly dependent
on you” depending on the strength of v1’s existing bias toward the positive.

The graph and messages are conceptual, though. After much derivation, the
entire dynamics can be operationalized as a single update rule. Clause-to-variable
messages can be bypassed by expressing variable-to-clause messages in terms of
other variable-to-clause messages, two edges removed. (In fact, the original SP
derivation and code happen to employ the opposite clause-to-variable representa-
tion, shown as Equations (17) and (18) [1, 23].) The variables’ incoming messages
can themselves be represented as changes to the bias, culminating in the update
rule for Θ shown below as Equation (1).

Recall that Θ is a vector containing biases for each of the variables, and
undergoes this update once for each individual bias θv. The entire process is
repeated in hopes of eventual convergence. The products expressed in terms
of i’s and j’s represent the probability that a clause c will be left unsatisfied
by all of its variables outside of v. Subtracting from 1 creates the negation
of this proposition. So the numerator represents the chance that none of the
variable’s negative clauses require it. In other words, it is the inverse of the
proposition that some negative clause requires the variable. Thus the rule can be
understood in terms of the diagram in Figure 1(a). Here the numerator represents
the inverse of the entire circle labeled “−.” Because the “+/-” region is excluded
by sampling only satisfying assignments, and the “0” region is excluded by the
BP assumption, the inverse yields the left moon of the shaded sample space.

6

Thus, the numerator of the update rule denotes the area of the positive shaded
region, while the sum in the denominator constructs the complete sample space.

θ′v←

∏
c∈C−v

1−
∏
i∈V +

c

(1− θi)
∏

j∈V−c \v

θj

∏
c∈C−v

1−
∏
i∈V +

c

(1− θi)
∏

j∈V−c \v

θj

 +
∏

c∈C+v

1−
∏
i∈V +

c

(1− θi)
∏

j∈V−c \v

θj

 (1)

So we represent two states with one parameter; the probability that variable
v must be negative is just 1 − θv. In the case of SP, we use two equations to
represent three states. The rule for positive variables is identical to (1), but with
an added term in the denominator for including “0” in the outcome space, and
extra factors in the numerator for excluding it from the sample space. A second
rule will represent a variable’s negative bias, flipping the products for c ∈ C+

for those over c ∈ C−. Finally, the “0” state where a variable is unbiased is left
to marginalization; it is just one minus the first two probabilities.

4.3 Applying BP/SP via Unit Decimation

Propagation algorithms cannot solve SAT instances on their own. Rather, they
can be embedded within a simple search framework that consults them when
deciding which variable to fix next. Originally this was tied to a decimation
algorithm, where blocks of several variables are fixed all at once. This is risky
because the probabilities are not conditional: perhaps v1 and v2 both are positive
in most satisfying assignments, but often are not positive at the same time.

Conceptually and in practice, one expedient is to consider a more extreme
version of this methodology, where only one variable is fixed at a time (at a
greater cost in terms of number of surveys). The conditional probabilities are
essentially produced by re-running the survey on simplified problems where the
previous choices have already been fixed. More concretely, the rest of this paper
will consider BP and SP within the following framework:

Algorithm 1 BP/SP with Unit Decimation
BP/SP(SAT -instance, ttimeout)

repeat
survey ← SP(SAT -instance, ttimeout) or BP(SAT -instance, ttimeout).
assignment ← CHOOSE-ASSIGNMENT(SAT -instance, survey).
SAT -instance ← FIX(SAT -instance, assignment)
If all are clauses satisfied, return solution.

until all variables fixed
Return failure.

On each iteration, BP or SP produces a survey estimating the biases of the
variables, in either binary or ternary space respectively. If the ttimeout param-
eter is reached before convergence, the entire algorithm fails. With a survey

7

in hand, the algorithm uses CHOOSE-ASSIGNMENT to identify a single vari-
able to fix, and whether to fix it to true or false. One straightforward rule is
to choose the variable with the most extreme positive or negative bias, and fix
it in that direction. With SP, the extra “0” space allows more choices, such as
fixing the variable with the smallest such bias. Next, the assignment is simplified
to reflect the assignment and the process repeats. This process can incorporate
unit-propagation or other such inference processes. The algorithm terminates if
enough assignments have been made to satisfy the problem, or if all variables
are assigned yet there is still an unsatisfied clause.

Viewed as such, the surveys serve as simultaneous variable and value ordering
heuristics. If we only require a single solution, and the heuristics are always
correct, then we have a complete reasoning process. For if a survey returns any
bias whatsoever for a variable, then some percentage of the solutions features the
variable at that value. Thus there is at least one solution remaining. If a variable
must not be fixed a certain way, it must have zero bias in that direction.

In practice, the algorithm fixes the most important variables in the first few
iterations, and then the maximum bias drops below a certain level. At that
point the simplified problem can be passed to a regular solver like WalkSAT
for improved speed [14]. Also, completeness is not guaranteed; the algorithms
converge to local maxima in terms of survey correctness. Finally, BP and SP
may simply fail to converge. For tree networks like the excerpt in Figure 1(b) it
is clear that the algorithms converge. But for factor graphs with cycles, it is easy
to visualize the algorithms’ incompleteness, as feedback loops of messages being
passed around and around. Alternatively, such structure can cause the algorithm
to converge, but to the wrong answer: randomly initializing biases via a uniform
distribution can tilt the optimization process away from endless loops, but only
by immediately jumping into local maxima. Without a uniform understanding
of the algorithms, such behavior has historically been difficult to characterize.

5 The EM Algorithm

In this section we consider the general EM algorithm [19], so that we can later
exploit its transformation into BP and derive an improved way to calculate sur-
veys, one that always converges. At a high level, EM accepts a vector of observa-
tions Y , and determines the model parameters Θ that maximize the likelihood
of having seen Y . Maximizing log P (Y |Θ) would ordinarily be straightforward,
but for the additional complication that we posit some latent variables Z that
contributed to the generation of Y , but that we did not get to observe. That is,
we want to set Θ to maximize log P (Y,Z|Θ), but cannot marginalize on Z.

So, we bootstrap by constructing P̃ (Z) to estimate P (Z|Y,Θ) and then use
this distribution to maximize the expected likelihood P (Y, Z|Θ) with respect to
Θ. The first step is called the E-Step, and the second is the M-Step. The two
are repeated until convergence, which is guaranteed.

8

6 Transformation from BP to EM Approaches for SAT

Operationally, the BP and the EM algorithm appear to share nothing more than
their dualized iterative dynamics. Yet even here there are differences: BP can
actually be expressed in terms of just one set of messages (either function-to-
variable or variable-to-function) while EM cannot (unless it is used stochastically
by updating one variable at a time.) On convergence, neither algorithm can
promise more than a local maximum, but EM is guaranteed to converge, while
BP is not in the case of graphs with cycles.

6.1 Free-Energy Characterizations of BP and EM

It turns out, though, that the two approaches are actually derived from equiva-
lent energy minimization equations, called “Variational Free Energy” and “Gibbs
Free Energy” in the EM and BP literature, respectively. Such expressions arise
from trying to minimize the Kullback-Leibler distance between two probability
distributions, meaning that the distributions are made to give similar predictions
across a common domain of outcomes. The following is a high-level overview of
this equivalence, while less germane details can be found in [24].

In the case of BP, we want our belief b(x) to match a factorized approximation
of the truth p(x), across all values of x [8]. With EM, there are two distinct steps
in getting P̃ (Z), our estimated distribution on Z, to match the true probability
P (Z|Y,Θ). During E, we adjust P̃ (Z), and during M, we adjust Θ [21].

However, the proof of equivalence, based on [8]’s Markov Random Fields
representation of factor graphs, is not necessarily constructive. In particular,
pushing a straightforward SAT formulation from BP through to EM is liable
to produce an inoperable restatement of the problem. Typical interpretations of
such formulas produce English phrasings like “bias all variables toward 0 or 1
(by avoiding entropy) while still satisfying all clauses (by avoiding free energy.)”
Furthermore, the generic Random Field structure relies on an approximation
that breaks any guarantee of convergence. Despite this, a BP-inspired, yet con-
vergent, SAT solution method can be reverse-engineered into the EM framework,
by essentially lying to the algorithm.

6.2 SAT Formulation for EM

The trick is to tell EM that we have seen that all the clauses are satisfied, but
not how exactly they went about choosing satisfying variables for support. We
ask the algorithm to find the variable biases that will best support our claimed
sighting, via some hypothesized support configuration. This produces the desired
P (Θ|SAT). In this section explicitly derive this formulation from first principles,
resulting in a modification of the update rule (1), reflected in (9).

First we set the EM variables as in Table 1. Y will be a vector of all 1’s,
meaning that all clauses are satisfied, while each θv ∈ Θ represents variable v’s
probability of being positive. Finally, Z contains some value sc,v for each clause
c, denoting that “clause c is solely-supported by variable v”.

9
Vector Status Interpretation Domain

Y Observed whether clauses are SAT {0, 1}m
Z Unobserved support configurations for clauses {sc,v}m c ∈ C, v ∈ V
Θ Parameters variable biases (0, 1)n

Table 1. SAT Formulation for EM

Definition 3. A variable v is the sole support to a clause c when its current
assignment satisfies the clause, and none of the clause’s other variables satisfy
it under the current assignment.

The Z terms invite elaboration on the space of possible configurations for a
given clause. Under a particular variable assignment, a clause is either satisfied
by multiple variables, or else by exactly one, or else by none–in which case it
is unsatisfied. In order to sample only from the space of satisfying assignments
(or more presciently, because Y = [1]m) we eliminate the last case from the
probability space. Further, by the simplifying assumption of BP, we eliminate
the first case: all constraints are tight in that all supporting variables think
that they are the only supports. Reinstating this case yields SP, and a more
unreadable derivation. In short, v is the sole support of c when it satisfies c and
all of c’s other variables do not. For each c, exactly one sc,v must hold–these are
the hidden values that EM will weight with its artificial distribution.

6.3 Deriving a SAT Algorithm from EM

For the E-Step we derive said distribution P̃ (Z) for the latent variables, decom-
posing it into a single p̃c(zc) = p(zc|yc, Θ) for each clause:

p̃c(sc,v) =
∏

w∈V +
c \v

(1− θw)
∏

w∈V −c \v

θw (2)

The equation states that for sc,v (“v is the sole support of c”) to hold, all
variables outside of v that were supposed to be positive turned out negative,
and vice versa–so v is the sole support. It might seem that v’s own support (θv
if v ∈ V +

c , 1− θv if v ∈ V −c) should appear as a factor above. But it is precisely
its exclusion that guarantees that we sample from a space of satisfied clauses,
maintaining consistency with the conditioned yc = 1.

In the M-Step we use this distribution to get a lower bound on the logarithm
of the expected probability of Y . The log is crucial for maintaining convergence
via Jensen’s Inequality: log E[p(x)] ≥ E[log p(x)]. It also allows us to decompose
the set of data (clauses) into terms in a sum. So in short we will set Θ ←
argmaxΘ F (Θ), where:

F (Θ) = EP̃ [log P (Y, Z|Θ)] (3)

=
∑
c

Ep̃c [log p(zc|Θ)] (4)

10

This is effected by making logs of products into sums of logs, and by observing
that any valid zc, i.e. one that is given any weight by the corresponding p̃c,
already signifies that its clause is satisfied by definition. In other words, zc implies
yc, enabling its removal from the joint probability.

By similar reasoning to that in (2) we derive, after some simplification,

F (Θ) =
∑
c

∑
sc,v

p̃c(sc,v)

 ∑
i∈V +

c \v

log (1− θi) +
∑

j∈V −c \v

log θj

 (5)

To optimize, we take the first derivative with respect to each variable v:

dF

dΘv
=
∑
c∈Cv

∑
sc,w
w 6=v

p̃c(sc,w)
[{ 1

θv−1 if v ∈ V +
c

1
θv

if v ∈ V −c

]
(6)

Because the various support profiles sc,v partition the space of possible config-
urations for c, we can marginalize out the probability that the clause is solely
supported by some variable other than v:∑

sc,w
w 6=v

p̃c(sc,w) = 1− p̃c(sc,v) (7)

By substituting into (6), and splitting v’s clauses into those where it appears
positively and negatively, we obtain:

dF
dΘv

= α · 1
θv

+ β · 1
θv−1

where α =
∑
c∈C−v (1− p̃c(sc,v)) and

β =
∑
c∈C+

v
(1− p̃c(sc,v))

(8)

Finally, by setting the derivative to zero, and substituting (2) for p̃c(sc,v), we
arrive at an EM update rule for the θ’s:

dF
dΘv

= 0 ⇒ α · (θv − 1) = −β · (θv) ⇒ θv = α
α+β

⇒

θ′v←

∑
c∈C−v

1−
∏
i∈V +

c

(1− θi)
∏

j∈V−c \v

θj

∑
c∈C−v

1−
∏
i∈V +

c

(1− θi)
∏

j∈V−c \v

θj

 +
∑

c∈C+v

1−
∏
i∈V +

c

(1− θi)
∏

j∈V−c \v

θj

(9)

6.4 Comparison with BP

Thus we exhibit a transformation between this EM formulation for SAT, and
previous approaches based on BP; the above is almost identical to (1). The
sole difference, the replacement of products by sums, is the crux of ensuring

11

convergence. A high-level syntactic understanding is that the logarithms allow
us to treat each clause as a separate term in a sum, making the update rule
into a (log) odds expression rather than a standard probability. A high-level
operational understanding is that when walking toward local maxima, we want
to avoid large steps that can overshoot a given peak, resulting in a sort of orbiting
nonconvergence. Ratios of sums produce gentler steps than those of products.

In fact, the steps here are bounded in such a way that they are guaranteed
never to increase our distance from the nearest local maximum. This is a general
property of EM, and a more detailed (and rigorous) explanation can be found in
most introductions to the algorithm, or to related variational methods [22]. In
essence, the use of Jensen’s Inequality in formulating (3) ensures that we have a
lower bound on the local maximum, i.e. an admissible heuristic. Further, the fact
that the E step fully optimizes the energy equation ensures tightness, meaning
that we can only raise this lower bound between alternations of E and M.

7 Implementation and Empirical Results

We have examined such theoretical claims by implementing the EM-derived ver-
sion of BP (“EMBP”) within existing SP code [23]. The code also implements
regular BP, allowing comparison of the three approaches within a common in-
frastructure. (An EM version of SP is also possible, but was not implemented.)
As expected, EMBP always proceeded directly to single local maximum in likeli-
hood, and thus always converged. A second question of interest, though, concerns
the quality of such maxima. Although the EM formulation always converges, it
can still fail to find a solution when one exists. Indeed, even on convergence,
all three algorithms arrive at only a local maximizer for the log likelihood of
P (Θ|SAT); this peak might not correctly reflect the truth. Thus, even under
unit decimation it is still possible to make an incorrect decision that eliminates
all remaining solutions. Though they were not implemented in the proof of con-
cept, backtracking or restarts would be necessary at this point.

Figure 2 addresses such issues over both random and structured problems.
Across one hundred trials per test suite, the three approaches either solved (sat-
isfiable) instances, failed to converge at some point during execution, or else
aborted upon fixing all variables without finding an assignment (either because
of inaccurate local maxima, or because an instance was indeed unsatisfiable.) The
three graphs represent the relative proportion of these cases on random prob-
lems as the clause-to-variable ratio α crosses the phase transition area, while
the table represents these percentages over the entirely satisfiable “Inductive In-
ference,” “Logistics,” “Parity,” and “Quasigroup Completion” test suites of the
Satlib benchmark library. In short, EMBP always converges, but it appears to
give worse answers than BP and SP on random problems, and better answers
on the selected structured problems.

As the random problems become more constrained, the traditional propa-
gation techniques encounter increasing risk of non-convergence, essentially on
unsatisfiable instances. Further on, they begin to recapture the ability to con-

12

verge, and only abort due to incorrect maxima. (The maxima must be incorrect,
as these are unsatisfiable instances.) While EMBP always converges, it will begin
aborting with an earlier threshold than BP and SP. This is consistent with the
hypothesis that by overshooting their targets, traditional propagation methods
are able to sample a larger space of local maxima than EM methods, but at the
risk of failing to converge. All three approaches remain practical, though, with
the use of restarts–so long as there is a non-negligible probability of success,
repeated attempts will eventually cure single-mindedness and wanderlust alike.
Similarly, with the exception of logistics, the structured results are positive de-

(a) (b)

(c)

��������� 	
������������������������������ �"!#���������$����%������
��� &(')+* , ,.-�* /)0-�* 1

2 ' 3 401�* 3 -5)�* 3
687 &(' 3 403�* / -�9�* /

%:�����<;�����5; &(' 3 =�3�3 3
2 ' 3 =�3�3 3
687 &(' 3 =�3�3 3

>�? �.���A@ &(' 3 909�* 1 3�*)
2 ' 3 909�* 9 3�*B=
687 &(' 3 9�,�* 3 -�* 3

C � &(' 3 =�3�3 3
2 ' 3 =�3�3 3
687 &(' 3 9�/�* D DE* 4

(d)

Fig. 2. Outcomes for (a) BP, (b) SP, and (c) BP-EM Propagation on Random Prob-
lems; Outcomes on (d) Structured Problems.

spite relatively low success rates. Recall that the framework is backtrack-free:
each run is first randomly initialized and then continues on to success only by
making an entirely correct string of decisions for fixing variables. (It is this ini-
tialization that makes BP and SP fail by abortion rather than non-convergence.)
Still, within the restart framework, EMBP is superior to BP/SP on these struc-
tured problems–it is significantly more likely to find a solution for inductive

13

inference and parity problems, and is the only approach with any chance of
solving a quasi-group completion problem.

8 Summary and Discussion

The main contribution of this paper is to provide a clearer understanding of the
BP and SP algorithms by relating them to the EM algorithm. This exposition
provides deeper insight into the differing performance of these algorithms on
structured and unstructured problems. It also enables development of variants
of these algorithms that were guaranteed to converge. A secondary contribution
of this paper is to provide an intuitive but nonstandard explanation of BP and
SP by characterizing unit decimation as a variable/value heuristic and relating
these algorithms’ purpose to finding backbones and backdoors.

We hope that relating BP and SP to EM will allow more tangible gains
through the application of related ideas. EM is widely used in statistically-
inclined research communities and features many variants suggested by theoret-
ical works like [21]. There are incremental versions that converge more quickly
and enable online processing of new clauses. Sparse versions can handle near-
zero probabilities symbolically, another expedient that has been used in similar
form [23] with propagation algorithms, but not systematically. Other variants
alter the artificial distribution P̃ (Z|Y,Θ), for instance by encouraging it to give
more mass to fewer possibilities; the commonly-used K-Means algorithm is an
extreme example of this idea. Finally, variational methods can be crudely viewed
as developing less exact or less convergent techniques to more efficiently operate
on the Markov Random Fields underlying BP’s energy equations [22].

Another avenue for future work is to consider P (SAT |Θ) in lieu of P (Θ|SAT).
While there are no clear semantics for the priors P (Θ) and P (SAT), the two
conditional probabilities are proportional via Bayes’ rule. The unit decimation
framework suggests an alternate employment of local search for finding solutions
to SAT and MAXSAT. Instead of using searches as walks to maxima, each walk
can be considered a sample to use as a variable and value ordering heuristic.

References

1. Braunstein, A., Mezard, M., Zecchina, R.: Survey propagation: An algorithm for
satisfiability. Random Structures and Algorithms 27 (2005) 201–226

2. Kask, K., Dechter, R., Gogate, V.: Counting-based look-ahead schemes for con-
straint satisfaction. In: Proc. of 10th International Conference on Constraint Pro-
gramming (CP ’04), Toronto, Canada. (2004)

3. Wang, Y., Zhang, J., Fossorier, M., Yedidia, J.: Reduced latency iterative decoding
of LDPC codes. In: IEEE Conference on Global Telecommunications (GLOBE-
COM). (2005)

4. Braunstein, A., Zecchina, R.: Learning by message passing in networks of discrete
synapses. Physics Review Letters 96(5) (2006)

5. Pearl, J.: Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, San
Mateo (1988)

14

6. Kschischang, F.R., Frey, B.J., Loeliger, H.A.: Factor graphs and the sum-product
algorithm. IEEE Transactions on Information Theory 47(2) (2001)

7. Braunstein, A., Zecchina, R.: Survey propagation as local equilibrium equations.
Journal of Statistical Mechanics: Theory and Experiments PO6007 (2004)

8. Yedidia, J., Freeman, W., Weiss, Y.: Understanding belief propagation and its
generalizations. In Nebel, B., Lakemeyer, G., eds.: Exploring Artificial Intelligence
in the New Millennium. Morgan Kaufmann (2003) 239–256

9. Dechter, R., Mateescu, R.: A simple insight into properties of iterative belief
propagation. In: Proc. of 19th International Conference on Uncertainty in Artificial
Intelligence (UAI ’03), Acapulco, Mexico. (2003)

10. Lardeux, F., Saubion, F., Hao, J.K.: Three truth values for the SAT and MAX-SAT
problems. In: Proc. of the Nineteenth International Joint Conference on Artificial
Intelligence (IJCAI ’05), Edinburgh, Scotland. (2005)

11. Yedidia, J., Freeman, W., Weiss, Y.: Constructing free-energy approximations
and generalized belief propagation algorithms. IEEE Transactions on Information
Theory 51(7) (2005) 2282–2312

12. Dechter, R., Kask, K., Mateescu, R.: Iterative join-graph propagation. In: Proc. of
18th International Conference on Uncertainty in Artificial Intelligence (UAI ’02),
Edmonton, Canada. (2002) 128–136

13. Kask, K., Dechter, R., Larrosa, J., Pfeffer, A.: Cluster-tree decompostitions for
reasoning in graphical models. Artificial Intelligence 166(1-2) (2005)

14. Selman, B., Kautz, H., Cohen, B.: Local search strategies for satisfiability testing.
DIMACS Series in Discrete Mathematics and Theoretical Computer Science 26
(1996)

15. Goemans, M., Williamson, D.: New 3/4-approximation algorithms for the max-
imum satisfiability problem. SIAM Journal on Discrete Mathematics 7 (1994)
656–666

16. Goemans, M., Williamson, D.: Improved approximation algorithms for maximum
cut and satisfiability problems using semidefinite programming. Journal of the
ACM (42) (1995) 1115–1145

17. Williams, R., Gomes, C., Selman, B.: Backdoors to typical case complexity. In:
Proc. of 18th International Joint Conference on Artificial Intelligence (IJCAI ’03),
Acapulco, Mexico. (2003)

18. Gomes, C., Selman, B., Crato, N., Kautz, H.: Heavy-tailed phenomena in satis-
fiability and constraint satisfaction problems. Journal of Automated Reasoning
24(1-2) (2000) 67–100

19. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data
via the EM algorithm. Journal of the Royal Statistical Society 39(1) (1977) 1–39

20. Shang, Y., Wah, B.: A discrete Lagrangian-based global-search method for solving
satisfiability problems. Journal of Global Optimization 12(1) (1998) 61–99

21. Neal, R., Hinton, G.: A view of the EM algorithm that justifies incremental,
sparse, and other variants. In Jordan, M., ed.: Learning in Graphical Models.
Kluwer Academic Publishers (1998) 355–368

22. Jordan, M., Ghahramani, Z., Jaakkola, T., Saul, L.: An introduction to variational
methods for graphical models. In Jordan, M., ed.: Learning in Graphical Models.
MIT Press (1998)

23. Braunstein, A., Leone, M., Mezard, M., Weigt, M., Zecchina, R.: Sp-1.3 survey
propagatrion implementation. (http://www.ictp.trieste.it/˜zecchina/SP/)

24. Hsu, E., McIlraith, S.: Characterizing loopy belief propagation as expectation
maximization (2006) Manuscript in preparation.

