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Abstract

The task of extracting an unsatisfiable core for a given Boolean formula has been finding more and
more applications in recent years. The only existing approach that scales well for large real-world formu-
las exploits the ability of modern SAT solvers to produce resolution refutations. However, the resulting
unsatisfiable cores are suboptimal. We propose a new algorithm for minimal unsatisfiable core extrac-
tion, based on a deeper exploration of resolution-refutation properties. We provide experimental results
on formal verification benchmarks confirming that our algorithm finds smaller cores than suboptimal
algorithms; and that it runs faster than those algorithms that guarantee minimality of the core.

1 Introduction

Many real-world problems, arising in formal verification of hardware and software, planning and other areas,
can be formulated as constraint satisfaction problems, which can be translated into Boolean formulas in
conjunctive normal form (CNF). Modern Boolean satisfiability (SAT) solvers, such as Chaff [1, 2] and Min-
iSAT [3], which implement enhanced versions of the Davis-Putnam-Longeman-Loveland (DPLL) backtrack-
search algorithm, are often able to determine whether a large formula is satisfiable or unsatisfiable. When
a formula is unsatisfiable, it is often required to find an unsatisfiable core—that is, a small unsatisfiable
subset of the formula’s clauses. Example applications include functional verification of hardware [5], FPGA
routing [6], and abstraction refinement [7]. For example, in FPGA routing, an unsatisfiable instance implies
that the channel is unroutable. Localizing a small unsatisfiable core is necessary to determine the underlying
reasons for the failure. An unsatisfiable core is a minimal unsatisfiable core (MUC), if it becomes satisfiable
whenever any one of its clauses is removed. It is always desirable to find a minimal unsatisfiable core, but
this problem is very hard (it is DP -complete; see [4]).
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In this paper, we propose an algorithm that is able to find a minimal unsatisfiable core for large “real-
world” formulas. Benchmark families, arising in formal verification of hardware (such as [24]), are of particu-
lar interest for us. The only approach for unsatisfiable core extraction that scales well for formal verification
benchmarks was independently proposed in [17] and in [18]. We refer to this method as the EC (Empty-
clause Cone) algorithm. EC exploits the ability of modern SAT solvers to produce a resolution refutation,
given an unsatisfiable formula. Most state-of-the-art SAT solvers, beginning with GRASP [19] and including
Chaff [1, 2] and MiniSAT [3], implement a DPLL backtrack search enhanced by a failure-driven assertion
loop [19]. These solvers explore the assignment tree and create new conflict clauses at the leaves of the tree,
using resolution on the initial clauses and previously created conflict clauses. This process stops when either
a satisfying assignment is found or when the empty clause (�) is derived. In the latter case, SAT solvers
are able to produce a resolution refutation—a directed acyclic graph (dag), whose vertices are associated
with clauses, and whose edges describe resolution relations between clauses. The sources of the refutation
are the initial clauses and the empty clause � is a sink. EC traverses a reversed refutation, starting with
� and taking initial clauses, connected to �, as the unsatisfiable core. Invoking EC until a fixed point is
reached [17] allows one to reduce the unsatisfiable core even more. We refer to this algorithm as EC-fp.
However, the resulting cores can be reduced further.

The basic flow of the algorithm for minimal unsatisfiable core extraction proposed in this paper is com-
posed of the following steps:

1. Produce a resolution refutation Π of a given formula using a SAT solver.

2. Drop from Π all clauses not connected to �. At this point, all the initial clauses remaining in Π
comprise an unsatisfiable core.

3. For every initial clause C remaining in Π, check whether it belongs to a minimal unsatisfiable core
(MUC) in the following manner:

Remove C from Π, along with all conflict clauses for which C was required to derive them.
Pass all the remaining clauses (including conflict clauses) to a SAT solver.

• If they are satisfiable, then C belongs to a minimal unsatisfiable core, so continue with
another initial clause.

• If the clauses are unsatisfiable, then C does not belong to a MUC, so replace Π by a
new valid resolution refutation not containing C.

4. Terminate when all the initial clauses remaining in Π comprise a MUC.

Related work is discussed in the next section. Section 3 is dedicated to refutation-related definitions.
Our basic Complete Resolution Refutation (CRR) algorithm is described in Sect. 4, and a pruning technique,
enhancing CRR and called Resolution Refutation-based Pruning (RRP), is described in Sect. 5. Experimental
results are analyzed in Sect. 6. This is followed up by a brief conclusion.

2 Related Work

Algorithms for unsatisfiable core based on the ability of modern SAT solvers to produce resolution refuta-
tions [17, 18] are the most relevant for our purposes for two reasons. First, this approach allows one to deal
with real-world examples arising in formal verification. Second, it serves as the basis of our algorithm. We
have already described the EC and EC-fp algorithms in the introduction. Here we briefly consider other
approaches.

Theoretical work (e.g., [8]) has concentrated on developing efficient algorithms for formulas with small
deficiency (the number of clauses minus the number of variables). However, real-world formulas have arbi-
trary (and usually large) deficiency. A number of works considered the harder problem of finding the smallest
minimal unsatisfiable core [12, 14], or even finding all minimally unsatisfiable formulas [13]. As one can
imagine, these algorithms are not scalable for even moderately large real-world formulas.
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In [9, 10], an “adaptive core search” is applied for finding a small unsatisfiable core. The algorithm starts
with a very small satisfiable subformula, consisting of hard clauses. The unsatisfiable core is built by an
iterative process that expands or contracts the current core by a fixed percentage of clauses. The procedure
succeeds in finding small, though not necessarily minimal, unsatisfiable cores for the problem instances it
was tested on, but these are very small and artificially generated.

Another approach that allows for finding small, but not necessarily minimal, unsatisfiable cores is called
AMUSE [11]. In this approach, selector variables are added to each clause and the unsatisfiable core is
found by a branch-and-bound algorithm on the updated formula. Selector variables allow the program to
implicitly search for unsatisfiable cores using an enhanced version of DPLL on the updated formula. The
authors note their methods ability to locate different unsatisfiable cores, as well as its inability to cope with
large formulas.

The above described algorithms do not guarantee minimality of the cores extracted. One folk algorithm
for minimal unsatisfiable core extraction, which we dub Näıve, works as follows: For every clause C in an
unsatisfiable formula F , Näıve checks if it belongs to the minimal unsatisfiable core, by invoking a SAT
solver on F \C. Clause C does not belong to MUC if and only if the solver finds that F \C is unsatisfiable,
in which case C is removed from F . In the end, F contains a minimal unsatisfiable core.

The only non-trivial algorithm existing in the current literature that guarantees minimality is MUP [15].
MUP is mainly a prover of minimal unsatisfiability, as opposed to an unsatisfiable core extractor. It decides
the minimal unsatisfiability of a CNF formula through BDD manipulation. When MUP is used as a core
extractor, it removes one clause at a time until the remaining core is minimal. MUP is able to prove minimal
unsatisfiability of some particularly hard classical problems quickly, whereas even just proving unsatisfiability
is a challenge for modern SAT solvers. However, the formulas described in [15] are small and arise in areas
other than formal verification. We will see in Section 6 that MUP is significantly outperformed by Näıve on
formal verification benchmarks.

3 Resolution Refutations

We begin with a resolution refutation of a given unsatisfiable formula, defined as follows:

Definition 1 (Resolution refutation) Let F be an unsatisfiable CNF formula (set of clauses) and let
Π(V,E) be a dag whose vertices are clauses.1 Suppose V = V i ∪ V c, where V i are all the sources of Π,
referred to as initial clauses, and V c = Cc

1 , . . . , C
c
m is an ordered set of non-source vertices, referred to as

conflict clauses. Then, the dag Π(V,E) is a resolution refutation of F if:

1. V i = F ;

2. for every conflict clause Cc
i , there exists a resolution derivation {D1, D2, . . . , Dk, C

c
i }, such that:

(a) for every j = 1, . . . , k, Dj is either an initial clause or a prior conflict clause Cc
f , f < i, and

(b) there are edges D1 → Cc
i , . . . , Dk → Cc

i ∈ E (these are the only edges in E);

3. the sink vertex Cc
m is the only empty clause in V .

For the subsequent discussion, it will be helpful to capture the notion of vertices that are “reachable”, or
“backward reachable”, from a given clause in a given dag.

Definition 2 (Reachable vertices) Let Π be a dag. A vertex D is reachable from C if there is a path (of
0 or more edges) from C to D. The set of all vertices reachable from C in Π is denoted Re(Π, C). The set
of all vertices unreachable from C in Π is denoted by Re(Π, C)

1From now on, we shall use the terms “vertex” and “clause” interchangeably in the context of resolution refutation.
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Definition 3 (Backward reachable vertices) Let Π be a dag. A vertex D is backward reachable from
C if there is a path (of 0 or more edges) from D to C. The set of all vertices backward reachable from C in Π
is denoted by BRe(Π, C). The set of all vertices not backward reachable from C in Π is denoted BRe(Π, C).

For example, consider the resolution refutation of Fig. 1. We have Re(Π, Ci
5) = {C

i
5, C

c
2 , C

c
3 , C

c
4 , C

c
5} and

BRe(Π, Cc
4) = {C

c
4 , C

i
5, C

i
6}.

Resolution refutations trace all resolution derivations of conflict clauses, including the empty clause.
Generally, not all clauses of a refutation are required to derive �, but only such that are backward reachable
from �. It is not hard to see that even if all other clauses and related edges are omitted, the remaining
graph is still a refutation. We refer to such refutations as non-redundant (see Definition 4). The refutation
in Fig. 1 is non-redundant.

To retrieve a non-redundant subgraph of a refutation, it is sufficient to take BRe(Π,�) as the vertex set
and to restrict the edge set E to edges having both ends in BRe(Π,�). We denote a non-redundant subgraph
of a refutation Π by Π↾BRe(Π,�). Observe that Π↾BRe(Π,�) is a valid non-redundant refutation.

Definition 4 (Non-redundant resolution refutation) A resolution refutation Π is non-redundant if
there is a path in Π from every clause to �.

Lastly, we define a relative hardness of a resolution refutation.

Definition 5 (Relative hardness) The relative hardness of a resolution refutation is the ratio between
the total number of clauses and the number of initial clauses.

4 The Complete Resolution Refutation (CRR) Algorithm

Our goal is to find a minimal unsatisfiable core of a given unsatisfiable formula F . The proposed CRR
method is displayed as Algorithm 1.

Algorithm 1 (CRR). Returns a MUC, given an unsatisfiable formula F .

1: Build a non-redundant refutation Π(V i ∪ V c, E)
2: while unmarked clauses exist in V i do
3: C ← PickUnmarkedClause(V i)
4: Invoke a SAT solver on Re(Π, C)
5: if Re(Π, C) is satisfiable then
6: Mark C as a MUC member
7: else
8: Let G = Re(Π, C)
9: Build resolution refutation Π′(V i

G ∪ V c
G, EG)

10: V i ← V i \ {C}
11: V c ← (V c \Re(Π, C)) ∪ V c

G

12: E ← (E \ReE(Π, C)) ∪ EG

13: Π(V i ∪ V c, E)← Π(V i ∪ V c, E) ↾BRe(Π,�)

14: return V i

First, CRR builds a non-redundant resolution refutation. Invoking a SAT solver for constructing a
(possibly redundant) resolution refutation Π(V,E) and restricting it to Π ↾BRe(Π,�) is sufficient for this
purpose.

Suppose Π(V i ∪ V c, E) is a non-redundant refutation. CRR checks, for every unmarked clause C left in
V i, whether C belongs to the minimal unsatisfiable core. Initially, all clauses are unmarked. At each stage
of the algorithm, CRR maintains a valid refutation of F .

Recall from Definition 2 that Re(Π, C) is the set of all vertices in Π unreachable from C. By construction
of Π, the Re(Π, C) clauses were derived independently of C. To check whether C belongs to the minimal
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unsatisfiable core, we provide the SAT solver with Re(Π, C), including the conflict clauses. We are trying
to complete the resolution refutation, not using C as one of the sources. Observe that � is always reachable
from C, since Π is a non-redundant refutation; thus � is never passed as an input to the SAT solver. We
let the SAT solver try to derive �, using Re(Π, C) as the input formula, or else prove that Re(Π, C) is
satisfiable.

In the latter case, we conclude that C must belong to the minimal unsatisfiable core, since we found a
model for an unsatisfiable subset of initial clauses minus C. Hence, if the SAT solver returns satisfiable,
the algorithm marks C (line 6) and moves to the next initial clause. However, if the SAT solver returns
unsatisfiable, we cannot simply remove C from F and move to the next clause, since we need to keep a valid
resolution refutation for our algorithm to work properly. We describe the construction of a valid refutation
(lines 8–13) next.

Let G = Re(Π, C). The SAT solver produces a new resolution refutation Π′(V i
G ∪ V c

G, EG) for G, whose
sources are the clauses Re(Π, C). We cannot use Π′ as the refutation for the subsequent iterations, since
the sources of the refutation may only be initial clauses of F . However, the “superfluous” sources of Π′ are
conflict clauses of Π, unreachable from C, and thus are derivable from V i \ C using resolution relations,
corresponding to edges of Π. Hence, it is sufficient to augment Π′ with such edges of Π that connect V i \C
and Re(Π, C) to obtain a valid refutation whose initial clauses belong to F . Algorithm CRR constructs
a new refutation, whose sources are V i \ C; the conflict clauses are Re(Π, C) ∪ V c

G and the edges are
(E \ (V1, V2)|(V1 ∈ Re(Π, C) or V2 ∈ Re(Π, C))) ∪ EG. This new refutation might be redundant, since
Π′(V i

G ∪ V c
G, EG) is not guaranteed to be non-redundant. Therefore, prior to checking the next clause, we

reduce the new refutation to a non-redundant one. Observe that in the process of reduction to a non-
redundant subgraph, some of the initial clauses of F , may be omitted; hence, each time a clause C is found
not to belong to the minimal unsatisfiable core, we potentially drop not only C, but also other clauses.

We demonstrate the process of completing a refutation on the example from Fig. 1. Suppose we
are checking whether Ci

1 belongs to the minimal unsatisfiable core. In this case, G = Re(Π, Ci
1) =

{Ci
2, C

i
3, C

i
4, C

i
5, C

i
6, C

i
7, C

c
2 , C

c
4}. The SAT solver receives G as the input formula. It is not hard to

check that G is unsatisfiable. One refutation of G is Π′(V i
G ∪ V c

G, EG), where V i
G = {Ci

2, C
c
2 , C

i
7, C

c
4},

V c
G = (D1 = �, D2 = a ∨ b), and EG = {(Ci

2, D2), (C
c
2 , D2), (D2, D1), (C

i
7, D1), (C

c
4 , D1)}. Therefore, Ci

1,
Cc

1 , C
c
3 , C

c
5 and related edges are excluded from the refutation of F , whereas D2, D1 and related edges are

added to the refutation of F . In this case, the resulting refutation is non-redundant.
We did not define how the function PickUnmarkedClause should pick clauses (line 3). Our current

implementation picks clauses in the order in which clauses appear in the given formula. Development of
sophisticated heuristics is left for future research.

Another direction that may lead to a speed-up of CRR is adjusting the SAT solver for the purposes of
CRR algorithm, considering that the SAT solver is invoked thousands of times on rather easy instances.
Integrating the data structures of CRR and the SAT solver, tuning SAT solver’s heuristics for CRR, and
holding the refutation in-memory, rather than on disk (as suggested in [17] for EC), can be helpful.

5 Resolution-Refutation-Based Pruning

In this section, we propose an enhancement of Algorithm CRR by developing resolution refutation-based
pruning techniques for when a SAT solver invoked on Re(Π, C) to check whether it is possible to complete
a refutation without C. We refer to the pruning technique, proposed in this section, Resolution Refutation-
based Pruning (RRP). We presume that the reader is familiar with the functionality of a modern SAT solver.
(An overview is given in [20].)

An assignment σ falsifies a clause C, if every literal of C is false under σ. An assignment σ falsifies a
set of clauses P if every clause C ∈ P is falsified by σ. We claim that a model for Re(Π, C) can only be
found under such a partial assignment that falsifies every clause in some path from C to the empty clause in
Re(Π, C). The intuitive reason is that every other partial assignment satisfies C and must falsify Re(Π, C),
since F is unsatisfiable. A formal statement and proof is provided in Theorem 1 below.

Consider the example of Fig. 1. Suppose the currently visited clause is Ci
5. There exist two paths from
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� Cc
5

¬b Ci
7

¬a

Cc
4 ¬a ∨ ¬c Ci

6

¬a ∨ c Ci
5

a ∨ b Cc
3

b ∨ ¬d Cc
2

¬c ∨ b Ci
4

a ∨ b ∨ ¬d Ci
3

a ∨ d Cc
1

a ∨ d ∨ b Ci
2

a ∨ d ∨ ¬b Ci
1

Figure 1: Resolution refutation example

Ci
5 to the empty clause Cc

5 , namely {Ci
5, C

c
4 , C

c
5} and {C

i
5, C

c
2 , C

c
3 , C

c
5}. A model for Re(Π, Ci

5) can only be
found in a subspace under the partial assignment {a = 1, c = 0}, falsifying all the clauses of the first path.
The clauses of the second path cannot be falsified, since a must be true to falsify clause Ci

5 and false to
falsify clause Cc

3 .
Denote a subtree connecting C and � by Π↾C . The proposed pruning technique, RRP, is integrated into

the decision engine of the SAT solver. The solver receives Π ↾C , together with the input formula Re(Π, C).
The decision engine of the SAT solver explores Π ↾C in a depth-first manner, picking unassigned variables
in the currently explored path as decision variables and assigning them false. As usual, Boolean Constraint
Propagation (BCP) follows each assignment. Backtracking in Π ↾C is tightly related to backtracking in the
assignment space. Both happen when a satisfied clause in Π ↾C is found or when a new conflict clause is
discovered during BCP. After a particular path in Π↾C has been falsified, a general-purpose decision heuristic
is used until the SAT solver either finds a satisfying assignment or proves that no such assignment can be
found under the currently explored path. This process continues until either a model is found or the decision
engine has completed exploring Π↾C . In the latter case, one can be sure that no model for Re(Π, C) exists.
However, the SAT solver should continue its work to produce a refutation.

We need to describe in greater detail the changes in the decision and conflict analysis engines of the SAT
solver required to implement RRP. The decision engine first invokes function RRP Decide, depicted in Fig. 2,
as a state transition relation. Each transition edge has a label consisting of a condition under which the
state transition occurs and an operation, executed upon transition. The state can be one of the following:

(Norm) normal;
(Sat) the currently explored clause is satisfied;
(False) the currently explored clause is falsified;
(EoT) subgraph Π↾C has been explored;
(EoF) all clauses in the currently explored path are falsified.

The states are managed globally, that is, if RRP Decide moves to state S, it will start in state S when
invoked next. A pointer D to the currently visited clause of Π ↾C is also managed globally. The state
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D is not satisfied nor falsified / Return an unassigned literal
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)

EoT EoP

D has no parent

D
is
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ed

D
h
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n
v
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ch
ild

/
D
←

c
h
ild(

D
)

A
ll
v
isited

/
D
←

P
a
r(
D
)

D has no children

⊤ / Return ? ⊤ / Return ?

Figure 2: Function RRP Decide, represented as a transition relation. This function is invoked by the decision
engine of a SAT solver, implementing the RRP pruning technique.

transition relation is initialized prior to the first invocation of the decision engine. Pointer D is initialized
to C and the initial state is Norm.

State Norm corresponds to a situation when the algorithm does not know what the status of D is. If
D is neither satisfied nor falsified, RRP Decide returns a negation of some literal of D, which will serve as
the next decision variable. If D is satisfied, the algorithm moves to Sat. Observe that a clause may become
satisfied only as a result of BCP. Encountering a satisfied clause means that the currently explored path
cannot be falsified, and we can backtrack. Suppose we are in Sat, meaning that D is satisfied. If D has a
parent, the algorithm backtracks by moving D to point to its parent, and goes back to Norm; otherwise,
the tree is explored and the algorithm moves to EoT. In this case, RRP Decide returns an unknown value
and a general-purpose heuristic must be used. Consider now the case when the state is Norm and D is
falsified. The algorithm moves to False. Here, one of the three conditions hold:

(a) D has an unvisited child S. In this case D is updated to point to S and RRP Decide moves back to
Norm.

(b) All children of D are visited. In this case, we backtrack by moving D back to its parent and go back
to Norm.

(c) D has no children. In this case, all the clauses in the currently explored path are falsified. The
algorithm moves to EoF; RRP Decide returns an unknown value; and a general-purpose heuristic
must be used.

To complete the picture, we describe the changes to the conflict analysis engine required to implement
RRP. One of the main tasks of conflict analysis in modern SAT solvers is to decide to which level in the
decision tree the algorithm should backtrack. Let this decision level be bl. When invoked in RRP mode,
the conflict analysis engine must also find whether it is required to backtrack in Π ↾C , and to which clause.
The goal is to backtrack to the highest clause B in the currently explored path in Π ↾C , such that B has
unassigned literals. Recall that D is a pointer to the currently visited clause of Π↾C . Denote by mdl(D) the

7



Table 1: Comparing algorithms for unsatisfiable core extraction. Columns Instance, Var and Cls contain
instance name, number of variables, and clauses, respectively. The next seven columns contain execution
times (in seconds) and core sizes (in number of clauses) for each algorithm. The cut-off time was 24 hours
(86,400 sec.). Column Rel. Hard. contains the relative hardness of the final resolution refutation, produced
by CRR+RRP. Bold times are the best among algorithms guaranteeing minimality.

Subopt. CRR Näıve MUP Rel.

Instance Var Cls EC EC-fp RRP plain EC-fp AMUSE EC-fp Hard.

4pipe 4237 9 171 3527 4933 24111 time-out time-out 1.4
80213 23305 17724 17184 17180 17182

4pipe 1 ooo 4647 10 332 4414 10944 25074 time-out mem-out 1.7
74554 24703 14932 12553 12515 12374

4pipe 2 ooo 4941 13 347 5190 12284 49609 time-out mem-out 1.7
82207 25741 17976 14259 14192 14017

4pipe 3 ooo 5233 14 336 6159 15867 41199 time-out mem-out 1.6
89473 30375 20034 16494 16432 16419

4pipe 4 ooo 5525 16 341 6369 16317 47394 time-out mem-out 1.6
96480 31321 21263 17712 17468 17830

3pipe k 2391 2 20 411 493 2147 12544 mem-out 1.5
27405 10037 6953 6788 6786 6784 6790

4pipe k 5095 8 121 3112 3651 15112 time-out time-out 1.5
79489 24501 17149 17052 17078 17077

5pipe k 9330 16 169 13836 17910 83402 time-out mem-out 1.4
189109 47066 36571 36270 36296 36370

barrel5 1407 2 19 93 86 406 326 mem-out 1.8
5383 3389 3014 2653 2653 2653 2653

barrel6 2306 35 322 351 423 4099 4173 mem-out 1.8
8931 6151 5033 4437 4437 4437 4437

barrel7 3523 124 1154 970 1155 6213 24875 mem-out 1.9
13765 9252 7135 6879 6877 6877 6877

barrel8 5106 384 9660 2509 2859 time-out time-out mem-out 1.8
20083 14416 11249 10076 10075

longmult4 1966 0 0 8 7 109 152 13 2.6
6069 1247 1246 972 972 972 976 972

longmult5 2397 0 1 74 31 196 463 35 3.6
7431 1847 1713 1518 1518 1518 1528 1518

longmult6 2848 2 13 288 311 749 2911 5084 5.6
8853 2639 2579 2187 2187 2187 2191 2187

longmult7 3319 17 91 6217 3076 6154 32791 68016 14.2
10335 3723 3429 2979 2979 2979 2993 2979

maximal decision level of D’s literals. If bl ≥ mdl(D), the algorithm does nothing; otherwise, it finds the
first predecessor of D in Π↾C , such that bl < mdl(B) and sets D ← B.

We found experimentally that the optimal performance for RRP is achieved when it explores Π↾C starting
from � toward C (and not vice-versa). In other words, prior to the search, the SAT solver reverses all the
edges of Π ↾C and sets the pointer D to �, rather than to C. (By default, the current version of RRP
explores the graph only until a predefined depth of 50.) The next literal from the currently visited clause is
chosen by preferring an unassigned literal with the maximal number of appearances in recent conflict clause
derivations (similar to Berkmin’s [21] heuristic for SAT). The next visited child is chosen arbitrary. Further
tuning of the algorithm is left for future research.

Theorem 1 Let Π(V i, V c) be a non-redundant resolution refutation. Let C ∈ V i be an initial clause and σ

be an assignment. Then, if σ |= Re(Π, C), there is a path P = {C, . . . , Cc
m} in Re(Π, C), connecting C to

the empty clause2, such that σ falsifies every clause in P .

Proof. Suppose, on the contrary, that no such path exists. Then, there exists a satisfiable vertex cut U in
Π. But the empty clause is derivable from U , since it is a vertex cut; thus U unsatisfiable, a contradiction.
�

2The empty clause always belongs to Re(Π, C), since Π(V i, V c) is non-redundant.
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6 Experimental Results

We have implemented CRR and RRP in the framework of the VE solver. VE, a variant of the industrial
solver Eureka, is a modern SAT solver, which implements the following state-of-the-art algorithms and tech-
niques for SAT: it uses 1UIP conflict clause recording [1], enhanced by conflict clause minimization [22],
frequent search restarts [21, 2], an aggressive clause deletion strategy [21, 2], and decision stack shrink-
ing [20, 2]. VE uses Berkmin’s decision heuristic [21] until 4000 conflicts are detected, and then switches
to the CBH heuristic, described in [23]. We used benchmarks from four well-known unsatisfiable families,
taken from bounded model checking (barrel, longmult) [25] and microprocessor verification (fvp-unsat.2.0,
pipe unsat 1.0) [24]. All the instances we used appear in the first column of Table 1. The experiments on
families barrel and fvp-unsat.2.0 were carried out on a machine with 4Gb of memory and two Intel Xeon
CPU 3.06 processors. A machine with the same amount of memory and two Intel Xeon CPU 3.20 processors
was used for experiments with the families longmult and pipe unsat 1.0.

Table 1 summarizes the results of a comparison of the performance of two algorithms for suboptimal un-
satisfiable core extraction and five algorithms for minimal unsatisfiable core extraction in terms of execution
time and core sizes.

First, we compare algorithms for minimal unsatisfiable core extraction, namely, Näıve, MUP, plain CRR,
and CRR enhanced by RRP. In preliminary experiments, we found that Näıve demonstrates its best perfor-
mance on formulas that are first trimmed down by a suboptimal algorithm for unsatisfiable core extraction.
We tried Näıve in combination with EC, EC-fp and AMUSE and found that EC-fp is the best front-end for
Näıve. In our main experiments, we used Näıve, combined with EC-fp, and Näıve combined with AMUSE.
We have also found that MUP demonstrates its best performance when combined with EC-fp, while CRR
performs the best when the first refutation is constructed by EC, rather than EC-fp. Consequently, we
provide results for MUP combined with EC-fp and CRR combined with EC. MUP requires a so-called “de-
composition tree”, in addition to the CNF formula. We used the c2d package [?] for decomposition tree
construction.

The sizes of the cores do not vary much between MUC algorithms, so we concentrate on a performance
comparison. One can see that the combination of EC-fp and Näıve outperforms the combination of AMUSE
and Näıve, as well as MUP. Plain CRR outperforms Näıve on every benchmark, whereas CRR+RRP out-
performs Näıve on 15 out of 16 benchmarks (the exception being the hardest instance of longmult). This
demonstrates that our algorithms are justified practically. Usually, the speed-up of these algorithms over
Näıve varies between 4 and 10x, but it can be as large as 34x (for the hardest instance of barrel family) and
as small as 2x (for the hardest instance of longmult). RRP improves performance on most instances. The
most significant speed-up of RRP is about 2.5x, achieved on hard instances of Family fvp-unsat.2.0. The
only family for which RRP is usually unhelpful is longmult.

A natural question is why the complex instances of family longmult are hard for CRR, and even harder
for RRP. The key difference between longmult and other families is the hardness of the resolution proof. The
relative hardness of a resolution refutation produced by CRR+RRP varies between 1.4 to 2 for every instance
of every family, except longmult, where it reaches 14.2 for the longmult7 instance. When the refutation is too
complex, the exploration of Re(Π, C) executed by RRP is too complicated; thus, plain CRR is advantageous
over CRR+RRP. Also, when the refutation is too complex, it is costly to perform traversal operations, as
required by CRR. This explains why the advantage of CRR over Näıve is as small as 2X.

Comparing CRR+RRP on one side and EC and EC-fp on the other, we find that CRR+RRP always
produce smaller cores than both EC and EC-fp. The average gain on all instances of cores produced by
CRR+RRP over cores produced by EC and EC-fp is 53% and 11%, respectively. The biggest average gain
of CRR+RRP over EC-fp is achieved on Families fvp-unsat.2.0 and longmult (18% and 17%, respectively).
Unsurprisingly, both EC and EC-fp are usually much faster than CRR+RRP. However, on the three hardest
instances of the barrel family, CRR+RRP outperforms EC-fp in terms of execution time.
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7 Conclusions

We have proposed an algorithm for minimal unsatisfiable core extraction. It builds a resolution refutation
using a SAT solver and finds a first approximation of a minimal unsatisfiable core. Then it checks, for every
remaining initial clause C, if it belongs to the minimal unsatisfiable core. The algorithm reuses conflict
clauses and resolution relations throughout its execution. We have demonstrated that our algorithm is faster
than currently existing algorithms by a factor of 6 or more on large problems with non-overly hard resolution
proofs, and that it can find minimal unsatisfiable cores for real-world formal verification benchmarks.
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