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Abstract. We address the message authentication problem in two seem-
ingly different communication models. In the first model, the sender and
receiver are connected by an insecure channel and by a low-bandwidth
auxiliary channel, that enables the sender to “manually” authenticate
one short message to the receiver (for example, by typing a short string
or comparing two short strings). We consider this model in a setting
where no computational assumptions are made, and prove that for any
0 < € < 1 there exists a log™ n-round protocol for authenticating n-bit
messages, in which only 2log(1/e) + O(1) bits are manually authenti-
cated, and any adversary (even computationally unbounded) has prob-
ability of at most e to cheat the receiver into accepting a fraudulent
message. Moreover, we develop a proof technique showing that our pro-
tocol is essentially optimal by providing a lower bound of 2log(1/¢) — 6
on the required length of the manually authenticated string.

The second model we consider is the traditional message authenti-
cation model. In this model the sender and the receiver share a short
secret key; however, they are connected only by an insecure channel.
Once again, we apply our proof technique, and prove a lower bound of
2log(1/€) — 2 on the required Shannon entropy of the shared key. This
settles an open question posed by Gemmell and Naor (CRYPTO ’93).

Finally, we prove that one-way functions are essential (and sufficient)
for the existence of protocols breaking the above lower bounds in the
computational setting.

1 Introduction

Message authentication is one of the major issues in cryptography. Protocols for
message authentication provide assurance to the receiver of a message that it was
sent by a specified legitimate sender, even in the presence of an adversary who
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controls the communication channel. For more than three decades, numerous au-
thentication models have been investigated, and many authentication protocols
have been suggested. The security of these protocols can be classified according to
the assumed computational resources of the adversary. Security that holds when
one assumes a suitable restriction on the adversary’s computing capabilities is
called computational security, while security that holds even when the adversary
is computationally unbounded is called unconditional security or information-
theoretic security. This paper is concerned mostly with unconditional security
of a single instance of message authentication protocols. We remark that there
are three main advantages to unconditional security over computational security.
The first is the obvious fact that no assumptions are made about the adversary’s
computing capabilities or about the computational hardness of specific problems.
The second, less apparent advantage, is that unconditionally secure protocols are
often more efficient than computationally secure protocols. The third advantage
is that unconditional security allows exact evaluation of the error probabilities.

Shared Key Authentication. The first construction of an authentication pro-
tocol in the literature was suggested by Gilbert, MacWilliams and Sloane [I(] in
the information-theoretic adversarial setting. They considered a communication
model in which the sender and the receiver share a key, which is not known to
the adversary. Gilbert et al. presented a non-interactive protocol, in which the
length of the shared key is 2 max{n,log(1/€)}; henceforth, n is the length of the
input message and ¢ is the adversary’s probability of cheating the receiver into
accepting a fraudulent message. They also proved a lower bound of 21log(1/€) on
the required entropy of the shared key in non-interactive deterministic protocols.
Clearly, a trivial lower bound on this entropy is log(1/€), since an adversary can
merely guess the shared key. This model, to which we refer as the shared key
model, became the standard model for message authentication protocols. Proto-
cols in this model should provide authenticity of messages while minimizing the
length of the shared key.

Wegman and Carter [20] suggested using e-almost strongly universaly hash
functions for authentication. This enabled them to construct a non-interactive
protocol in which the length of the shared key is O(lognlog(1/¢)) bits. In 1984,
Simmons [17] initiated a line of work on unconditionally secure authentication
protocols (see, for example, [I3[18] and more references in the full version).
Gemmell and Naor [9] proposed a non-interactive protocol, in which the length
of the shared key is only logn + 5log(1/€) bits. They also demonstrated that by
introducing interaction, the length of the shared key can be made independent
of the length of the input message. More specifically, they suggested a log™ n-
round protocol that enables the sender to authenticate n-bit messages, where
the length of the shared key is only 2log(1/¢) + O(1) bits. However, it was not
known whether this upper bound is optimal, that is, if by introducing interaction
the entropy of the shared key can be made smaller than 2log(1/e).

Manual Authentication. Recently, Vaudenay [19] formalized a realistic com-
munication model for message authentication, in which the sender and the re-
ceiver are connected by a bidirectional insecure channel, and by a unidirectional
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low-bandwidth auxiliary channel, but do not share any secret information. It
is assumed that the adversary has full control over the insecure channel. In
particular, the adversary can read any message sent over this channel, prevent
it from being delivered, and insert a new message at any point in time. The
low-bandwidth auxiliary channel enables the sender to “manually” authenticate
one short string to the receiver. The adversary cannot modify this short string.
However, the adversary can still read it, delay it, and remove it. We refer to the
auxiliary channel as the manual channel, and to this communication model as
the manual channel model. Protocols in this model should provide authenticity
of long messageﬂ while minimizing the length of the manually authenticated
string. We remark that log(1/¢) is an obvious lower bound in this model as well.

The manual channel model is becoming very popular in real-world scenarios,
whenever there are ad hoc networks with no trusted infrastructure. In particular,
this model was found suitable for initial pairing of devices in wireless networks,
such as Wireless USB [3] and Bluetooth [2]. While in wired connections when a
device is plugged in (i.e., when the wire is connected), the user can see that the
connection is made, wireless connections may establish connection paths that are
not straightforward. In fact, it may not be obvious when a device is connected or
who its host is. Therefore, initial authentication in device and host connections
is required so that the user will be able to validate both the device and its host.

Consider, for example, a user who wishes to connect a new DVD player to
her home wireless network. Then, the user reading a short message from the
display of the DVD player and typing it on a PC’s keyboard constitutes a manual
authentication channel from the DVD player to the PC. An equivalent channel is
the user comparing two short strings displayed by the two devices, as suggested
by Gehrmann et al. [g].

Constants Do Matter. The most significant constraint in the manual channel
model is the length of the manually authenticated string. This quantity is deter-
mined by the environment in which the protocol is executed, and in particular
by the capabilities of the user. While it is reasonable to expect a user to manu-
ally authenticate 20 or 40 bits, it is not reasonable to expect a user to manually
authenticate 160 bits. Therefore, there is a considerable difference between man-
ually authenticating log(1/€) or 2log(1/€) bits, and manually authenticating a
significantly longer string. This motivates the study of determining the exact
lower bound on the required length of the manually authenticated string.

Our Contribution. We present an unconditionally secure authentication pro-
tocol in the manual channel model, in which the sender manually authenticates
only 2log(1/€) + O(1) bits. Moreover, we develop a proof technique, proving
that our protocol is essentially optimal in minimizing the length of the manually
authenticated string. Then, we apply this technique to the shared key model,
and settle an open question posed by Gemmell and Naor [9] by deriving a sim-
ilar lower bound on the required entropy of the shared key. This lower bound

! Short messages can be directly manually authenticated.
2 However, in existing protocols for pairing of Bluetooth devices, the manual channel
is assumed to provide secrecy as well.
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matches the upper bound of Gemmell and Naor. Finally, we consider these two
communication models in the computational setting, and prove that one-way
functions are essential for the existence of protocols breaking the above lower
bounds.

Paper Organization. The rest of the paper is organized as follows. We first
briefly present some known definitions in Section 2 In Section B] we describe
the communication and adversarial models we deal with. Then, in Section M
we present an overview of our results, and compare them to previous work. In
Section Bl we propose an unconditionally secure message authentication protocol
in the manual channel model. In Section [fl we describe the proof technique, that
is then used to establish the optimality of our protocol. In Section [ we apply
the same proof technique to the shared key model, and prove a lower bound on
the required entropy of the shared key. Finally, in Section [§ we prove that in
the computational setting, one-way functions are essential for the existence of
protocols breaking the above lower bounds.

2 Preliminaries

We first present some fundamental definitions from Information Theory. Then,
we briefly present the definitions of one-way functions and distributionally one-
way functions. All logarithms in this paper are to the base of 2. Let X, Y and
Z denote random variables.

— The (Shannon) entropy of X is H(X) = — 3 Pr[X = z]logPr[X = z|.
The conditional entropy of X given YV is H(X|Y) = > Pr[Y = y|H(X[Y =
Y).

The mutual information of X and Y is I(X;Y) = H(X) — H(X|Y).
The mutual information of X and Y given Z is I(X;Y|Z) = H(X|Z) —
H(X|Z,Y).

Definition 1. A function f : {0,1}* — {0,1}* is called one-way if it is com-
putable in polynomial-time, and for every probabilistic polynomial-time Turing
machind M, every polynomial p, and all sufficiently large n,

1

Pr[M(f(x),1") € f~Y(f(2))] < ,

(M@ 1 e F@)] < o
where the probability is taken uniformly over all the possible choices of x € {0,1}™
and all the possible outcomes of the internal coin tosses of M.
Definition 2. A function f : {0,1}* — {0,1}* is called distributionally one-
way if it is computable in polynomial-time, and there exists a constant ¢ > 0 such
that for every probabilistic polynomial-time Turing machine M, the distribution
defined by x o’é‘(a:) and the distribution defined by M(f(z)) o f(x) are n=°-
statistically fan] when x g {0,1}".

3 We note that uniformity is not essential to our results.

1 The statistical distance between two distributions D and F is defined as A(D, F) =
3> [Precp [z =a] — Pracr [# = o] |. The distributions D and F are said to be
e-statistically farif A(D,F) > e. Otherwise, D and F are e-statistically close.
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Informally, it is hard to find a random inverse of a distributionally one-way func-
tion, although finding some inverse may be easy. Clearly, any one-way function
is also a distributionally one-way function, but the converse may not always
be true. However, Impagliazzo and Luby [I1] proved that the ezistence of both
primitives is equivalent.

3 Communication and Adversarial Models

We consider the message authentication problem in a setting where the sender
and the receiver are connected by a bidirectional insecure communication chan-
nel, over which an adversary has full control. In particular, the adversary can
read any message sent over this channel, delay it, prevent it from being delivered,
and insert a new message at any point in time.

3.1 The Manual Channel Communication Model

In addition to the insecure channel, we assume that there is a unidirectional low-
bandwidth auxiliary channel, that enables the sender to “manually” authenticate
one short string to the receiver. The adversary cannot modify this short string.
However, the adversary can still read it, delay it, and remove it.

The input of the sender § in this model is a message m, which she wishes to
authenticate to the receiver R. The input message m can be determined by the
adversary A. In the first round, S sends the message m and an authentication
tag x1 over the insecure channel. In the following rounds only a tag x; is sent
over the insecure channel. The adversary receives each of these tags z; and can
replace them with Z; of her choice, as well as replace the input message m with
a different message m. In the last round, S may manually authenticate a short
string s.

Notice that in the presence of a computationally unbounded adversary, addi-
tional insecure rounds (after the manually authenticated string has been sent)
do not contribute to the security of the protocol. This is due to the fact that
after reading the manually authenticated string, the unbounded adversary can
always simulate the sender successfully (since the sender and the receiver do
not share any secret information, and since the adversary has full control over
the communication channel from this point on). Therefore, there is no loss of
generality in assuming that the manually authenticated string is sent in the last
round. This is true also in the computational setting, under the assumption that
distributionally one-way functions do not exist. A generic protocol in this model
is described in Figure [I

We also allow the adversary to control the synchronization of the protocol’s
execution. More specifically, the adversary can carry on two separate, possi-
bly asynchronous conversations, one with the sender and one with the receiver.
However, the party that is supposed to send a message waits until it receives the
adversary’s message from the previous round.

When the input message m is chosen uniformly at random, the honest exe-
cution of the protocol defines a probability distribution on the message m, the



Tight Bounds for Unconditional Authentication Protocols 219

tags x; and the manually authenticated string s. We denote by M, X; and S the
random variables corresponding to m, z; and s, respectively.

Definition 3. An unconditionally secure (n,?, k, ¢)-authentication protocol in
the manual channel model is a k-round protocol in the communication model
described above, in which the sender wishes to authenticate an n-bit input mes-
sage to the receiver, while manually authenticating at most £ bits. The following
requirements must hold:

1. Completeness: For all input messages m, when there is no interference
by the adversary in the execution, the receiver accepts m with probability at
least 1/2.

2. Unforgeability: For any computationally unbounded adversary, and for all
mput messages m, if the adversary replaces m with a different message m,
then the receiver accepts m with probability at most €.

In order to define the notion of a computationally secure authentication protocol,
we actually consider a sequence of protocols by adding a security parameter ¢
that defines the power of the adversaries against which each protocol in the
sequence is secure. The completeness requirement is as in Definition Bl However,
the unforgeability requirement now holds only against adversaries running in
time poly(t), and we allow forgery probability of € + negl(t) for sufficiently large
t. We refer the reader to the full version for the formal definition.

An authentication protocol in the manual channel model is said to be perfectly
complete if for all input messages m, whenever there is no interference by the
adversary in the execution, the receiver accepts m with probability 1.

3.2 The Shared Key Communication Model

In this model we assume that the sender and the receiver share a secret key s;
however, they are connected only by an insecure channel. This key is not known
to the adversary, but it is chosen from a probability distribution which is known
to the adversary (usually the uniform distribution).

The input of the sender § in this model is a message m, which she wishes to
authenticate to the receiver R. The input message m can be determined by the
adversary A. In the first round, S sends the message m and an authentication
tag x1 over the insecure channel. In the following rounds only a tag x; is sent
over the insecure channel. The adversary receives each of these tags z; and can
replace them with Z; of her choice, as well as replace the input message m with
a different message m.

As in the manual channel model, in an honest execution we denote by S, M
and X; the random variables corresponding to s, m and x;, respectively. A generic
protocol in this model is described in Figure[Il As in the manual channel model,
we allow the adversary to control the synchronization of the protocol’s execution.

Definition 4. An unconditionally secure (n,/, k, ¢)-authentication protocol in
the shared key model is a k-round protocol in the communication model described
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Fig. 1. Generic protocols in the manual channel model (left figure) and in the shared
key model (right figure)

above, in which the sender and the receiver share an £-bit secret key, and the
sender wishes to authenticate an n-bit input message to the receiver. The follow-
ing requirements must hold:

1. Completeness: For all input messages m, when there is no interference
by the adversary in the execution, the receiver accepts m with probability at
least 1/2.

2. Unforgeability: For any computationally unbounded adversary, and for all
mput messages m, if the adversary replaces m with a different message m,
then the receiver accepts m with probability at most €.

Similarly to the definitions in the manual channel model, we refer the reader
to the full version for the definitions of a computationally secure sequence of
authentication protocols and of a perfectly complete protocol.

4 Overview of Our Results and Comparison with
Previous Work

Vaudenay [19] formalized the manual channel model, and suggested an authenti-
cation protocol in this model. Given 0 < € < 1, Vaudenay’s protocol enables the
sender to authenticate an arbitrary long message to the receiver in three rounds,
by manually authenticating log(1/¢) bits. This protocol guarantees that, under
the assumption that a certain type of non-interactive commitment scheme ex-
ists, the forgery probability of any polynomial-time adversary is at most e+ v(t),
where v(-) is a negligible function and ¢ is a security parameter. In particular,
Laur, Asokan and Nyberg [I2] proved that the required assumption is the ex-
istence of a non-interactive non-malleable commitment scheme. Dolev, Dwork
and Naor [6] showed how to construct an interactive non-malleable commit-
ment scheme from any one-way function, and therefore we obtain the following
corollary:

Corollary 5 ([6)1219]). If one-way functions exist, then there exists a com-
putationally secure (n,l,k,e,t)-authentication protocol in the manual channel
model, with t = poly(n, ¢, k) and ¢ = log(1/e).
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However, the non-malleable commitment scheme suggested by Dolev, Dwork and
Naor is inefficient, as it utilizes generic zero-knowledge proofs and its number of
rounds is logarithmic in its security parameter. Therefore, the protocol implied
by Corollary[Hlis currently not practical (this is also true if the protocols in [TJI6]
are used). Currently, the only known constructions of efficient non-malleable
commitment schemes are in the random oracle model, or in the common random
string model (see, for example, [45]). These are problematic for the manual
channel model, since they require a trusted infrastructure. This state of affairs
motivates the study of a protocol that can be proved secure under more relaxed
computational assumptions or even without any computational assumptions.

In Section Bl we present an unconditionally secure perfectly complete authen-
tication protocol in the manual channel model. For any odd integer £ > 3, and
any integer n and 0 < e < 1, our k-round protocol enables the sender to authen-
ticate an m-bit input message to the receiver, while manually authenticating at
most 2log(1/€) + 2log* ™V n 4+ O(1) bits. We prove that any adversary (even
computationally unbounded) has probability of at most € to cheat the receiver
into accepting a fraudulent message. We note that our protocol only uses evalu-
ations of polynomials over finite fields, for which very efficient implementations
exist, and therefore it is very efficient and can be implemented on low-power
devices. We prove the following theorem and corollary:

Theorem 6. For any odd integer k > 3, and any integer n and 0 < € < 1,
there exists an unconditionally secure perfectly complete (n,f = 2log(1/¢) +
21og* "V n + O(1), k, €)-authentication protocol in the manual channel model.

Corollary 7. For any integer n and 0 < € < 1, the following unconditionally
secure perfectly complete protocols exist in the manual channel model:

1. A log" n-round protocol in which at most 2log(1/€)+ O(1) bits are manually
authenticated.

2. A 3-round protocol in which at most 2log(1/€) + loglogn + O(1) bits are
manually authenticated.

In Section [6] we develop a proof technique for deriving lower bounds on un-
conditionally secure authentication protocols, which allows us to show that our
log" n-round protocol is optimal with respect to the length of the manually au-
thenticated string. Specifically, we prove the following theorem:

Theorem 8. For any unconditionally secure (n, ¢, k,€)-authentication protocol
in the manual channel model, it holds that if n > 2log(1/e) + 4, then £ >
2log(1/€) — 6.

In Section [ we consider the shared key communication model. Intensive re-
search has been devoted to proving lower bounds on the required entropy of the
shared key in unconditionally secure protocols. It was proved in several papers
(see, for example, [13]), that in any perfectly complete non-interactive protocol,
the required entropy of the shared key is at least 2log(1/e). In addition, for
such protocols, Gemmell and Naor [9] proved a lower bound of logn + log(1/e)
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—loglog(n/e) —2. Thus, there does not exist a perfectly complete non-interactive
protocol that achieves the 2log(1/¢) bound. However, Gemmell and Naor also
presented an interactive protocol that achieves the 21log(1/¢) bound. We remark
that it was not previously known whether this bound is optimal for interactive
protocols. By applying the proof technique described in Section [B, we settle this
long-standing open question, proving the optimality of the protocol suggested
by Gemmell and Naor.

Theorem 9. For any unconditionally secure (n, ¢, k, €)-authentication protocol
in the shared key model, it holds that H(S) > 2log(1/€) — 2, where S is the £-bit
shared key.

Theorems [§] and [ indicate that the two corresponding communication models
are not equivalent: While in the manual channel model a lower bound can hold
only when n > log(1/¢), in the shared key model the lower bound holds even
when authenticating only one bit. Nevertheless, the technique we develop applies
to both models.

The idea underlying the lower bound proofs for the communication models
under consideration can be briefly summarized as follows. First, we represent
the entropies of the manually authenticated string and of the shared key by
splitting them in a way that captures their reduction during the execution of
the protocol. This representation allows us to prove that both the sender and
the receiver must each independently reduce the entropies by at least log(1/e)
bits. This is proved by considering two possible natural attacks on the given
protocol. In these attacks we use the fact that the adversary is computation-
ally unbounded in that she can sample distributions induced by the protocol.
This usage of the adversary’s capabilities, can alternatively be seen as randomly
inverting functions given the image of a random input.

In Section [l we take advantage of this point of view and prove that one-way
functions are essential for the existence of protocols breaking the above lower
bounds in the computational setting. Specifically, we show that if distributionally
one-way functions do not exist, then a polynomial-time adversary can run the
above mentioned attacks with almost the same success probability. The following
theorem is proved (the reader is referred to the full version for a similar statement
in the shared key model):

Theorem 10. In the manual channel model, if there exists a computationally
secure (n,l, k, €, t)-authentication protocol, such that n > 2log(1/e) +4, £ <
2log(1/e) — 8 and t = 2(poly(n, k,1/€)), then one-way functions exist.

A similar flavor of statement has recently been proved by Naor and Rothblum
[14] in the context of memory checking, showing that one-way functions are
essential for efficient on-line memory checking. Both results are based on com-
binatorial constructions (in our case these are the two attacks carried by an
unbounded adversary), which are shown to be polynomial-time computable if
one-way functions do not exist. However, we note that whereas Naor and Roth-
blum obtained asymptotic results (there is a multiplicative constant between the
upper bound and the lower bound), we detect a sharp threshold.
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5 The Message Authentication Protocol

In this section we prove Theorem [6l and Corollary[[l by constructing an authenti-
cation protocol, P. The protocol is based on the hashing technique suggested by
Gemmell and Naor [9], in which the two parties reduce in each round the prob-
lem of authenticating the original message to that of authenticating a shorter
message. In the first round the input message is sent, and then in each round
the two parties cooperatively choose a hash function that defines a small, ran-
dom “fingerprint” of the input message that the receiver should have received.
If the adversary has changed the input message, then with high probability the
fingerprint for the message received by the receiver will not match the finger-
print for the message that was sent by the sender. In a preliminary version of
[9], this hashing technique was susceptible to synchronization attacks, as noted
by Gehrmann [7]. However, in the full version of their paper, this was corrected
by making both parties choose the random hash function used for fingerprinting
the message.

We improve the hashing technique suggested by Gemmell and Naor as fol-
lows. First, we apply a different hash function, which enables us to manually
authenticate a shorter string. A direct adaptation of the original hash function
to the manual channel model would require the sender to manually authenticate
at least 3log(1/e€) bits, while our construction manages to reduce this amount
to only 21log(1/€) + O(1) bits. In addition, our protocol is asymmetric in the fol-
lowing sense: The roles of the sender and the receiver in cooperatively choosing
the hash function are switched in every round. This enables us to deal with the
fact that the adversary can read and delay any manually authenticated string.

Preliminaries. Denote by GF[Q] the Galois field with @Q elements. For a mes-
sage m =my ...my, € GF[Q]* and = € GF[Q] let Cy(m) = Zle m;z*. In other
words, m is parsed as a polynomial of degree k over GF[Q] (without a constant
term), and evaluated at the point z. Then, for any two different messages m, m €
GF[Q]* and for any ¢, ¢ € GF[Q)] the polynomials C,(m) + ¢ and C, (M) + ¢ are
different as well, and therefore Prc,criq) [Cz(m) + ¢ = Co(m) +¢ < k . We
will use C(+) as a hash function to reduce the length of the message.

The Construction. In protocol P, we apply a sequence of hash functions
C',...,C* 1in order to obtain a shorter and shorter message. Specifically, given
the length, n, of the input message and the upper bound, €, on the adversary’s
forgery probability, each C7 parses nj-bit strings to polynomials over GF|[Q;],
where n; = n, 2", <Q; < J:l 7, and njy1 = [2log@;]. The protocol
is described in Flgure Since the adversary can replace any authentication tag
sent by any one of the parties over the insecure channel, then for such a tag x
we denote by T the tag that was actually received by the other party. Note that
addition and multiplication are defined by the GF[Q);] structures, and that (u, v)
denotes the concatenation of the strings u and v.

Note that the two parties can combine some of their messages, and therefore
the protocol requires only k rounds of communication. An alternative way to
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Protocol Pyg:

1. S sends ms = m to R.
2. R receives mx.
3. Forj=1tok—1:
(a) Ifj is odd, then
. S chooses Zs €r GF[Q;] and sends it to R.
. R receives zs, chooses i}, €r GF[Q]] and sends it to S.
. S receives i%, and computes m%" ( Cf] (m%) +i%) .
R
i%

5) -

iv. R computes mpy " = (i%, CJ (m%) +
R
(b) Ifj is even, then
. R chooses 172 R GF[QJ] and sends it to S.
. S receives ZR, chooses 1% €r GF[Q;], and sends it to R.
. R receives i%y, and computes m; " = (i%, C’J (M) +i%) .

iv. S computes m%4" = <i5’05{9 (m%) +7%) -

4. S manually authenticates m% to R.

5. R accepts if and only if m& =mb%.

Fig. 2. The k-round authentication protocol

describe the protocol is in a recursive fashion. The k-round protocol consists of
S sending the message m; = m, as well as S and R exchanging i%, and i%. Then
the two parties use protocol Py_; to authenticate the message mo, which is a
computed hash value of m; using i%, and i%. Clearly, this protocol is perfectly
complete.

Lemma 11. Any computationally unbounded adversary has probability of at
most € to cheat the receiver into accepting a fraudulent message in protocol Py,.

Proof. Given an execution of the protocol in which an advereary cheats the
receiver into accepting a fraudulent message, it holds that m s 7 mR and mk S =
mR Therefore, there exists an integer 1 < j < k — 1 such that m% # mR
and mf;”l = mg '. Denote this event by D;. In what follows, we bound the
probability of this event, showing Pr[D;] < ok i Therefore the adversary’s
cheating probability is at most Z;:ll Pr[D;] < Z] 1oy <€

For any variable y in the protocol and for a given execution, let T'(y) be the
time at which the variable y is fixed, i.e., T'(i7;) denotes the time in which R sent
the tag i;a, and T @a) denotes the time in which S received from the adversary
the tag 7%, corresponding to il .

We assume here that j is odd, and refer the reader to the full version for the
analysis in the case that j is even. There are three possible cases to consider:

1. T(zR) < T(zR) In this case, the receiver chooses i, €r GF[Q;] only after
the adversary chooses 7 ’LR Therefore,
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Pr(Dj] < Pry o) [z%z - ZH - 5 < le_j .
J
2. T(zR) > T(’LR) and T(zs) > T(zs) In this case, the adverbary chooses
i75 not before the receiver chooses i% . If the adversary chooses 7- iy 7 17, then
7+1 # mﬁ'l, ie., Pr[D;] = 0. Now suppose that the adversary chooseb
233 = i}. Slnce jis odd the receiver chooses 7, only after he receives 7 S5
therefore T'(i%;) > T (i 5) > T(zs) > T(ms) and also T(i%) > T(mR) This
means that ’LR is chosen when m7,, ZS, my and ZS are fixed. Since mg # mR
and by the fact that for any choice of i%; and 7% the polynomials C’fj (miy)+i%
R

and C7, (mfg) + zfg are different as functions of i;a, it follows that
R

Pr [D]] § Pr;z

3. T(zR) > T(zR) and T(zs) < T(zs) As in the previous case, we can as-
sume that the adversary chooses Z;a = i%. It always holds that T'(i s)
T(ms) and T(ZR) > T(mR) Since j is odd, the receiver sends 7, only after
he receives zfg, and therefore we can assume T(zs) < T(zR) < T(zs) This

implies that the sender chooses i% €g GF[Q;] when m’%, i%, m} and i}, are
fixed. Hence,

: , o , . 1 €
Pr(D,] <P ['7:(;1 iV4T _ i y]: < €
I‘[ ] Ti] sERGF[Qy] ls i;z (mR) + ls i;z (ms) Q] — 2k—j
O

The following claims conclude this section by showing that our choice of parame-
ters guarantees that in protocol Py the sender manually authenticates at most
2log(1/€) + 21og®* Y n 4 O(1) bits. We first show that the length njy1 of the
fingerprint computed in round j is roughly logarithmic in the length n; of the
fingerprint computed in round j — 1, and then we use this fact to upper bound
the length ny of the manually authenticated fingerprint. The reader is referred
to the full version of the paper for more details.

Claim 12. If for every 1 < j < k — 2 it holds that n; > le_j, then np_1 <
max{4log*~? n; + 4log5 + 3, 27}.

Claim 13. The sender manually authenticates at most 21og(1/€)+2log*~V
O(1) bits in protocol Py.

n+

6 Lower Bound in the Manual Channel Model

In this section we prove a lower bound on the length of the manually authen-
ticated string. We present here the proof for the simplified case of a perfectly



226 M. Naor, G. Segev, and A. Smith

complete 3-round protocol where n > 3log(1/e). The general proof is based on
the same analysis, and is described in the full version of the paper. Moreover,
note that by adding two more rounds, we can also assume for simplicity that
in the last round the sender does not send an authentication tag x; over the
insecure channel (i.e., in the last round the sender only manually authenticates
some string s). We prove the following theorem:

Theorem 14. For any perfectly complete (n, ¢, 3, €)-authentication protocol in
the manual channel model, where no authentication tag is sent in the last round,
if n > 3log(1/e), then £ > 2log(1/e) — 2.

As mentioned in Section B when the input message m is chosen uniformly at
random, the honest execution of the protocol defines a probability distribution
on the message m, the authentication tag x; (sent by the sender in the first
round together with m), the authentication tag xo (sent by the receiver in the
second round), and the manually authenticated string s (sent by the sender in
the third round). We denote by M, X7, X5 and S the corresponding random
variables.

The main idea of this proof is representing the entropy of the manually au-
thenticated string S by splitting it as follows:

H(S) = (H(S) — H(S|M, X1)) + (H(S|M, X1) — H(S|M, X1, X))
+ H(S|M, X1, X32)
= I(S,M, Xl) +I(S,X2|M7X1) +H(S‘M, X17X2) .

This representation captures the reduction of H(S) during the execution of the
protocol, and allows us to prove that both the sender and the receiver must each
independently reduce this entropy by at least log(1/¢) — 1 bits. We prove this
by considering two possible man-in-the-middle attacks on the given protocol. In
these attacks we use the fact that the adversary is computationally unbounded
in that she can sample distributions induced by the protocol. For example, in
the first attack, the adversary samples the distribution of X5 given M, X; and
S. While the distribution of Xs given only M and X; can be sampled by merely
following the protocol, this is not the case when sampling the distribution of X5
given M, X; and S.

Lemma 15. Ifn > 2log !, then I(S; M, X1) + H(S|M, X1, X5) > log ! — 1.
Proof. Consider the following attack:

1. The adversary A chooses m €r {0,1}" and runs an honest execution with
the receiver. Denote by s the manually authenticated string fixed by this
execution. Now, A’s goal is to cause the sender to manually authenticate
this string.

2. A chooses m €r {0,1}"™ as the sender’s input, and receives x; from the
sender.
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3. If Prim,x1,s] = 0 in an honest execution, then A quits (in this case A
has zero probability in convincing the sender to manually authenticate s).
Otherwise, A samples T2 from the distribution of Xs given (m, 1, s), and
sends it to the sender. The sender manually authenticates some string.

4. If the sender did not authenticate s, A quits. Otherwise, A forwards s to the
receiver.

By the unforgeability requirement of the protocol we obtain:
€ > Pr[R accepts and m # m] > Pr[R accepts] — 27" .

Therefore, the assumption n > 2log 1 implies that Pr[R accepts] < 2e. Now we
analyze the probability that the receiver accepts. Notice that:

— m and z7 are chosen independently of s.

— 79 is chosen conditioned on m, z; and s.

— The manually authenticated string sent by the sender is chosen conditioned
on m,r; and xs.

Therefor&ﬁ7

Pr[R accepts] = Z Pr[s] Pr[m, x1] Pr[Z2|m, 21, s] Pr [s|m, x1, T2]

m,xq,xT9,s:
Pr[m,zq,z9,s]>0

= Z Pr[m, 21, s]

m,xq,x9,s:
Pr(m,zq,z9,s]>0

Pr [s]

Pr [S‘m’xl]Pr[@lmmhs] Pr [s|m, 21,32 (6.1)

Pr(s|m,a1)

= 2 Pr[m,xl,a’r?z,sb‘{l‘)g BT 4108 ey o1}

9

m,zq,@g,s:
Pr[m,zq,z9,s]>0

where Equation (G.1I) follows from Bayes’ rule. By Jensen’s inequality,

Y mepege Prima@sl{log PET g 1A

Pr[R accepts| > 2 Prime1e2.1>0
— 9~ {I(S;M, X1)+H(S|M, X1,X2)} )
and therefore 1(S; M, X1) + H(S|M, X1, X2) > log ! — 1. O

Lemma 16. If n > 3log! and ¢ < 2log(1/e) — 2, then I(S; Xo|M, X;1) >
logi - 1.

Proof. Consider the following attack:

1. A chooses m €gr {0,1}", as the sender’s input, and runs an honest execution
with the sender. At the end of this execution, the sender manually authen-
ticates a string s. A reads s, and delays it. Now, A’s goal is to cause the
receiver to accept this string together with a different input message m.

® For any random variable Z we write Pr[2] instead of Pr[Z = z].
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2. A samples (m, Z1) from the joint distribution of (M, X;) given s, and sends
them to the receiver, who answers xs.
3. If Pr[m, Z1, x2, 8] = 0, then A quits. Otherwise, A forwards s to the receiver.

Asin Lemmal[If] € > Pr[R accepts| —Pr[m = m]. However, in this attack, unlike
the previous attack, the messages m and m are not chosen uniformly at random
and independently. First m is chosen uniformly at random, then s is picked from
the distribution of S given m, and then m is chosen from the distribution of M
given s. Therefore,

Pr[m = m] ZPr Z (Pr[m]s])? < ZPr maXPr [m]s] ZPI‘ [m]s]

= ZPr maXPr [m]s] ZmaXPr m, s] < ZmaXPr

Since the distribution of messages is uniform, and the authenticated string takes
at most 2¢ values, we obtain Pr[m = m] < 27"**. From the assumptions that
¢ < 2log(l/e) — 2 and n > 3log(1/¢€) we get that Pr[m = m] < e, and therefore
Pr[R accepts] < 2e. Now we analyze the probability that the receiver accepts.
Notice that,

— m and 77 are chosen conditioned on s.
— 9 is chosen conditioned only on m and Z.

Therefore,

Pr[R accepts] = Z Pr [m, Z1, $] Z Pr [x2|m, Z1]

xo:

ﬁ’il)s Pr(m,zq,z9,s]>0
2 : ~ o~ Pr[zs m El
= Pr [m,$1,$278] [ L ’/\ } (62)
L@,z ,s: Pr [$2|m7$1,8}
Pr[fl,z1,20,5]>0
PN 1 Pr[zg\@zl,s]
= E Pr[m,Z1,x2, 5] 2 Prleg|m,e1]
m,xy,r,s:
Pr(m,zq,xq9,s]>0
where Equation (6.2]) follows from Bayes’ rule. By Jensen’s inequality,
o rlzg |,z ,s]
- Z m,xy,Ty,s: Pr[m’wl’wZ’s] log Ppr[m |mi,xq]
Pr[R accepts] > 2  Primei.z.6]>0 2l _ 9-I(SiXa| M Xa)
and therefore I(S; X2|M, X1) > log ! — 1. 0

Now, Theorem [I4] can be derived as follows. Suppose for contradiction that there
exists a perfectly complete (n, ¢, 3, €)-authentication protocol, where no authen-
tication tag is sent in the last round, and n > 3log(1/€) but ¢ < 2log(1/e€) — 2.
By using the fact that ¢ > H(S), we can easily derive a contradiction: The
above mentioned representation of H(S) and Lemmata and imply that
H(S) > 2log(1/€) — 2. Therefore ¢ > 2log(1/e) — 2 in any such protocol. This
concludes the proof of Theorem [I4
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7 Lower Bound in the Shared Key Model

In this section we prove a lower bound on the entropy of the shared key. This
lower bound settles an open question posed by Gemmell and Naor [9], and shows
that the authentication protocol proposed by Gemmell and Naor is essentially
optimal with respect to the entropy of the shared key.

We present here the result for the simplified case of a perfectly complete 3-
round protocol. The general proof is based on the same analysis, and is described
in the full version. We prove the following theorem:

Theorem 17. For any perfectly complete (n, ¢, 3, €)-authentication protocol in
the shared key model, it holds that H(S) > 2log(1/¢), where S is the £-bit shared
key.

As mentioned in Section Bl when the shared key s is chosen from its specified
distribution, and the input message m is chosen uniformly at random, the honest
execution of the protocol defines a probability distribution on the shared key s,
the message m, the authentication tag z1 (sent by the sender in the first round
together with m), the authentication tag xo (sent by the receiver in the second
round), and the authentication tag z3 (sent by the sender in the third round).
We denote by S, M, X1, X5 and X3 the corresponding random variables.

We apply again the proof technique described in Section [6 and represent the
entropy of the shared key S by splitting it as follows (we refer the reader to the
full version for more details):

H(S) = I(S; M, X1) + 1(S; Xo| M, X1) + I(S; X3|M, X1, X>)
+ H(S|M, X1, X2, X3) .

Lemma 18. I(S; M, X1) + I(S; X3|M, X1, X;) > log |.

Lemma 19. 1(S; X3|M, X1) + H(S|M, X1, X2, X3) > log |.

8 Breaking the Lower Bounds Implies One-Way
Functions

In this section we prove Theorem [[0, namely, we show that in the computational
setting one-way functions are essential for the existence of protocols breaking the
lower bound stated in Theorem [Bl As in Section [l we prove here the result only
for 3-round protocols, where in the last round no authentication tag x; is sent
over the insecure channel. Moreover, for simplicity we also assume that n > 1/e,
and refer the reader to the full version for the proof of the general statement.

Theorem 20. In the manual channel model, if there exists a computationally
secure perfectly complete (n, ¥, k, €, t)-authentication protocol where no authenti-
cation tag is sent in the last round, such that n > 1/e, £ < 2log(1/e) — 4 and
t = 2(poly(n, k)), then one-way functions exist.
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Proof. We show that if one-way functions do not exist, then the attacks described
in Section [0l can be carried out by a polynomial-time adversary with almost the
same success probability. We first focus on the attack described in Lemma

Let f be a function defined as follows: f takes as input three strings rs, rr
and m, and outputs (m, x1, xa, s) — the transcript of the protocol, where rs, r»
and m are the random coins of the sender, the random coins of the receiver,
and the input message, respectively. Let f’ denote the function that is obtained
from f by eliminating its third output, i.e., f'(rs,rz, m) = (m, z1, s). If one-way
functions do not exist, then also distributionally one-way functions do not exist.
Therefore, for any constant ¢ > 0 there exists a probabilistic polynomial-time
Turing machine M that on input (m,x1,s) produces a distribution that is n=¢-
statistically close to the uniform distribution on all the pre-images of (m,x1, s)
under f’. The polynomial-time adversary will use this M in the attack.

Let A denote the unbounded adversary that carried the attack described in
Lemma [[3 and let APPT denote a polynomial-time adversary that carries the
following attack (our goal is that the receiver will not be able to distinguish

between A and AFFT):

1. APPT chooses m €r {0,1}" and runs an honest execution with the receiver.
Denote by s the manually authenticated string fixed by this execution.

2. APPT chooses m €r {0,1}" as the sender’s input, and receives z; from the
sender.

3. APPT executes M on input (m,x1,s), and then applies f to M’s answer to
compute To and send it to the sender. The sender manually authenticates
some string s*.

4. APPT forwards s* to the receiver (who must accept 7 if s* = s by the perfect
completeness).

Let Prob™ and Prob" ¥ T'® denote the probabilities that the receiver R accepts
m when interacting with A and when interacting with APFT, respectively. Then,
from the point of view of the receiver, the only difference in the these two exe-
cutions is in the distribution of s*. Therefore, \ProbR — Prob"" T’R\ is at most
twice the statistical distance between s* in the interaction with A and s* in the
interaction with APPT. By the above mentioned property of M, this statisti-
cal difference is at most n~¢. Therefore, for sufficiently large ¢, we obtain as in
Lemma

2¢ > Prob' FTR > Prob® — 2n—¢ > o~ H(S:M X1)+H(S|IM X1, X2)} o —c

In particular, and since n > 1/¢, we can choose the constant ¢ such that 2n™¢ < ¢,
and obtain I(S; M, X1) + H(S|M, X1, X3) > log | — 2.

A similar argument applied to the attack described in Lemma yields
I(S; X2|M, X1) > log | — 2, and therefore H(S) > 2log ! — 4. |

Acknowledgments. We thank Benny Pinkas, Danny Segev, Serge Vaudenay
and the anonymous referees for their remarks and suggestions.



Tight Bounds for Unconditional Authentication Protocols 231

References

1.
2.

3.
4.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

B. Barak. Constant-round coin-tossing with a man in the middle or realizing the
shared random string model. In /8rd FOCS, pages 345-355, 2002.

Bluetooth. http://www.bluetooth.com/bluetooth/.

Certified Wireless USB. http://www.usb.org/developers/wusb/.

G. Di Crescenzo, Y. Ishai, and R. Ostrovsky. Non-interactive and non-malleable
commitment. In 30th STOC, pages 141-150, 1998.

. G. Di Crescenzo, J. Katz, R. Ostrovsky, and A. Smith. Efficient and non-interactive

non-malleable commitment. In FEUROCRYPT ’01, pages 40-59, 2001.

D. Dolev, C. Dwork, and M. Naor. Non-malleable cryptography. SIAM Journal
on Computing, 30(2):391-437, 2000.

C. Gehrmann. Cryptanalysis of the Gemmell and Naor multiround authentication
protocol. In CRYPTO 94, pages 121-128, 1994.

C. Gehrmann, C. J. Mitchell, and K. Nyberg. Manual authentication for wireless
devices. RSA Cryptobytes, 7:29-37, 2004.

P. Gemmell and M. Naor. Codes for interactive authentication. In CRYPTO 93,
pages 355-367, 1993.

E. Gilbert, F. MacWilliams, and N. Sloane. Codes which detect deception. Bell
System Technical Journal, 53(3):405-424, 1974.

R. Impagliazzo and M. Luby. One-way functions are essential for complexity based
cryptography. In 30th FOCS, pages 230-235, 1989.

S. Laur, N. Asokan, and K. Nyberg. Efficient mutual data authentication us-
ing manually authenticated strings. Cryptology ePrint Archive, Report 2005/424,
2005.

U. M. Maurer. Authentication theory and hypothesis testing. ITEEE Transactions
on Information Theory, 46(4):1350-1356, 2000.

M. Naor and G. N. Rothblum. The complexity of online memory checking. In 46th
FOCS, pages 573-584, 2005.

M. Naor, G. Segev, and A. Smith. Tight bounds for unconditional authentication
protocols in the manual channel and shared key models. Cryptology ePrint Archive,
Report 2006/175, 2006.

R. Pass and A. Rosen. New and improved constructions of non-malleable crypto-
graphic protocols. In 87th STOC, pages 533-542, 2005.

G. J. Simmons. Authentication theory/coding theory. In CRYPTO ’84, pages
411-431, 1984.

G. J. Simmons. The practice of authentication. In EUROCRYPT ’85, pages 261—
272, 1985.

S. Vaudenay. Secure communications over insecure channels based on short au-
thenticated strings. In CRYPTO ’05, pages 309-326, 2005.

M. N. Wegman and L. Carter. New hash functions and their use in authentication
and set equality. Journal of Computer and System Sciences, 22(3):265-279, 1981.



	Introduction
	Preliminaries
	Communication and Adversarial Models
	The Manual Channel Communication Model
	The Shared Key Communication Model

	Overview of Our Results and Comparison with Previous Work
	The Message Authentication Protocol
	Lower Bound in the Manual Channel Model
	Lower Bound in the Shared Key Model
	Breaking the Lower Bounds Implies One-Way Functions


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Europe ISO Coated FOGRA27)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




