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Abstract. We consider the control problem for timed automata agaipstis
fications given aMTL formulas. The logidMTL is a linear-time timed tempo-
ral logic which extend&TL with timing constraints on modalities, and recently,
its model-checking has been proved decidable in severakca¥e investigate
these decidable fragments MiTL (full MTL when interpreted over finite timed
words, andSafety-MTL when interpreted over infinite timed words), and prove
two kinds of results(1) We first prove that, contrary to model-checking, the con-
trol problem is undecidable. Roughly, the computation aissy channel system
could be encoded as a model-checking problem, and we progetiat a perfect
channel system can be encoded as a control prol§{Brive then prove that if we
fix the resources of the controller (by resources we meatksland constants that
the controller can use), the control problem becomes delgd&his decidability
result relies on properties of well (and better) quasi-oras.

1 Introduction

Control of timed systemsTimed automata are a well-established and widely used
model for representing real-time systems. Since their igimin the 90’s [5], many
works have investigated this model, and several tools haea developed for model-
checking timed automata and have been used for verifyirgreastrial case studies.

To deal withopensystemsij.e. systems interacting with an environment (which is
the case of most embedded systems), model-checking maytlsefficient, and we
need tocontrol (or guide) the system so that it satisfies the specificatidwatewer the
environment does. More formally, trentrol problemasks, given a systei and a
specificationp, whether there exists a controliérsuch thatS guided byC satisfiesp.
Since the mid-90’s, the control of real-time systems hazlbped a lot [8,17, 13, 16,
15,11, 4], and several kinds of properties have been irgegsiil, for instance properties
based on states of the system [8, 17, 4], or expressEdLif15], or in the branching-
time timed temporal logi@ CTL [16], or even expressed by timed automata [13]. How-
ever, to our knowledge no work has investigated the contaddlem against properties
expressed in a linear-time timed temporal logic.

The logicMTL. The logicMTL [18] is a linear-time timed temporal logic which ex-
tendsLTL with timing constraints on Until modalities. For instanees can write a
formulay = O (p — O=1¢), which expresses that a requgss always followed one
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time unit later by a responsg The interest in this logic has encountered a great soar
in the last year, since Ouaknine and Worrell proved that theehchecking and the
satisfiability problems for this logic are decidable [22,s00n as they are interpreted
using apointwise semantioaver finite timed words. It is worth noticing thtTL, like
most real-time logics, can be interpreted either using atpige semantics (the system
is observed through events), or using a continuous sensafttie system is observed
at any point in time). These two points of view lead to pretiffedent decidability
properties: for instance, while the first semantics makedehohecking decidable, the
second semantics leads to undecidability [6]. Since thisinsight into decidability of
linear-time timed temporal logics, works ®fiTL are flourishing [10, 14,23, 24]. Let
us for instance point out the result of [24], stating that fteyment of MTL called
Safety-MTL (which roughly imposes upper bounds on Until modalitiesjesidable
for the pointwise semantics when interpreted over infiniteet! words, while model-
checking fullMTL is undecidable in this case [23].

Our contributions. In this paper, we consider the control problem for propsngiiren
asMTL or Safety-MTL formulas. We prove the following results:

— The control problem foMTL is undecidable for the pointwise semantics, even
when considering finite timed words. In addition, if reding to Safety-MTL, the
control problem is also undecidable when interpreted owvfnite timed words.
These undecidability results rely on an elegant conswoatihich (roughly) uses
(un)controllable actions to check that evergiction is preceded one time unit ear-
lier by aq action: this property cannot be expresseMifL, but is somehow suffi-
cient to lead to undecidability [14].

— When bounding resources of the controller (its set of clpaeksl constants it can
use in its constraints), the control problem becomes dbtedar MTL specifica-
tions interpreted over finite timed words, and 8afety-MTL specifications inter-
preted over infinite timed words. Note that such a restrictibounded resources
is quite common in the framework of synthesis of timed syst§tf, 13, 11]. How-
ever, the construction proposed here is much more invohaead those done in pre-
vious papers, and requires well (and better) quasi-ordeniguments for proving
correctness and termination of the construction.

All proofs can be found in the research report [9].

2 Preliminaries

Time, granularity, and symbolic alphabet. Let R>, be the set of non-negative reals
andQx( be the set of non-negative rational numbers. Eebe an alphabet. Aimed
word over X' is a wordo = (a1, 71)(az, 72) ... overX x R such that, = 0 and

7; < 741 for everyl < i < |o| (where|o| denotes the (possibly infinite) length @f.

If o is infinite, it is non-Zenaf the sequencd; };cn is unbounded. LeT"X* (resp.
T3%) be the set of finite (resp. infinite non-Zeno) timed wordsraVe

! we force timed words to satisfy, = 0 in order to have a natural way to define initial satisfia-
bility in the semantics oMTL.



Let X be a finite set of variables (calledocksin our context). The sef(X) of
clock constraintgy over X is defined by the grammag: ::= g A g | = > ¢, where
e {<,<,=,>,>},z € X, andec € Q. A valuationover X is a mapping- :
X — R>o. Whether a valuatiow satisfies a constraint (written v = ¢) is defined
naturally, and we sdig] = {v | v |= g}. Fort € R, the valuationv + ¢ is defined as
(v+t)(z) =v(z)+tforallz € X.ForY C X, the valuation/[Y — 0] is defined
asv]Y < 0](z) =0if z € Y andv[Y « 0](x) = v(z) otherwise. Also, we usé® to
denote the valuation which maps everg X to 0.

We define a measure of the clocks and constants used in a s®isifaints, called
its granularity. A granularity is specified by a triple = (X, m, K) whereX is a finite
set of clocksyn € Nyg, and K € N. A constraintg is p-granular if the clocks it
uses belong toX' and each constant occurringgnis = with o« < K anda € N. A
granularityy is finerthany if all x/-granular constraints are algegranular. Also, we
say thaty = (X, m, K) is thegranularity of afinite set of constraints iX' (resp.m,
resp.g) is the exact set of clocks (resp. the lcm of all denominatbronstants, resp.
the largest constant) mentioned in the constraints-gkanular constrainj is y-atomic
if for every p-granular constraing’, either[g] C [¢'], or [¢] N [¢'] = 0.

For an alphabel’ and a set of clockX', asymbolic alphabef” based on( X, X) is
afinite subset of” x G(X) x 2X. A (symbolic) wordy = (a1, g1, Y1)(az, g2, Ya) ...
over I" gives rise to a set of timed words ove&l, denotedtw(y). We interpret the
symbolic action(a, g, Y) to mean that actioa can happen if the constraigts satisfied,
with the clocks inY” being reset after the action. Formally,c tw(~) iff |o] = ||,
o = (a1,m)(az,7)..., and there is a sequence of valuatiegsvy, vs, ... over X
such thatyy, = 0 and for allo < i< Py vi+ Tig1 — 7 € [gi+1] andvip =
(Vi + Tig1 — 73)[Yig1 < 0] (@ssumingy = 0).

Symboalic transition systems and timed automata. A symbolic transition systefsTS
over a symbolic alphabdtf based on Y, X) is a tuple7 = (S, s, —, F) whereS
is a (possibly infinite) set of stateg, € S is the initial state—~ CS x I' x S'is the
transition relation, and C S is a set of accepting staté#\ timed automatoiiTA, for
short) [5] is anSTSwith finitely many states. In the sequel A is a TA, then we will

write 7 (A) for the STScorresponding tod where all states are considered accepting.

For a finite or infinite pathr = s; LI S9 b2, of T, thetraceof 7 is the word

over I' given byb,bs . ... Such a finite (resp. infinite) path is accepting if it ends in
(resp. visits infinitely often) an accepting state. We detytCs, .\ 7') (resp.Lgmd 7))
the set of finite (resp. infinite) symbolic words ovErthat are traces of finite (resp.

infinite) accepting paths starting from the initial stageWe setCsymd7) = Lgmd 7 )U
LEmdT). The STST is symb-deterministivhenevers L osiands & sy implies
s1 = s9. For each state € S, we denote byenabled-(s) the set of symbolic actions
b€ I'suchthat % s’ for somes’ € S. If T is symb-deterministic, then for each word
v € Lsymd T ), there is at most one path starting fregwhose trace ig. In this case

and assuming that is finite, we denote bgtater (v), the last state of such a path. Let
T = (S, s9,—) be anSTS The deterministic versiomf 7 is the symb-deterministic

2 We may omitF in the tuple if all states are accepting.



STS DetT) = (25, {s0}, —p), whereS; 2 p Sy iff So = {sy € S| sy € S1. 51 >
so} andsS, # (). Note thatCy , (Det(T)) = L5(7).

Let 7 be anSTS It also recognizes timed words.Thiened languageover finite
words accepted by, denotedC*(7), is defined byL*(T) = tw(Lg,{7T)), while
the timed language over infinite words accepted/hydenotedC (7)), is defined by
LUT) = tw(LymdT))NTX. TheSTST is saiddeterministidf there are no distinct
transitionsy =% ¢, andg 222, g, with [g1] N [g2] # 0. This notion is stronger
than symb-determinism.

Let7; = (Q1,q5, —1, F1) andTz = (Q2, g3, —2) be twoSTSover an alphabel’

based on Y, X). Theparallel compositiorof 7; and7s, denotedZ; || 72, is theSTS

a,g,Y
<Q7QO, _>aF> WhereQ = Ql X QQ: qo = (Q(l)’qa)l F= Fl X QQ: and(PlaP2) g—)

(q1,q2) iff p1 L9, q1 andp, DN, g2 With g = g1 AgoandY =Y; UYs.

2.1 Metric Temporal Logic (MTL)

The logicMTL [18] is a linear-time timed temporal logic which externdd_ with time
constraints on Until modalities. The setMf L formulae over a seX’ of atomic actions
is defined inductively as follows:

pu=Tlal| | eNe | pUre

whereT denotes “true”q € X, andl C R is an interval with bounds i@ >, U{co}.

We will use some classical shortcufs:p stands forT U/} ¢ (theconstrained eventually
operator),[J;¢ stands for-{;—p (the constrained alway®perator), andp; U; o
stands for-((—p1) Ur (—p2)) (thedual-untiloperator). We also use pseudo-arithmetic
expressions (like> 1’ or = 1") to denote intervals. We may omit the subsctdipthen

it is equal toR>.

In this paper we consider the so-calaintwise semanti¢and thus interpre¥TL
over timed words [22]. Given a (finite or infinite) timed wosd= (a1, 71)(as, 72) . ..
and anMTL formula ¢, for eachl < i < |o|, the satisfaction relatiofo,i) = ¢
(which reads asd' satisfiesy at position:”) is defined by induction. The rules for
atoms, negation, and conjunction are standard. For theratality, following [22],
we give astrict-futureinterpretation as follows:

(0,1) = ¢1 Ur o iff thereisj > i such that(o, j) = @2, 7, — 7 € I, and
(0,k) = forall kwithi < k < j

We say that satisfiesp, denotedr |= ¢, if (0,1) = . The set of finite models of
pisgiven byL*(p) = {0 € TX* | 0 = ¢}. The set of infinite models af is given
by £4(¢) = {0 € TX* | o |= p}.

Using the dual-until operator and the disjunction we carriteveveryMTL formula
into an equivalent formula ipositive normal formi.e. where negation is only applied
to actionsa € Y. We then define the fragment MTL, called Safety-MTL [22],
consisting of thos®TL formulas in positive normal form that only include instasce
of the constrained until operatdf; in which intervall has bounded length. Note that
no restriction is placed on the dual-until operator.



Example 1.Let X’ = {a,b} andy; := O(a — O—1b) be theMTL formula requiring
that everya-event is followed one time unit later bytaevent. Also, letC be the lan-
guage consisting of finite timed wordssuch that the untimed ef is in ¢*b* and two
different events do not happen at the same time. It is cledrdtcan be specified by
someMTL formulays. Now, we note thatintimed L£* (¢1 A p2)) = {a™b™ | m > n}
(whereUntimed-) is the projection ovel’), which is a non-regular language [7].

2.2 Control Problem for MTL Specifications

Let ¥ = Yo U Xg be an alphabet partitioned into a setaaintrollableactions X ¢

and a set oénvironmentctionsX'g. A plantP over X' is a deterministicTA. Let the

clocks used irP be Xp, andu = (Xp U X¢, m, K) be a granularity finer than that of

the plant. Then, a-controller for P is a deterministiSTSC over a symbolic alphabet

based oY, X» U X¢) having granularity: and satisfying:

(C1) C does not reset the clocks of the playtt:% g- in C impliesY C Xe.

(C2) C does not restrict environment actiomo(-restricting: if o € L£*(7(P||C))
ando - (e, t) € L*(T (P)) with e € X, theno - (e, t) € L*(T (P]|C)).

(C3) Cisnon-blockingif o € £*(7 (P||C)) ando-(a,t) € L*(T (P)), thens-(b,t') €
L*(T(P||C)) for someb € X andt’ € Rx.

(C4) all states ofC are acceptingféirness.

For a timed languag€ C T'X*, we say that a:-controllerC controlsP against
the specification of desired (resp. undesired) behavigui§ £*(P||C) C L (resp.
L*(P||IC)N L = (). Asimilar notion is defined for timed languages over inénitords.

Problem 1. The control problem with fixed resources against desired (respunde-
sired) behavioursis to decide, given a plar®, a specificationC, and a granularity:
finer than that ofP, whether there exists@controllerC which controlsP against the
specification of desired (resp. undesired) behavidurs

Problem 2. The control problem with non-fixed resourcesis analogous to the pre-
vious one with the important difference that the granwaat the controller is not
specifieda priori.

In this paper we study the decidability of these problemspmcifications given as
MTL formulas {.e. £ = L¥(p) or L = L*(p) for a givenMTL formulay). However,
for MTL specifications over infinite words, it is easy to show thatihetrol problem is
undecidable (also for fixed resources) by a trivial reducfiom theMTL satisfiability
problem over infinite words that is known to be undecidabB.[Zhus, in the following
we consider the cases in which eith&is the set ofinite models of arMTL formula
or the set of infinite models of @afety-MTL formula.

3 Undecidability Results

In this section we show that for non-fixed resources, therobptoblems for bottMTL
over finite words andafety-MTL over infinite words againstesiredbehaviours are



undecidable. We obtain these undecidability results bylagion from the reachability
problem of channel machines, which is known to be undeceddd].

A deterministic channel machin®CM, for short)S = (S, so, Shat, M, A) is a
finite-state automaton acting on an unbounded fifo chanrtedr&s is a finite set of
(control) statessy € S is the initial statesna € S is the halting state}/ is a finite set
of messages, and C S x {m!,m? | m € M} x S is the transition relation satisfying
the following determinismmhypothesis(1) (s,a,s1) € A and(s,a,s2) € A implies
s1 = sg;and(2) (s,ml, s1) € Aand(s,a, s2) € Aimpliesa = m! ands; = ss.

The semantics is described by a labelled graplf), whose set of vertices (global
states) is the set of paifs,z) with s € S andz € M* (representing the channel
content), and whose edge relation is defined as follgws:) = (s, y) iff (s,a,s’) €
A and eithers = m! andy = z - m, ora = m? andz = m - y. We say thatyg is
reachablen S iff there is path inG(S) from (o, €) tO (Shar, ) for somexz € M*. The
reachability problenfor DCMs then asks whether, giverDICM S, shait is reachable in
S.

Proposition 1 ([12]). The reachability problem fobCMs is undecidable.

Theorem 1. The control problem with non-fixed resourcesKoTL specifications over
finite words representing desired or undesired behaviours is ciddéle.

Proof. We reduce the halting problem fxCMs to the control problem faviTL spec-
ifications againstlesiredbehaviours (note that sind4TL is closed under negation, the
undecidability result holds also for specificationsioflesirechbehaviours). We first en-
sure that thdCM has additional properties which will be useful in our coustion,
and then we describe the reduction and give a sketch of proof.

Adding properties to channel machin&iven aDCM S’ = (5, s(, spap M', A"), we
can construct w.l.0.g. (for details see [9]) an equivalare 8 = (S, s, Shat, M, A)
(w.r.t. reachability of the halting state) such that:

— shait IS the single state with no outgoing transition,

— thereis no cycle ii.S, A) in which every edge is labelled by a write action,

— if the unique (maximal) path iG7(S) from (s, €) is infinite, then the size of the
channel content is unboundathpounded channel propejty

Encoding computations with timed wordfe encode the executions8f(i.e. the paths
of G(8S) from (sg, €)) [22] by the setLcorrect Of timed words(ay, t1)(as, t2) - - - over
{m?,m!| m € M} such that:

(R1) there exists, sa, - - - such thats; = sg and(s;, a;, s;4+1) € A for eachi > 1,
(R2) there is no two actions at the same time:j, i # j = t; # t;,
(R3) everym! action is matched by am? action one time unit later:
Vi, (a; = m!and3j t; >t + 1) = 3k (ar, = m? andt, = t; + 1),
(R4) everym? action is matched by am! action one time unit earlier:
Vi, (a; =m?) = 3k (a, = mlandty, =t; — 1),

Reduction to the control problerhet S = (.5, so, shai, M, A) be aDCM satisfying the
above-mentioned properties. The idea of the reductionegdtiowing: the plant will



roughly be the channel machigewith all actionsm! andm? being controllable. We
add two new uncontrollable actiohl andCheck A play will consist of an alternance
of controllable and uncontrollable actions. When it is hisntthe environment can
either play aNil action to continue the simulation or@heckaction to stop the game
(the use of theCheckaction is explained below). The goal of the controller wi#l to
simulate a correct execution of the channel machine regdtatesny (of course this
is possible iffsha is reachable irS). If spais reached at some point, the controller can
stop performing actions and wins the game (if the executiapaa so far is correct).

We now have to ensure that the timed wosdplayed by the controller simulate a
valid execution of the channel machine (thatis Lcorrec):

— (R1)is satisfied because the plant we consider has the sameausérass,

— (R2)and(R3) can be encoded by anTL formula in the specification,

— (R4)will be checked by the environment. We add a new sink sgatgto the plant;
at any time the environment can decide to stop the game bynglagCheckaction
and going to this new state. In this case, if Dleeckaction is played at the same
time as anm? action and there is no matching! action one time unit before,
the controller will be declared losing (in tHdTL formula). Otherwise (that is
when there is nen? action or if there is a matching! one time unit before), the
controller will be declared winning.

Thus the controller will be forced to simulate a correct exem of S because
if it tries to insert anm? which is not matched by a!, then it may lose if the
environment playS€heckimmediately after.

Here is the formal definition of the plafls and theMTL specificationy. Ps =
(Q, g0, —, F) is defined over a symbolic alphabet based ba U X'g, X ), where
- Yo ={m!\,m?|me M}, ¥g = {Nil, Check, andX = {z};
- Q=5U{gs |6 € A} U{gend}, g0 = so, andF" = @Q;

—q tuea{z}, qs iff § = (q,a,q') € A,
— g5 =2 it 6 = (g, a, ¢') for someg anda.

TheMTL formula¢ is given by¢ = ¢sim A dmatch A Pcheck Wherede. aciion Stands
forV,cs,. a, and:

- (bSim - Eﬁ(¢C-au:tion A <>:0 ¢C-action) 3 [EXDTESSGQRZ)]

— ®Match = E((m' A O>1¢c-action) = O:lm?) [expresse$R3)]
— ¢check= Nmen ((5(m? A O—oCheck) = O(m! A O—1Check
[ensures that iCheckis played at the same time than (but right afteryahaction,
then thism? action must be matched by anl one time unit earlier]

Sketch of proofln our control game, the controller can only win if it simdatthe
maximal execution o§. Now, we show thaty; is reachable irf if and only if there
exists a controller for the plas against the specificatiopof desired behaviours.

3 We use the non-strict version ¢fand: § ;¢ stands forp\ O 1 andd ¢ stands ford ;.



If shait is reachable ir5, we consider a controller with one clock (reset after every
transition) which simply plays a correct encoding (with ¢stamps inQ>¢) of the
execution ofS, reachingshg: and staying idle from here.

Assume now thatn,i: is not reachable i5. Two cases may occur: eith@r) S may
be blocking at some point; a controller playing a valid execuwill then be stuck in a
state different fronmsnai, however as it is non-blocking, it will have to play an incet
action and so violate; or (2) there is an infinite computation ifi not reachingna. In
this case, sincé& has the unbounded channel property, the channel will beuwnded
on this execution, and a controller will not be able to sineilsuch a computation (it
would intuitively need an infinite number of clocks). a

The proof for finite words can be adaptedSafety-MTL over finite or infinite
words specifyinglesiredbehaviours ¢sim and ¢match can be rewritten irsafety-MTL
by just expanding implications; F@heckWe need to consider a more involved formula,
see [9]).Safety-MTL is not closed under negation and the technique cannot bedppl
to undesiredbehaviours, thus the problem remains open in this case.

Theorem 2. The control problem with non-fixed resources afety-MTL specifica-
tions over infinite words representimigsiredoehaviours is undecidable.

4 Decidability Results

In this section, we show that for fixed resources, the comroblems for botiMTL
over finite words an&afety-MTL over infinite words (with respect to both desired and
undesired behaviours) are decidable.

In order to solve these problems, we first recall a notioniaoféd game” introduced
in [13]. Given an alphabe¥, avalidity functionover X is a functionval : 2 — 2(2%)
such that every set of actiori$ € 2* is mapped to a nonempty family of subsets
of U. Let T = (S, s9, —) be a symb-deterministi§TSover a symbolic alphabdf
andval be a validity function over". A strategyin 7 respectingval is a mapping
f:DCLyndT) — 27" such that € D and for ally € D andb € f(v), f(v) €
val(enabled-(stater(v))) andy - b € D.

The set of plays of, denoted bylays f), is the set of words itfsymy7") that are
consistent with the strategf. Formally,y € playq f) iff for every prefix+’ - b of ~,

b e f(v). We say thaff is afinite-statestrategy if there is a symb-deterministic finite-
stateSTSTyi, such thatCsymyg Zrin) = playsf) and for every finite playy of f, f(v) is
given by the set of symbolic actions enabledtter; (7).

A timed game over finite (resp. infinite) wondsa pairG = (A, £) whereA is a
symb-deterministidA over a symbolic alphabdt based on ¥, X), andL C T'X*
(resp.£L C TX¥)is a timed language over finite (resp. infinite) words. Meerpowe
require that4 is atomic(each clock constraint o is atomic w.r.t. the granularity ofl)
and isconsisten{tw(Lg 4 A)) € TX* and for everyy € Loymd7 (A)), tw(v) # 0).

Let val be a validity function over". A strategy respectingal in the timed game
G = (A, L) is a strategy ir7 (A) respectingral. A strategy/f is winning with respect
to desired behaviourgesp.winning with respect to undesired behaviduiffor every



accepting playy € playsf) N LsymdA) (v is finite if £ C TX* and~ is infinite
otherwise), the conditiotw () C £ holds (resp. conditiotw () N £ = () holds).

An MTL timed gaméresp. eSafety-MTL timed gamgis a timed gam& = (A, £)
in which £ is the set of finite or infinite models of MTL (resp.Safety-MTL) formula.

Let us return to the control problem. Slightly extending sutein [13], we easily
obtain the following resuilt.

Proposition 2. Given a plantP over a symbolic alphabét, a granularityy finer than
that of the plant, and a timed languageover finite or infinite words, one can construct
a timed gamez = (A, £) and a validity functiorval over I" s.t. A has granularity

w1 and there is a (finite-statg)-controller C which controlsP for the specification of
desired (resp. undesired) behavioutsff there is a (finite-state) winning strategy re-
spectingval in G with respect to desired (resp. undesired) behaviours.

By Proposition 2, it follows that for fixed resources, the tohproblem forMTL
over finite words (respSafety-MTL over infinite words) can be reduced to deciding
the existence of a winning strategy in 8irL timed game over finite words (resp.
Safety-MTL timed game over infinite words). In the remainder of thisis@otve prove
that these problems are decidable. The correctness of quoagh relies on a well
(and even better) quasi-ordering defined over a suitabldsyeterministic countable
infinite-stateSTS Therefore, we start by recalling some basic results fragrthleories
of well quasi-orderings and better quasi-orderings.

In the following, we assume w.l.0.g. that constants ocagrin constraints oTA
are integers. For granularity= (X, 1, K), we simply writey = (X, K).

4.1  Well Quasi-Orderings and Better Quasi-Orderings

A quasi-ordering(qgo, for short) is a paif.S, <) where= is a reflexive and transitive
(binary) relation on a sef. A well quasi-orderingwqo, for short) is a q@.5, <) such
that for every infinite sequenag, x1, x2, . . . of elements of5 there exist indices < j
such thate; < ;.

Given a qo(S, <), we are interested in the following qo induced ({8 <):

— the monotone domination ordas the qo(S*, <*), whereS* is the set of finite
words overS andzx, ..., z, <* y1,...,y, iff there is a strictly monotone injec-
tionh:{1,...,m} — {1,...,n} such thaty; <y, forall1 <i <m;

— the powerset ordeis the qo(2°,C), where for allS;, S; € S, S, C S, if and
onIy if Voo € Sy. dz1 € S1. 21 = 0.

A better quasi-orderingdbqo, for short) is a stronger relation than wqgo. We do
not recall the (rather technical) definition of bqad.see [2]). Instead we recall some
properties of bgo (see [2, 3]), which will be used in the faflog.

Proposition 3. 1. Each bqgo is a wgo. 3. If (S, =) is bgo,(S*,<*) is a bqo.
2. If Sis finite,(2°, C) is a bqo. 4. 1f (S, =) is bgo,(2%,C) is a bgo.



4.2 Alternating Timed Automata

In this subsection we recall the frameworkadfernating timed automataith a single
clock (ATA for short) [22, 20]. We use to denote this single clock. For a finite gt
&(Q) denotes the set of formulag: ::= Y AY | YV | q | x>k | x4, where
qg € Q,keN, andxe {<,<,=,> >} The expression.i is a binding construct
corresponding to the operation of resetting the clet 0.

An ATAover an alphabel is a tupled = (Q, qo, d, F) whereQ, ¢o, and F’ are
defined as folfA andd : Q x X — @(Q) is the transition function.

A configurationof A is a finite set of pairgq,u) whereq € @ is a state and
u € Rxq is a clock value. Thénitial configurationis {(go,0)}. A configurationC' is
accepting if for all(¢, ) € C, g € F (note that the empty configuration is accepting).

Given a clock value:, we define a satisfaction relati¢a, between configurations
and formulas inb(Q) according to the intuition that when the automaton is inestat
with clock valueu, then it can make an instantaneasansition to configuratiod' if4
C =y 6(q, a). Formally,|=,, is defined inductively as follows™ =, ¢ if (¢,u) € C,
CkEyxxkifuxk, CE, x4 if C =1, and the boolean connectives are handled
in the obvious way. We say that is completef for all ¢ € @, a € X, andu € R,
there is a configuratio@ such thatC' =, 6(q, a).

We say that a configuratioh! is a minimal modebf ¢ € &(Q) with respect to
u € R> if M =, ¢ and there is no proper subsgtC M with C' =, 1.

A single-step rurnis a triple of the formC' 28 ¢ wherea € 2, t € Rxo, C =
{(gi,ui) }ier andC” are configurations, an@’ = J,.;{M; | M; is a minimal model
of §(¢;, a) with respect tou; 4+ t}. A run over a (finite or infinite) timed word =

(a0, 70)(a1,m) ... is asequence of the forf oo o adi o such that each

. a;,d; . . .
triple C; — ;11 is a single-step runandl = 7, — 7;_; (assuming—; = 0).
We say that a finite timed word is acceptedy A iff there is a finite run ofd over
o starting from the initial configuration and leading to aneming configuration. We
denote byC*(A) the set of finite timed words accepted Hy

4.3 Preliminary Results

In this subsection we recall some results from [22] and statee properties useful in
our approach to solM&TL andSafety-MTL timed games. We fix a symb-deterministic,
atomicTA A = (Q, qo, —, F*) over a symbolic alphabét based or{ X, X) and with
granularity(X, K'), and a complet&TAB = (P, py, 6, F®) over X whose unique clock
is . We assume thak is greater than all constants appearing in the clock canssra
of B.

An A/B-configuration is a paif(q, v), G), where(q, v) is configuration ofA (i.e.
q € @ andv is a valuation over the set of clockS) andG is configuration of3. For
an.A/B-configuration((g, v), G), t € R>g, and(a, g,Y’) € I', we define

succ((q, v),t, (a,9,Y)) = {(¢, V') | (¢,v) 97‘“» (¢,v') is a single-step af{}®

sucé(G,t,a) = {G' | G 2L G’ is a single-step oB}

4 ].e.a simultaneous transition to multiple-copies#fescribed by configuratiofi.



The synchronous produdf .4 and B is an uncountable infinite-sta&T Sover I',
denoted by7 4,5, representing intuitivelyd and 5 executing in parallel. Formally,
Ta/8 = (S, 50, ), whereS is the set ofA/B-configurationss, = ((qo, W), {po,0})
corresponds to the initiadl / B-configuration, and

a,g,Y i
((q17 1/1), Gl) L» ((QQ, 1/2), GQ) iff 3t € RZO S.t.GQ S SUC(,B(Gl,t, Cl) and

(g2, v2) € Succ((g1,11),t, (a,9,Y))

Now, we recall the extended region construction presemig2lli] to abstract away
precise clock values inl/B-configurations, recording only their values to the nearest
integer and the relative order of their fractional part.

Let REGxk be the finite set of one-dimensional regidnsg, r1, . . ., 12k +1 } defined
as follows: for0 < i < K, ro; = {i} andry;11 = (4,+ 1), andrag 1 = (K, 00). For
u € Rxg, reg(u) denotes the region IREGx containingu.

Define the finite alphabet = 2(@*X*xREG)U(PxREGK): jts |etters are finite sets of
pairs(p, ) and tripleq(q, y, ), whereq andp are states afl andB respectivelyy € X
is a clock of A, andr is a one-dimensional region REGx. Moreover, we denote by
(A*, <) the monotone domination order induced by the bgdoC), and by(24",C)
the powerset order induced loyi*, <). Applying Proposition 3(A*, <) and(24",C)
are bgo (hence, also wqo).

Now, we associate to everyt/B-configurations = ((¢,v),G) a canonical word
H(s) € A* as follows. First note that can be equivalently represented as the set
G’ given byG U {(¢,y,v(y)) | y € X}. We partitionG’ into a sequence of subsets
G1,...,Gyp, such thatforall <i < j < n, for every pair(p, u) or triple (¢, y, u) in
G, and for every paip’, v) or triple (¢’,y’,v) in G;, the following holdsz < j iff
fract(u) < fract(v). Define H(s) as the word in1* given byAbgGh) ... AbgG,,),
where for anyl <'i < n, AbSG;) = {(p,reg(w)) | (p,u) € G} U {(q,y.regw)) |
(q,y,u) € G;}. We say that twad/B-configurationss ands’ are equivalent, written
s~ s, if H(s) = H(s).

Proposition 4 ([22]). The relation~ is a bisimulation over7 3, i.e. s; ~ s} and
a,9,Y . L, meY , ,
s1 — sg impliess| — s5 andsa ~ s, for somesy,.

The discrete quotieninduced by the bisimulation- over7y, is the STST. =
(W, wp, —), defined as follows:

— W ={H(s) | sis an.A/B-configuration;
— wo = H(sp) (i.e.the image undeH of the initial .4/B-configuration).

a,g,Y . . _1 1 a,g,Y
— wy; — wy iff there existss; € H™*(w1) andss € H'(ws) S.t.s7 — sa.
Proposition 5 ([22]). The following properties hold:

1. The set of successors of any wardh 7., is finite and effectively computable.

5le.q 2%, ¢/ is atransition ofd, v + ¢ € [g], andv’ = (v + £)[Y — 0].
® fract(u) denotes the fractional part of



2. The transition relation— of 7., is downward-compatiblevith respect to=, i.e.

, a,9,Y . . , agY ,
w] = wy andw; —— wy impliesw]; —— w), for somews, =< ws.

We conclude this subsection by stating some simple resulthe® deterministic
version of7_. Forw € W, we notereg, (w) the maximal subword < w s.t.u does
not contain occurrences of stateshfSinceB is complete anid is atomic and symb-
deterministic, by classical properties of regions in timetbmata, it easily follows that

. a,g,Y a,g,Y .
forall wy, we € W withreg, (w1) = reg, (ws2), wy —— w} andw, ——— w4 imply
thatreg, (w]) = reg,(w5). Moreoverenabled: (w;) = enabled-, (w»). Motivated
by these observations, we denote®ly the set of nonempty finite se&sC W such
that for all wordsw, w’ € C, reg,(w) = reg,(w’). Moreover, we denote b7 . =
(SW,{wp}, —p) the restriction oDet(7.) to the set of state§T¥. Note that by the
observations above& (D7 ) = L Det(7.)).

Proposition 6. 1. If G; C @5, then enableds_(C;) = enabledr_ (C2).

2. The transition relation—p of D7 .. is downward-compatiblevith respect ta_,

. a,9,Y . . a,9,Y
i.e.C) C G andC; ——p CqimpliesC]; ——p €, for someC), C Cs.

4.4 Decidability of MTL Timed Games over Finite Timed Words

The logic MTL is closed under negation, thus we only consi&rL timed games
against specifications aidesiredbehaviours. We fix aMTL timed game over finite
wordsG = (A, L*(y)) and a validity functiorval over the symbolic alphabdt as-
sociated with4. AssumeA = (Q, qo, —, F**) has granularity X, K). Applying [22],
one can construct a compleddAB, = (P, po, 0, F¥) s.t.L*(B,) = L*(p).

Let7,,, be the synchronous productdfandB,, 7. = (W, wp, —) andDT . =
(SW,{wo}, —p) be theSTSnduced byT,,, defined in Subsection 4.3.

An A/B, configuration((q,v), G) is badif both ¢ is acceptingi(e. ¢ € F*) and
G is acceptingi(e. for all (p,u) € G,p € F¥). Awordw € W is saidbad if there
iss € H~!(w) such thats is bad. Moreover, a word s€t€ SW is badif € contains
some bad word. Finally, a strategyin D7 .7 is safeiff for every finite play~ of f,
stateb7_ () is notbad.

Lemma 1. There is a (finite-state) winning strategy in the timed ga&neith respect
to undesired behaviouiff there is a (finite-state) safe strategy®’ ...

Proof. SinceB,, is complete ant! is consistent, we easily obtain tha, (7 (A)) =
LymdTas) (= Liymd D Ta,,) = L3,nd DT ). This means that for everfy: D C
I~ — 2T f is a strategy irG iff f is a strategy ifD7 . If f is a winning strategy
in G w.r.t. undesired behaviours, then we claim tlids safe forD7 .. Indeed if for
some finite playy, stater7__ () was bad, then by definition @7 .. and Proposition 4
there would be a path iff4,, from the initial A/B, configuration to a bat4/B3,
configuration whose trace is By construction, this implies € £g.{.A) andtw(y)N
L*(p) # 0, which is a contradiction. Thus, the claim holds. In a similay, if f is
safe forD7 ., thenf is a winning strategy i w.r.t. undesired behaviours. a

7 In the following we omit the reference tal.



By Lemma 1, deciding the existence of a winning strategy attmed gameG
w.r.t. undesired behaviours can be reduced to checkingxibieace of a safe strategy
finDT .. Now, we show that this last problem is decidable, by extegthe approach
proposed in [1] forA-downward closed games. The correctness and terminatiouarof
procedure relies on the well quasi-ordering iV, C).

We build a finite portionl” of the tree given by the unfolding a7 .. from the
initial state{wy} as follows. We start from the root, labelled wiflw, }, and at each
step, we pick a leaf with labelC € S and perform one of the following operations:

— if € is not badand there is an ancestor ofin the portion of the tree built so far
with label @’ where@’ C €, then we declare the nodeaccessfuind close the node
(i.e.we will not expand the tree further from the node);

— if Cis bad then we declare the nodmsuccessfudnd close the node;

. . . a,g,Y
— otherwise, for any transition {7 .. of the formC %7, € we add a new node
y with label©” and an edge from the current nadéo y labelled by(a, g,Y). If C
has no successor, then we declare the current nedelead

Note that the procedure is effective. Moreover, termimaiggguaranteed by Konig’s
Lemma and by well quasi-ordering 0§ W, C). The resulting finite tre&' is re-labelled
in a bottom-up way by elements {7, L} as follows:

— successfuinddeadleaves are labelled andunsuccessfueaves are labelled;

— for any internal node: labelled byC, the {T, L }-labelling is defined as follows:
if there is a set of symbolic actiori$ € val(enablegr _(C)) such that for each
(a,9,Y) € U, the edge if” from = and with label«a, g, Y') leads to a node labelled
by T, then we labek by T; otherwise we labelx by 1.

The algorithm answers “yes” if the root is labelled by Otherwise, it answers “no”.

Correctness of the algorithm is stated by Lemma 2. The firisit jgsimple, and the
second point follows from Proposition 6 (a detailed prodjiisen in [9]).

Lemma 2. If the algorithm answers “no”, then there iso safe strategy irD7 ..
If the algorithm answers “yes”, then there isfmite-statesafe strategy irD7 .. and we
can build it effectively.

Finally, by Lemmata 1 and 2, the fact thdT L is closed under negation, and Propo-
sition 2, we obtain the main result of this subsection.

Theorem 3. The control problem for fixed resources agaiNSIL specifications over
finite words representing desired or undesired behaviosirdecidable. Moreover, if
there exists a controller, then one can effectively comstafinite-state one.

Remark 1.As the satisfiability problem foMTL can be reduced to aMiTL control
problem, the control problem for fixed resources agaMiEL specifications over finite
words has non-primitive recursive complexity [22].

Remark 2.Since our algorithm is based on the translatiorM3JfL over finite words
to ATA the result above can be extended to specifications giveangsihges of finite
timed words recognized bATA(note thatATAare closed under complementation [22]).



4.5 Decidability of Safety-MTL Timed Games over Infinite Timed Words

First note thaSafety-MTL is not closed under negation. Thus, we need to distinguish
between specifications representing desired and undésteaziours. Fodesiredbe-
haviours, the construction is not that far from the one fatditimed words, even though

it requires some refinement. On the other handyfatesiredbehaviours, the algorithm

is much more involved and require techniques inspired by [Bde whole construction

is reported in [9]. The main result can be summarized asviallo

Theorem 4. The control problem for fixed resources agaistfety-MTL specifica-
tions over infinite words representing desired or undesivettaviours is decidable.
Moreover, fordesiredbehaviours, if there exists a controller, then one can éffety
construct a finite-state one.

5 Conclusion

In this paper, we have studied the control problenMdiL andSafety-MTL specifica-
tions. Our results are summarized in the following table.

_ fixed resources| non-fixed resources
, de;:';bf:f;;?gg’gﬁ;iws) decidable undecidable
Safety;(l;ﬂ;lr_eg\gz:;\rzggitst)a words decidable undecidable
ey | secaae |

There are still open problems, for instance the precise t@xtp of the control problem

for Safety-MTL specifications with fixed resources, and also the decidlufi the
control problem folSafety-MTL specifications representing undesired behaviours with
non-fixed resources. Finally, f{@afety-MTL representing undesired behaviours with
fixed resources, actually we do not know if the existence dfategy in a timed game
implies the existence of a finite-state one. This means kieatiestion to construct a
finite-state controller in this case remains open.
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