
Controller Synthesis for MTL Specifications?

Patricia Bouyer, Laura Bozzelli, and Fabrice Chevalier

LSV, CNRS & ENS Cachan, France
{bouyer,bozzelli,chevalie}@lsv.ens-cachan.fr

Abstract. We consider the control problem for timed automata against speci-
fications given asMTL formulas. The logicMTL is a linear-time timed tempo-
ral logic which extendsLTL with timing constraints on modalities, and recently,
its model-checking has been proved decidable in several cases. We investigate
these decidable fragments ofMTL (full MTL when interpreted over finite timed
words, andSafety-MTL when interpreted over infinite timed words), and prove
two kinds of results.(1) We first prove that, contrary to model-checking, the con-
trol problem is undecidable. Roughly, the computation of a lossy channel system
could be encoded as a model-checking problem, and we prove here that a perfect
channel system can be encoded as a control problem.(2) We then prove that if we
fix the resources of the controller (by resources we mean clocks and constants that
the controller can use), the control problem becomes decidable. This decidability
result relies on properties of well (and better) quasi-orderings.

1 Introduction

Control of timed systems.Timed automata are a well-established and widely used
model for representing real-time systems. Since their definition in the 90’s [5], many
works have investigated this model, and several tools have been developed for model-
checking timed automata and have been used for verifying real industrial case studies.

To deal withopensystems,i.e. systems interacting with an environment (which is
the case of most embedded systems), model-checking may be not sufficient, and we
need tocontrol (or guide) the system so that it satisfies the specification, whatever the
environment does. More formally, thecontrol problemasks, given a systemS and a
specificationϕ, whether there exists a controllerC such thatS guided byC satisfiesϕ.
Since the mid-90’s, the control of real-time systems has developed a lot [8, 17, 13, 16,
15, 11, 4], and several kinds of properties have been investigated, for instance properties
based on states of the system [8, 17, 4], or expressed inLTL [15], or in the branching-
time timed temporal logicTCTL [16], or even expressed by timed automata [13]. How-
ever, to our knowledge no work has investigated the control problem against properties
expressed in a linear-time timed temporal logic.

The logicMTL. The logicMTL [18] is a linear-time timed temporal logic which ex-
tendsLTL with timing constraints on Until modalities. For instance,we can write a
formulaψ = � (p→ ♦=1q), which expresses that a requestp is always followed one

? Work supported by the ACI Cortos, a program of the French ministry of research.

time unit later by a responseq. The interest in this logic has encountered a great soar
in the last year, since Ouaknine and Worrell proved that the model-checking and the
satisfiability problems for this logic are decidable [22], as soon as they are interpreted
using apointwise semanticsover finite timed words. It is worth noticing thatMTL, like
most real-time logics, can be interpreted either using a pointwise semantics (the system
is observed through events), or using a continuous semantics (the system is observed
at any point in time). These two points of view lead to pretty different decidability
properties: for instance, while the first semantics makes model-checking decidable, the
second semantics leads to undecidability [6]. Since this new insight into decidability of
linear-time timed temporal logics, works onMTL are flourishing [10, 14, 23, 24]. Let
us for instance point out the result of [24], stating that thefragment ofMTL called
Safety-MTL (which roughly imposes upper bounds on Until modalities) isdecidable
for the pointwise semantics when interpreted over infinite timed words, while model-
checking fullMTL is undecidable in this case [23].

Our contributions. In this paper, we consider the control problem for properties given
asMTL or Safety-MTL formulas. We prove the following results:

– The control problem forMTL is undecidable for the pointwise semantics, even
when considering finite timed words. In addition, if restricting toSafety-MTL, the
control problem is also undecidable when interpreted over infinite timed words.
These undecidability results rely on an elegant construction which (roughly) uses
(un)controllable actions to check that everyp action is preceded one time unit ear-
lier by aq action: this property cannot be expressed inMTL, but is somehow suffi-
cient to lead to undecidability [14].

– When bounding resources of the controller (its set of clocks, and constants it can
use in its constraints), the control problem becomes decidable for MTL specifica-
tions interpreted over finite timed words, and forSafety-MTL specifications inter-
preted over infinite timed words. Note that such a restriction to bounded resources
is quite common in the framework of synthesis of timed systems [19, 13, 11]. How-
ever, the construction proposed here is much more involved than those done in pre-
vious papers, and requires well (and better) quasi-ordering arguments for proving
correctness and termination of the construction.

All proofs can be found in the research report [9].

2 Preliminaries

Time, granularity, and symbolic alphabet. Let R≥0 be the set of non-negative reals
andQ≥0 be the set of non-negative rational numbers. LetΣ be an alphabet. Atimed
word overΣ is a wordσ = (a1, τ1)(a2, τ2) . . . overΣ × R≥0 such thatτ1 = 0 and
τi ≤ τi+1 for every1 ≤ i < |σ| (where|σ| denotes the (possibly infinite) length ofσ).1

If σ is infinite, it is non-Zenoif the sequence{τi}i∈N is unbounded. LetTΣ∗ (resp.
TΣω) be the set of finite (resp. infinite non-Zeno) timed words over Σ.

1 We force timed words to satisfyτ1 = 0 in order to have a natural way to define initial satisfia-
bility in the semantics ofMTL.

Let X be a finite set of variables (calledclocksin our context). The setG(X) of
clock constraintsg overX is defined by the grammar:g ::= g ∧ g | x ./ c, where
./∈ {<,≤,=,≥, >}, x ∈ X , andc ∈ Q≥0. A valuationoverX is a mappingν :
X → R≥0. Whether a valuationν satisfies a constraintg (written ν |= g) is defined
naturally, and we setJgK = {ν | ν |= g}. Fort ∈ R≥0, the valuationν + t is defined as
(ν + t)(x) = ν(x) + t for all x ∈ X . ForY ⊆ X , the valuationν[Y ← 0] is defined
asν[Y ← 0](x) = 0 if x ∈ Y andν[Y ← 0](x) = ν(x) otherwise. Also, we use

−→
0 to

denote the valuation which maps everyx ∈ X to 0.
We define a measure of the clocks and constants used in a set of constraints, called

its granularity. A granularity is specified by a tripleµ = (X,m,K) whereX is a finite
set of clocks,m ∈ N>0, andK ∈ N. A constraintg is µ-granular if the clocks it
uses belong toX and each constant occurring ing is α

m with α ≤ K andα ∈ N. A
granularityµ is finer thanµ′ if all µ′-granular constraints are alsoµ-granular. Also, we
say thatµ = (X,m,K) is thegranularity of a finite set of constraints ifX (resp.m,
resp.Km) is the exact set of clocks (resp. the lcm of all denominatorsof constants, resp.
the largest constant) mentioned in the constraints. Aµ-granular constraintg isµ-atomic
if for everyµ-granular constraintg′, eitherJgK ⊆ Jg′K, or JgK ∩ Jg′K = ∅.

For an alphabetΣ and a set of clocksX , asymbolic alphabetΓ based on(Σ,X) is
a finite subset ofΣ × G(X)× 2X . A (symbolic) wordγ = (a1, g1, Y1)(a2, g2, Y2) . . .
over Γ gives rise to a set of timed words overΣ, denotedtw(γ). We interpret the
symbolic action(a, g, Y) to mean that actiona can happen if the constraintg is satisfied,
with the clocks inY being reset after the action. Formally,σ ∈ tw(γ) iff |σ| = |γ|,
σ = (a1, τ1)(a2, τ2) . . ., and there is a sequence of valuationsν0, ν1, ν2, . . . overX
such thatν0 =

−→
0 and for all0 ≤ i < |γ|, νi + τi+1 − τi ∈ Jgi+1K andνi+1 =

(νi + τi+1 − τi)[Yi+1 ← 0] (assumingτ0 = 0).

Symbolic transition systems and timed automata. A symbolic transition system(STS)
over a symbolic alphabetΓ based on(Σ,X) is a tupleT = 〈S, s0,→, F 〉 whereS
is a (possibly infinite) set of states,s0 ∈ S is the initial state,→ ⊆S × Γ × S is the
transition relation, andF ⊆ S is a set of accepting states.2 A timed automaton(TA, for
short) [5] is anSTSwith finitely many states. In the sequel, ifA is a TA, then we will
write T (A) for theSTScorresponding toA where all states are considered accepting.

For a finite or infinite pathπ = s1
b1−→ s2

b2−→ . . . of T , thetraceof π is the word
overΓ given by b1b2 Such a finite (resp. infinite) path is accepting if it ends in
(resp. visits infinitely often) an accepting state. We denote byL∗symb(T) (resp.Lω

symb(T))
the set of finite (resp. infinite) symbolic words overΓ that are traces of finite (resp.
infinite) accepting paths starting from the initial states0. We setLsymb(T) = L∗symb(T)∪

Lω
symb(T). The STST is symb-deterministicwhenevers

b
−→ s1 ands

b
−→ s2 implies

s1 = s2. For each states ∈ S, we denote byenabledT (s) the set of symbolic actions

b ∈ Γ such thats
b
−→ s′ for somes′ ∈ S. If T is symb-deterministic, then for each word

γ ∈ Lsymb(T), there is at most one path starting froms0 whose trace isγ. In this case
and assuming thatγ is finite, we denote bystateT (γ), the last state of such a path. Let
T = 〈S, s0,→〉 be anSTS. Thedeterministic versionof T is the symb-deterministic

2 We may omitF in the tuple if all states are accepting.

STS Det(T) = 〈2S , {s0},→D〉, whereS1
b
−→D S2 iff S2 = {s2 ∈ S | ∃s1 ∈ S1. s1

b
−→

s2} andS2 6= ∅. Note thatL∗symb(Det(T)) = L∗symb(T).
Let T be anSTS. It also recognizes timed words.Thetimed languageover finite

words accepted byT , denotedL∗(T), is defined byL∗(T) = tw(L∗symb(T)), while
the timed language over infinite words accepted byT , denotedLω(T), is defined by
Lω(T) = tw(Lω

symb(T))∩TΣω . TheSTST is saiddeterministicif there are no distinct

transitionsq
a,g1,Y1

−−−−→ q1 andq
a,g2,Y2

−−−−→ q2 with Jg1K∩ Jg2K 6= ∅. This notion is stronger
than symb-determinism.

Let T1 = 〈Q1, q
1
0 ,→1, F1〉 andT2 = 〈Q2, q

2
0 ,→2〉 be twoSTSover an alphabetΓ

based on(Σ,X). Theparallel compositionof T1 andT2, denotedT1 ‖ T2, is theSTS

〈Q, q0,→, F 〉 whereQ = Q1 ×Q2, q0 = (q10 , q
2
0), F = F1 ×Q2, and(p1, p2)

a,g,Y
−−−→

(q1, q2) iff p1
a,g1,Y1

−−−−→1 q1 andp2
a,g2,Y2

−−−−→2 q2 with g = g1 ∧ g2 andY = Y1 ∪ Y2.

2.1 Metric Temporal Logic (MTL)

The logicMTL [18] is a linear-time timed temporal logic which extendsLTL with time
constraints on Until modalities. The set ofMTL formulae over a setΣ of atomic actions
is defined inductively as follows:

ϕ ::= > | a | ¬ϕ | ϕ ∧ ϕ | ϕ UI ϕ

where> denotes “true”,a ∈ Σ, andI ⊆ R≥0 is an interval with bounds inQ≥0∪{∞}.
We will use some classical shortcuts:♦Iϕ stands for>UI ϕ (theconstrained eventually
operator),�Iϕ stands for¬♦I¬ϕ (the constrained alwaysoperator), andϕ1 ŨI ϕ2

stands for¬((¬ϕ1) UI (¬ϕ2)) (thedual-untiloperator). We also use pseudo-arithmetic
expressions (like ‘≥ 1’ or ‘ = 1’) to denote intervals. We may omit the subscriptI when
it is equal toR≥0.

In this paper we consider the so-calledpointwise semantics, and thus interpretMTL
over timed words [22]. Given a (finite or infinite) timed wordσ = (a1, τ1)(a2, τ2) . . .
and anMTL formulaϕ, for each1 ≤ i ≤ |σ|, the satisfaction relation(σ, i) |= ϕ
(which reads as “σ satisfiesϕ at positioni”) is defined by induction. The rules for
atoms, negation, and conjunction are standard. For the until modality, following [22],
we give astrict-futureinterpretation as follows:

(σ, i) |= ϕ1 UI ϕ2 iff there isj > i such that(σ, j) |= ϕ2, τj − τi ∈ I, and

(σ, k) |= ϕ1 for all k with i < k < j

We say thatσ satisfiesϕ, denotedσ |= ϕ, if (σ, 1) |= ϕ. The set of finite models of
ϕ is given byL∗(ϕ) = {σ ∈ TΣ∗ | σ |= ϕ}. The set of infinite models ofϕ is given
byLω(ϕ) = {σ ∈ TΣω | σ |= ϕ}.

Using the dual-until operator and the disjunction we can rewrite everyMTL formula
into an equivalent formula inpositive normal form, i.e. where negation is only applied
to actionsa ∈ Σ. We then define the fragment ofMTL, calledSafety-MTL [22],
consisting of thoseMTL formulas in positive normal form that only include instances
of the constrained until operatorUI in which intervalI has bounded length. Note that
no restriction is placed on the dual-until operator.

Example 1.LetΣ = {a, b} andϕ1 := �(a → ♦=1b) be theMTL formula requiring
that everya-event is followed one time unit later by ab-event. Also, letL be the lan-
guage consisting of finite timed wordsσ such that the untimed ofσ is in a∗b∗ and two
different events do not happen at the same time. It is clear thatL can be specified by
someMTL formulaϕ2. Now, we note thatUntimed(L∗(ϕ1 ∧ ϕ2)) = {anbm | m ≥ n}
(whereUntimed(·) is the projection overΣ), which is a non-regular language [7].

2.2 Control Problem for MTL Specifications

Let Σ = ΣC ∪ ΣE be an alphabet partitioned into a set ofcontrollableactionsΣC

and a set ofenvironmentactionsΣE . A plantP overΣ is a deterministicTA. Let the
clocks used inP beXP , andµ = (XP ∪XC ,m,K) be a granularity finer than that of
the plant. Then, aµ-controller for P is a deterministicSTSC over a symbolic alphabet
based on(Σ,XP ∪XC) having granularityµ and satisfying:

(C1) C does not reset the clocks of the plant:qC
a,g,Y
−−−→ q′C in C impliesY ⊆ XC.

(C2) C does not restrict environment actions (non-restricting): if σ ∈ L∗(T (P‖C))
andσ · (e, t) ∈ L∗(T (P)) with e ∈ ΣE , thenσ · (e, t) ∈ L∗(T (P‖C)).

(C3) C is non-blocking: if σ ∈ L∗(T (P‖C)) andσ·(a, t) ∈ L∗(T (P)), thenσ·(b, t′) ∈
L∗(T (P‖C)) for someb ∈ Σ andt′ ∈ R≥0.

(C4) all states ofC are accepting (fairness).

For a timed languageL ⊆ TΣ∗, we say that aµ-controllerC controlsP against
the specification of desired (resp. undesired) behavioursL iff L∗(P‖C) ⊆ L (resp.
L∗(P‖C)∩L = ∅). A similar notion is defined for timed languages over infinite words.

Problem 1.Thecontrol problem with fixed resources against desired (resp.unde-
sired) behavioursis to decide, given a plantP , a specificationL, and a granularityµ
finer than that ofP , whether there exists aµ-controllerC which controlsP against the
specification of desired (resp. undesired) behavioursL.

Problem 2.The control problem with non-fixed resourcesis analogous to the pre-
vious one with the important difference that the granularity of the controller is not
specifieda priori.

In this paper we study the decidability of these problems forspecifications given as
MTL formulas (i.e.L = Lω(ϕ) or L = L∗(ϕ) for a givenMTL formulaϕ). However,
for MTL specifications over infinite words, it is easy to show that thecontrol problem is
undecidable (also for fixed resources) by a trivial reduction from theMTL satisfiability
problem over infinite words that is known to be undecidable [23]. Thus, in the following
we consider the cases in which eitherL is the set offinite models of anMTL formula
or the set of infinite models of aSafety-MTL formula.

3 Undecidability Results

In this section we show that for non-fixed resources, the control problems for bothMTL
over finite words andSafety-MTL over infinite words againstdesiredbehaviours are

undecidable. We obtain these undecidability results by a reduction from the reachability
problem of channel machines, which is known to be undecidable [12].

A deterministic channel machine(DCM, for short)S = 〈S, s0, shalt,M,∆〉 is a
finite-state automaton acting on an unbounded fifo channel, whereS is a finite set of
(control) states,s0 ∈ S is the initial state,shalt ∈ S is the halting state,M is a finite set
of messages, and∆ ⊆ S × {m!,m? | m ∈M} × S is the transition relation satisfying
the followingdeterminismhypothesis:(1) (s, a, s1) ∈ ∆ and(s, a, s2) ∈ ∆ implies
s1 = s2; and(2) (s,m!, s1) ∈ ∆ and(s, a, s2) ∈ ∆ impliesa = m! ands1 = s2.

The semantics is described by a labelled graphG(S), whose set of vertices (global
states) is the set of pairs(s, x) with s ∈ S andx ∈ M∗ (representing the channel
content), and whose edge relation is defined as follows:(s, x)

a
−→ (s′, y) iff (s, a, s′) ∈

∆ and eithera = m! andy = x · m, or a = m? andx = m · y. We say thatshalt is
reachablein S iff there is path inG(S) from (s0, ε) to (shalt, x) for somex ∈M∗. The
reachability problemfor DCMs then asks whether, given aDCM S, shalt is reachable in
S.

Proposition 1 ([12]).The reachability problem forDCMs is undecidable.

Theorem 1. The control problem with non-fixed resources forMTL specifications over
finite words representing desired or undesired behaviours is undecidable.

Proof. We reduce the halting problem forDCMs to the control problem forMTL spec-
ifications againstdesiredbehaviours (note that sinceMTL is closed under negation, the
undecidability result holds also for specifications ofundesiredbehaviours). We first en-
sure that theDCM has additional properties which will be useful in our construction,
and then we describe the reduction and give a sketch of proof.

Adding properties to channel machines.Given aDCM S′ = (S′, s′0, s
′
halt,M

′, ∆′), we
can construct w.l.o.g. (for details see [9]) an equivalent oneS = (S, s0, shalt,M,∆)
(w.r.t. reachability of the halting state) such that:

– shalt is the single state with no outgoing transition,
– there is no cycle in(S,∆) in which every edge is labelled by a write action,
– if the unique (maximal) path inG(S) from (s0, ε) is infinite, then the size of the

channel content is unbounded (unbounded channel property).

Encoding computations with timed words.We encode the executions ofS (i.e. the paths
of G(S) from (s0, ε)) [22] by the setLcorrect of timed words(a1, t1)(a2, t2) · · · over
{m?,m! | m ∈M} such that:

(R1) there exists1, s2, · · · such thats1 = s0 and(si, ai, si+1) ∈ ∆ for eachi ≥ 1,
(R2) there is no two actions at the same time:∀i, j, i 6= j ⇒ ti 6= tj ,
(R3) everym! action is matched by anm? action one time unit later:

∀i, (ai = m! and∃j tj ≥ ti + 1)⇒ ∃k (ak = m? andtk = ti + 1),
(R4) everym? action is matched by anm! action one time unit earlier:

∀i, (ai = m?)⇒ ∃k (ak = m! andtk = ti − 1),

Reduction to the control problem.Let S = (S, s0, shalt,M,∆) be aDCM satisfying the
above-mentioned properties. The idea of the reduction is the following: the plant will

roughly be the channel machineS with all actionsm! andm? being controllable. We
add two new uncontrollable actionsNil andCheck. A play will consist of an alternance
of controllable and uncontrollable actions. When it is his turn the environment can
either play aNil action to continue the simulation or aCheckaction to stop the game
(the use of theCheckaction is explained below). The goal of the controller will be to
simulate a correct execution of the channel machine reaching stateshalt (of course this
is possible iffshalt is reachable inS). If shalt is reached at some point, the controller can
stop performing actions and wins the game (if the execution played so far is correct).

We now have to ensure that the timed wordsσ played by the controller simulate a
valid execution of the channel machine (that isσ ∈ Lcorrect):

– (R1) is satisfied because the plant we consider has the same structure asS,
– (R2)and(R3) can be encoded by anMTL formula in the specification,
– (R4)will be checked by the environment. We add a new sink stateqEnd to the plant;

at any time the environment can decide to stop the game by playing aCheckaction
and going to this new state. In this case, if theCheckaction is played at the same
time as anm? action and there is no matchingm! action one time unit before,
the controller will be declared losing (in theMTL formula). Otherwise, (that is
when there is nom? action or if there is a matchingm! one time unit before), the
controller will be declared winning.
Thus the controller will be forced to simulate a correct execution of S because
if it tries to insert anm? which is not matched by am!, then it may lose if the
environment playsCheckimmediately after.

Here is the formal definition of the plantPS and theMTL specificationφ. PS =
〈Q, q0,→, F 〉 is defined over a symbolic alphabet based on(ΣC ∪ΣE, X), where

– ΣC = {m!,m? | m ∈M},ΣE = {Nil,Check}, andX = {x};
– Q = S ∪ {qδ | δ ∈ ∆} ∪ {qEnd}, q0 = s0, andF = Q;

– q
true,a,{x}
−−−−−−→ qδ iff δ = (q, a, q′) ∈ ∆,

– qδ
x=0,Nil
−−−−→ q′ iff δ = (q, a, q′) for someq anda.

– qδ
x=0,Check
−−−−−−→ qEnd

TheMTL formulaφ is given byφ = φSim∧ φMatch∧ φCheck, whereφC-action stands
for

∨
a∈ΣC

a, and:

– φSim = �¬(φC-action∧ ♦=0 φC-action)
3 [expresses(R2)]

– φMatch = �
(
(m! ∧ ♦≥1φC-action)⇒ ♦=1m?

)
[expresses(R3)]

– φCheck=
∧

m∈M

((
♦(m? ∧ ♦=0Check)

)
⇒ ♦(m! ∧ ♦=1Check)

)

[ensures that ifCheckis played at the same time than (but right after) anm? action,
then thism? action must be matched by anm! one time unit earlier]

Sketch of proof.In our control game, the controller can only win if it simulates the
maximal execution ofS. Now, we show thatshalt is reachable inS if and only if there
exists a controller for the plantPS against the specificationφ of desired behaviours.

3 We use the non-strict version of♦ and�: ♦Iϕ stands forϕ∨♦Iϕ and�Iϕ stands for¬♦I¬ϕ.

If shalt is reachable inS, we consider a controller with one clock (reset after every
transition) which simply plays a correct encoding (with timestamps inQ≥0) of the
execution ofS, reachingshalt and staying idle from here.

Assume now thatshalt is not reachable inS. Two cases may occur: either(1) S may
be blocking at some point; a controller playing a valid execution will then be stuck in a
state different fromshalt, however as it is non-blocking, it will have to play an incorrect
action and so violateφ; or (2) there is an infinite computation inS not reachingshalt. In
this case, sinceS has the unbounded channel property, the channel will be unbounded
on this execution, and a controller will not be able to simulate such a computation (it
would intuitively need an infinite number of clocks). ut

The proof for finite words can be adapted toSafety-MTL over finite or infinite
words specifyingdesiredbehaviours (φSim andφMatch can be rewritten inSafety-MTL
by just expanding implications; ForφCheckwe need to consider a more involved formula,
see [9]).Safety-MTL is not closed under negation and the technique cannot be applied
to undesiredbehaviours, thus the problem remains open in this case.

Theorem 2. The control problem with non-fixed resources forSafety-MTL specifica-
tions over infinite words representingdesiredbehaviours is undecidable.

4 Decidability Results

In this section, we show that for fixed resources, the controlproblems for bothMTL
over finite words andSafety-MTL over infinite words (with respect to both desired and
undesired behaviours) are decidable.

In order to solve these problems, we first recall a notion of “timed game” introduced
in [13]. Given an alphabetΣ, avalidity functionoverΣ is a functionval : 2Σ → 2(2Σ)

such that every set of actionsU ∈ 2Σ is mapped to a nonempty family of subsets
of U . Let T = 〈S, s0,→〉 be a symb-deterministicSTSover a symbolic alphabetΓ
and val be a validity function overΓ . A strategyin T respectingval is a mapping
f : D ⊆ L∗symb(T) → 2Γ such thatε ∈ D and for allγ ∈ D andb ∈ f(γ), f(γ) ∈
val(enabledT (stateT (γ))) andγ · b ∈ D.

The set of plays off , denoted byplays(f), is the set of words inLsymb(T) that are
consistent with the strategyf . Formally,γ ∈ plays(f) iff for every prefixγ′ · b of γ,
b ∈ f(γ′). We say thatf is afinite-statestrategy if there is a symb-deterministic finite-
stateSTSTfin such thatLsymb(Tfin) = plays(f) and for every finite playγ of f , f(γ) is
given by the set of symbolic actions enabled atstateTfin(γ).

A timed game over finite (resp. infinite) wordsis a pairG = (A,L) whereA is a
symb-deterministicTA over a symbolic alphabetΓ based on(Σ,X), andL ⊆ TΣ∗

(resp.L ⊆ TΣω) is a timed language over finite (resp. infinite) words. Moreover, we
require thatA is atomic(each clock constraint ofA is atomic w.r.t. the granularity ofA)
and isconsistent(tw(Lω

symb(A)) ⊆ TΣω and for everyγ ∈ Lsymb(T (A)), tw(γ) 6= ∅).
Let val be a validity function overΓ . A strategy respectingval in the timed game

G = (A,L) is a strategy inT (A) respectingval. A strategyf is winning with respect
to desired behaviours(resp.winning with respect to undesired behaviours) iff for every

accepting playγ ∈ plays(f) ∩ Lsymb(A) (γ is finite if L ⊆ TΣ∗ andγ is infinite
otherwise), the conditiontw(γ) ⊆ L holds (resp. conditiontw(γ) ∩ L = ∅ holds).

An MTL timed game(resp. aSafety-MTL timed game) is a timed gameG = (A,L)
in whichL is the set of finite or infinite models of anMTL (resp.Safety-MTL) formula.

Let us return to the control problem. Slightly extending a result in [13], we easily
obtain the following result.

Proposition 2. Given a plantP over a symbolic alphabetΓ , a granularityµ finer than
that of the plant, and a timed languageL over finite or infinite words, one can construct
a timed gameG = (A,L) and a validity functionval overΓ s.t.A has granularity
µ and there is a (finite-state)µ-controller C which controlsP for the specification of
desired (resp. undesired) behavioursL iff there is a (finite-state) winning strategy re-
spectingval in G with respect to desired (resp. undesired) behaviours.

By Proposition 2, it follows that for fixed resources, the control problem forMTL
over finite words (resp.Safety-MTL over infinite words) can be reduced to deciding
the existence of a winning strategy in anMTL timed game over finite words (resp.
Safety-MTL timed game over infinite words). In the remainder of this section we prove
that these problems are decidable. The correctness of our approach relies on a well
(and even better) quasi-ordering defined over a suitable symb-deterministic countable
infinite-stateSTS. Therefore, we start by recalling some basic results from the theories
of well quasi-orderings and better quasi-orderings.

In the following, we assume w.l.o.g. that constants occurring in constraints ofTA
are integers. For granularityµ = (X, 1,K), we simply writeµ = (X,K).

4.1 Well Quasi-Orderings and Better Quasi-Orderings

A quasi-ordering(qo, for short) is a pair(S,�) where� is a reflexive and transitive
(binary) relation on a setS. A well quasi-ordering(wqo, for short) is a qo(S,�) such
that for every infinite sequencex0, x1, x2, . . . of elements ofS there exist indicesi < j
such thatxi � xj .

Given a qo(S,�), we are interested in the following qo induced by(S,�):

– the monotone domination orderis the qo(S∗,�∗), whereS∗ is the set of finite
words overS andx1, . . . , xm �∗ y1, . . . , yn iff there is a strictly monotone injec-
tion h : {1, . . . ,m} → {1, . . . , n} such thatxi � yh(i) for all 1 ≤ i ≤ m;

– the powerset orderis the qo(2S,v), where for allS1, S2 ⊆ S, S1 v S2 if and
only if ∀x2 ∈ S2. ∃x1 ∈ S1. x1 � x2.

A better quasi-ordering(bqo, for short) is a stronger relation than wqo. We do
not recall the (rather technical) definition of bqo (e.g.see [2]). Instead we recall some
properties of bqo (see [2, 3]), which will be used in the following.

Proposition 3. 1. Each bqo is a wqo.
2. If S is finite,(2S ,⊆) is a bqo.

3. If (S,�) is bqo,(S∗,�∗) is a bqo.
4. If (S,�) is bqo,(2S ,v) is a bqo.

4.2 Alternating Timed Automata

In this subsection we recall the framework ofalternating timed automatawith a single
clock (ATA, for short) [22, 20]. We usex to denote this single clock. For a finite setQ,
Φ(Q) denotes the set of formulas:ψ ::= ψ ∧ ψ | ψ ∨ ψ | q | x ./ k | x.ψ, where
q ∈ Q, k ∈ N, and./∈ {<,≤,=,≥, >}. The expressionx.ψ is a binding construct
corresponding to the operation of resetting the clockx to 0.

An ATA over an alphabetΣ is a tupleA = 〈Q, q0, δ, F 〉 whereQ, q0, andF are
defined as forTA, andδ : Q×Σ → Φ(Q) is the transition function.

A configurationof A is a finite set of pairs(q, u) whereq ∈ Q is a state and
u ∈ R≥0 is a clock value. Theinitial configurationis {(q0, 0)}. A configurationC is
accepting if for all(q, u) ∈ C, q ∈ F (note that the empty configuration is accepting).

Given a clock valueu, we define a satisfaction relation|=u between configurations
and formulas inΦ(Q) according to the intuition that when the automaton is in state q
with clock valueu, then it can make an instantaneousa-transition to configurationC if4

C |=u δ(q, a). Formally,|=u is defined inductively as follows:C |=u q if (q, u) ∈ C,
C |=u x ./ k if u ./ k,C |=u x.ψ if C |=0 ψ, and the boolean connectives are handled
in the obvious way. We say thatA is completeif for all q ∈ Q, a ∈ Σ, andu ∈ R≥0,
there is a configurationC such thatC |=u δ(q, a).

We say that a configurationM is a minimal modelof ψ ∈ Φ(Q) with respect to
u ∈ R≥0 if M |=u ψ and there is no proper subsetC ⊂M with C |=u ψ.

A single-step runis a triple of the formC
a,t
−−→ C′ wherea ∈ Σ, t ∈ R≥0, C =

{(qi, ui)}i∈I andC′ are configurations, andC′ =
⋃

i∈I{Mi | Mi is a minimal model
of δ(qi, a) with respect toui + t}. A run over a (finite or infinite) timed wordσ =

(a0, τ0)(a1, τ1) . . . is a sequence of the formC0
a0,d0−−−→ C1

a1,d1−−−→ C2 . . . such that each

tripleCi
ai,di

−−−→ Ci+1 is a single-step run anddi = τi − τi−1 (assumingτ−1 = 0).
We say that a finite timed wordσ is acceptedbyA iff there is a finite run ofA over

σ starting from the initial configuration and leading to an accepting configuration. We
denote byL∗(A) the set of finite timed words accepted byA.

4.3 Preliminary Results

In this subsection we recall some results from [22] and statesome properties useful in
our approach to solveMTL andSafety-MTL timed games. We fix a symb-deterministic,
atomicTAA = 〈Q, q0,→, FA〉 over a symbolic alphabetΓ based on(Σ,X) and with
granularity(X,K), and a completeATAB = 〈P, p0, δ, F

B〉 overΣ whose unique clock
is x. We assume thatK is greater than all constants appearing in the clock constraints
of B.

An A/B-configuration is a pair((q, ν), G), where(q, ν) is configuration ofA (i.e.
q ∈ Q andν is a valuation over the set of clocksX) andG is configuration ofB. For
anA/B-configuration((q, ν), G), t ∈ R≥0, and(a, g, Y) ∈ Γ , we define




SuccA((q, ν), t, (a, g, Y)) = {(q′, ν′) | (q, ν)
a,g,Y
−−−→

t
(q′, ν′) is a single-step ofA}5

SuccB(G, t, a) = {G′ | G
a,t
−−→ G′ is a single-step ofB}

4 I.e.a simultaneous transition to multiple-copies ofA described by configurationC.

Thesynchronous productof A andB is an uncountable infinite-stateSTSoverΓ ,
denoted byTA/B, representing intuitivelyA andB executing in parallel. Formally,

TA/B = 〈S, s0,�〉, whereS is the set ofA/B-configurations,s0 = ((q0,
−→
0), {p0, 0})

corresponds to the initialA/B-configuration, and

((q1, ν1), G1)
a,g,Y
−−−� ((q2, ν2), G2) iff ∃t ∈ R≥0 s.t.G2 ∈ SuccB(G1, t, a) and

(q2, ν2) ∈ SuccA((q1, ν1), t, (a, g, Y))

Now, we recall the extended region construction presented in [21] to abstract away
precise clock values inA/B-configurations, recording only their values to the nearest
integer and the relative order of their fractional part.

Let REGK be the finite set of one-dimensional regions{r0, r1, . . . , r2K+1} defined
as follows: for0 ≤ i ≤ K, r2i = {i} andr2i+1 = (i, i+1), andr2K+1 = (K,∞). For
u ∈ R≥0, reg(u) denotes the region inREGK containingu.

Define the finite alphabetΛ = 2(Q×X×REGK)∪(P×REGK): its letters are finite sets of
pairs(p, r) and triples(q, y, r), whereq andp are states ofA andB respectively,y ∈ X
is a clock ofA, andr is a one-dimensional region inREGK . Moreover, we denote by
(Λ∗,�) the monotone domination order induced by the bqo(Λ,⊆), and by(2Λ∗

,v)
the powerset order induced by(Λ∗,�). Applying Proposition 3,(Λ∗,�) and(2Λ∗

,v)
are bqo (hence, also wqo).

Now, we associate to everyA/B-configurations = ((q, ν), G) a canonical word
H(s) ∈ Λ∗ as follows. First note thats can be equivalently represented as the set
G′ given byG ∪ {(q, y, ν(y)) | y ∈ X}. We partitionG′ into a sequence of subsets
G1, . . . , Gn, such that for all1 ≤ i ≤ j ≤ n, for every pair(p, u) or triple (q, y, u) in
Gi, and for every pair(p′, v) or triple (q′, y′, v) in Gj , the following holds:i ≤ j iff
fract(u) ≤ fract(v).6 DefineH(s) as the word inΛ∗ given byAbs(G1) . . .Abs(Gn),
where for any1 ≤ i ≤ n, Abs(Gi) = {(p, reg(u)) | (p, u) ∈ Gi} ∪ {(q, y, reg(u)) |
(q, y, u) ∈ Gi}. We say that twoA/B-configurationss ands′ are equivalent, written
s ∼ s′, if H(s) = H(s′).

Proposition 4 ([22]). The relation∼ is a bisimulation overTA/B, i.e. s1 ∼ s′1 and

s1
a,g,Y
−−−� s2 impliess′1

a,g,Y
−−−� s′2 ands2 ∼ s′2 for somes′2.

The discrete quotientinduced by the bisimulation∼ overTA/B is theSTST∼ =
〈W,w0, ↪→〉, defined as follows:

– W = {H(s) | s is anA/B-configuration};
– w0 = H(s0) (i.e. the image underH of the initialA/B-configuration).

– w1
a,g,Y
↪−−−→ w2 iff there existss1 ∈ H−1(w1) ands2 ∈ H−1(w2) s.t.s1

a,g,Y
−−−� s2.

Proposition 5 ([22]).The following properties hold:

1. The set of successors of any wordw in T∼ is finite and effectively computable.

5 I.e.q
a,g,Y
−−−→ q′ is a transition ofA, ν + t ∈ JgK, andν′ = (ν + t)[Y ← 0].

6 fract(u) denotes the fractional part ofu.

2. The transition relation↪→ of T∼ is downward-compatiblewith respect to�, i.e.

w′
1 � w1 andw1

a,g,Y
↪−−−→ w2 impliesw′

1

a,g,Y
↪−−−→ w′

2 for somew′
2 � w2.

We conclude this subsection by stating some simple results on the deterministic
version ofT∼. Forw ∈ W , we noteregA(w) the maximal subwordu � w s.t.u does
not contain occurrences of states ofB. SinceB is complete andA is atomic and symb-
deterministic, by classical properties of regions in timedautomata, it easily follows that

for allw1, w2 ∈W with regA(w1) = regA(w2),w1
a,g,Y
↪−−−→ w′

1 andw2
a,g,Y
↪−−−→ w′

2 imply
that regA(w′

1) = regA(w′
2). Moreover,enabledT∼

(w1) = enabledT∼
(w2). Motivated

by these observations, we denote bySW the set of nonempty finite setsC ⊆ W such
that for all wordsw,w′ ∈ C, regA(w) = regA(w′). Moreover, we denote byDT ∼ =
〈SW , {w0}, ↪−→D〉 the restriction ofDet(T∼) to the set of statesSW . Note that by the
observations above,L∗symb(DT ∼) = L∗symb(Det(T∼)).

Proposition 6. 1. If C1 v C2, then enabledDT ∼
(C1) = enabledDT ∼

(C2).
2. The transition relation↪−→D of DT ∼ is downward-compatiblewith respect tov,

i.e.C′
1 v C1 andC1

a,g,Y
↪−−−→D C2 impliesC

′
1

a,g,Y
↪−−−→D C

′
2 for someC′

2 v C2.

4.4 Decidability of MTL Timed Games over Finite Timed Words

The logic MTL is closed under negation, thus we only considerMTL timed games
against specifications ofundesiredbehaviours. We fix anMTL timed game over finite
wordsG = (A,L∗(ϕ)) and a validity functionval over the symbolic alphabetΓ as-
sociated withA. AssumeA = 〈Q, q0,→, FA〉 has granularity(X,K). Applying [22],
one can construct a completeATABϕ = 〈P, p0, δ, F

ϕ〉 s.t.L∗(Bϕ) = L∗(ϕ).
LetTA/ϕ be the synchronous product ofA andBϕ, T∼ = 〈W,w0, ↪−→〉 andDT ∼ =

〈SW , {w0}, ↪−→D〉 be theSTSinduced byTA/ϕ defined in Subsection 4.3.
An A/Bϕ configuration((q, ν), G) is bad if both q is accepting (i.e. q ∈ FA) and

G is accepting (i.e. for all (p, u) ∈ G, p ∈ Fϕ). A wordw ∈ W is saidbad if there
is s ∈ H−1(w) such thats is bad. Moreover, a word setC ∈ SW is bad if C contains
some bad word. Finally, a strategyf in DT ∼

7 is safeiff for every finite playγ of f ,
stateDT ∼

(γ) is not bad.

Lemma 1. There is a (finite-state) winning strategy in the timed gameG with respect
to undesired behavioursiff there is a (finite-state) safe strategy inDT ∼.

Proof. SinceBϕ is complete andA is consistent, we easily obtain thatL∗symb(T (A)) =
L∗symb(TA/ϕ) (= L∗symb(Det(TA/ϕ) = L∗symb(DT ∼)). This means that for everyf : D ⊆

Γ ∗ → 2Γ , f is a strategy inG iff f is a strategy inDT ∼. If f is a winning strategy
in G w.r.t. undesired behaviours, then we claim thatf is safe forDT ∼. Indeed if for
some finite playγ, stateDT ∼

(γ) was bad, then by definition ofDT ∼ and Proposition 4
there would be a path inTA/ϕ from the initialA/Bϕ configuration to a badA/Bϕ

configuration whose trace isγ. By construction, this impliesγ ∈ L∗symb(A) andtw(γ)∩
L∗(ϕ) 6= ∅, which is a contradiction. Thus, the claim holds. In a similar way, if f is
safe forDT ∼, thenf is a winning strategy inG w.r.t. undesired behaviours. ut

7 In the following we omit the reference toval.

By Lemma 1, deciding the existence of a winning strategy in the timed gameG
w.r.t. undesired behaviours can be reduced to checking the existence of a safe strategy
f inDT ∼. Now, we show that this last problem is decidable, by extending the approach
proposed in [1] forA-downward closed games. The correctness and termination ofour
procedure relies on the well quasi-ordering of(SW ,v).

We build a finite portionT of the tree given by the unfolding ofDT ∼ from the
initial state{w0} as follows. We start from the root, labelled with{w0}, and at each
step, we pick a leafx with labelC ∈ SW and perform one of the following operations:

– if C is not badand there is an ancestor ofx in the portion of the tree built so far
with labelC′ whereC

′ v C, then we declare the nodesuccessfuland close the node
(i.e.we will not expand the tree further from the node);

– if C is bad, then we declare the nodeunsuccessfuland close the node;

– otherwise, for any transition inDT ∼ of the formC
a,g,Y
↪−−−→D C

′ we add a new node
y with labelC′ and an edge from the current nodex to y labelled by(a, g, Y). If C

has no successor, then we declare the current nodex asdead.

Note that the procedure is effective. Moreover, termination is guaranteed by König’s
Lemma and by well quasi-ordering of(SW ,v). The resulting finite treeT is re-labelled
in a bottom-up way by elements in{>,⊥} as follows:

– successfulanddeadleaves are labelled> andunsuccessfulleaves are labelled⊥;
– for any internal nodex labelled byC, the{>,⊥}-labelling is defined as follows:

if there is a set of symbolic actionsU ∈ val(enabledDT ∼
(C)) such that for each

(a, g, Y) ∈ U , the edge inT fromx and with label(a, g, Y) leads to a node labelled
by>, then we labelx by>; otherwise, we labelx by⊥.

The algorithm answers “yes” if the root is labelled by>. Otherwise, it answers “no”.

Correctness of the algorithm is stated by Lemma 2. The first point is simple, and the
second point follows from Proposition 6 (a detailed proof isgiven in [9]).

Lemma 2. If the algorithm answers “no”, then there isnosafe strategy inDT ∼.
If the algorithm answers “yes”, then there is afinite-statesafe strategy inDT ∼ and we
can build it effectively.

Finally, by Lemmata 1 and 2, the fact thatMTL is closed under negation, and Propo-
sition 2, we obtain the main result of this subsection.

Theorem 3. The control problem for fixed resources againstMTL specifications over
finite words representing desired or undesired behaviours is decidable. Moreover, if
there exists a controller, then one can effectively construct a finite-state one.

Remark 1.As the satisfiability problem forMTL can be reduced to anMTL control
problem, the control problem for fixed resources againstMTL specifications over finite
words has non-primitive recursive complexity [22].

Remark 2.Since our algorithm is based on the translation ofMTL over finite words
to ATA, the result above can be extended to specifications given as languages of finite
timed words recognized byATA(note thatATAare closed under complementation [22]).

4.5 Decidability of Safety-MTL Timed Games over Infinite Timed Words

First note thatSafety-MTL is not closed under negation. Thus, we need to distinguish
between specifications representing desired and undesiredbehaviours. Fordesiredbe-
haviours, the construction is not that far from the one for finite timed words, even though
it requires some refinement. On the other hand, forundesiredbehaviours, the algorithm
is much more involved and require techniques inspired by [24]. The whole construction
is reported in [9]. The main result can be summarized as follows.

Theorem 4. The control problem for fixed resources againstSafety-MTL specifica-
tions over infinite words representing desired or undesiredbehaviours is decidable.
Moreover, fordesiredbehaviours, if there exists a controller, then one can effectively
construct a finite-state one.

5 Conclusion

In this paper, we have studied the control problem forMTL andSafety-MTL specifica-
tions. Our results are summarized in the following table.

fixed resources non-fixed resources
MTL over finite words

(desired or undesired behaviours)
decidable undecidable

Safety-MTL over infinite words
(desired behaviours)

decidable undecidable

Safety-MTL over infinite words
(undesired behaviours)

decidable ?

There are still open problems, for instance the precise complexity of the control problem
for Safety-MTL specifications with fixed resources, and also the decidability of the
control problem forSafety-MTL specifications representing undesired behaviours with
non-fixed resources. Finally, forSafety-MTL representing undesired behaviours with
fixed resources, actually we do not know if the existence of a strategy in a timed game
implies the existence of a finite-state one. This means that the question to construct a
finite-state controller in this case remains open.

References

1. P. A. Abdulla, A. Bouajjani, and J. d’Orso. Deciding monotonic games. InProc. 17th
Int. Work. Computer Science Logic (CSL’03), volume 2803 ofLNCS, pages 1–14. Springer,
2003.

2. P. A. Abdulla and A. Nylén. Better is better than well: On efficient verification of infinite-
state systems. InProc. 15th Ann. Symp. Logic in Computer Science (LICS’00), pages 132–
140. IEEE Comp. Soc. Press, 2000.

3. P. A. Abdulla and A. Nylén. Timed Petri nets and bqos. InProc. 22nd Int. Conf. Application
and Theory of Petri Nets (ICATPN’01), volume 2075 ofLNCS, pages 53–70. Springer, 2001.

4. L. d. Alfaro, M. Faella, Th. A. Henzinger, R. Majumdar, andM. Stoelinga. The element
of surprise in timed games. InProc. 14th Int. Conf. Concurrency Theory (CONCUR’03),
volume 2761 ofLNCS, pages 142–156. Springer, 2003.

5. R. Alur and D. Dill. A theory of timed automata.Theoretical Computer Science, 126(2):183–
235, 1994.

6. R. Alur and Th. A. Henzinger. Real-time logics: Complexity and expressiveness.Information
and Computation, 104(1):35–77, 1993.

7. R. Alur and P. Madhusudan. Decision problems for timed automata: A survey. InProc.
4th Int. School Formal Methods Design of Computer, Communication and Software Systems:
Real Time (SFM-04:RT), volume 3185 ofLNCS, pages 122–133. Springer, 2004.

8. E. Asarin, O. Maler, A. Pnueli, and J. Sifakis. Controllersynthesis for timed automata. In
Proc. IFAC Symp. System Structure and Control, pages 469–474. Elsevier Science, 1998.

9. P. Bouyer, L. Bozzelli, and F. Chevalier. Controller synthesis for MTL specifications. Re-
search report, Laboratoire Spécification & Vérification,ENS de Cachan, France, 2006.

10. P. Bouyer, F. Chevalier, and N. Markey. On the expressiveness of TPTL and MTL. In
Proc. 25th Conf. Foundations of Software Technology and Theoretical Computer Science
(FST&TCS’05), volume 3821 ofLNCS, pages 432–443. Springer, 2005.

11. P. Bouyer, D. D’Souza, P. Madhusudan, and A. Petit. Timedcontrol with partial observabil-
ity. In Proc. 15th Int. Conf. Computer Aided Verification (CAV’03), volume 2725 ofLNCS,
pages 180–192. Springer, 2003.

12. D. Brand and P. Zafiropulo. On communicating finite-statemachines.Journal of the ACM,
30(2):323–342, 1983.

13. D. D’Souza and P. Madhusudan. Timed control synthesis for external specifications. In
Proc. 19th Int. Symp. Theoretical Aspects of Computer Science (STACS’02), volume 2285 of
LNCS, pages 571–582. Springer, 2002.

14. D. D’Souza and P. Prabhakar. On the expressiveness of MTLin the pointwise and continuous
semantics.Formal Methods Letters, 2006. To appear.

15. M. Faella, S. La Torre, and A. Murano. Automata-theoretic decision of timed games. In
Proc. 3rd Int. Work. Verification, Model Checking, and Abstract Interpretation (VMCAI’02),
volume 2294 ofLNCS, pages 94–108. Springer, 2002.

16. M. Faella, S. La Torre, and A. Murano. Dense real-time games. InProc. 17th Ann. Symp.
Logic in Computer Science (LICS’02), pages 167–176. IEEE Comp. Soc. Press, 2002.

17. Th. A. Henzinger and P. W. Kopke. Discrete-time control for rectangular hybrid automata.
Theoretical Computer Science, 221:369–392, 1999.

18. R. Koymans. Specifying real-time properties with metric temporal logic.Real-Time Systems,
2(4):255–299, 1990.

19. F. Laroussinie, K. G. Larsen, and C. Weise. From timed automata to logic – and back. In
Proc. 20th Int. Symp. Mathematical Foundations of ComputerScience (MFCS’95), volume
969 ofLNCS, pages 529–539. Springer, 1995.

20. S. Lasota and I. Walukiewicz. Alternating timed automata. InProc. 8th Int. Conf. Founda-
tions of Software Science and Computation Structures (FoSSaCS’05), volume 3441 ofLNCS,
pages 250–265. Springer, 2005.

21. J. Ouaknine and J. B. Worrell. On the language inclusion problem for timed automata:
Closing a decidability gap. InProc. 19th Ann. Symp. Logic in Computer Science (LICS’04),
pages 54–63. IEEE Comp. Soc. Press, 2004.

22. J. Ouaknine and J. B. Worrell. On the decidability of metric temporal logic. InProc. 19th
Ann. Symp. Logic in Computer Science (LICS’05), pages 188–197. IEEE Comp. Soc. Press,
2005.

23. J. Ouaknine and J. B. Worrell. On metric temporal logic and faulty Turing machines. InProc.
9th Int. Conf. Foundations of Software Science and Computation Structures (FoSSaCS’06),
volume 3921 ofLNCS, pages 217–230. Springer, 2006.

24. J. Ouaknine and J. B. Worrell. Safety metric temporal logic is fully decidable. InProc. 12th
Int. Conf. Tools and Algorithms for the Construction and Analysis of Systems (TACAS’06),
volume 3920 ofLNCS, pages 411–425. Springer, 2006.

