Looking for Prototypes by Genetic Programming

L. P. Cordelld, C. De Stefand, F. Fontanellaand A. Marcell?

! Dipartimento di Informatica e Sistemistica
Universita di Napoli Federico I,
Via Claudio, 21 80125 Napoli — Italy
{cordel, frfontan}@nina.it
2 Dipartimento di Automazione, Elettromagnetismo, Ingegndell’lnformazione e
Matematica Industriale
Universita di Cassino
Via G. Di Biasio, 43 02043 Cassino (FR) — Italy
dest efano@nicas. it
% Dipartimento di Ingegneria dell'Informazione e IngegadHettrica
Universita di Salerno
84084 Fisciano (SA) — ltaly
amarcel li @nisa.it

Abstract. In this paper we propose a new genetic programming basedagpr
for prototype generation in Pattern Recognition problerstotypes consist of
mathematical expressions and are encoded as derivatEs he devised sys-
tem is able to cope with classification problems in which tisaher of prototypes
is not a priori known. The approach has been tested on sguerdalems and the
results compared with those obtained by other genetic anagring based ap-
proaches previously proposed.

1 Introduction

Several modern computational techniques have been intendn the last years in or-
der to cope with classification problems [1-3]. Among othe®lutionary computa-
tion (EC) techniques have been also employed. In this fieddetic algorithms [4, 5]
and genetic programming [6, 7] have mostly been used. Thedoapproach encodes
a set of classification rules as a sequence of bit stringsdnatter approach instead,
such rules, or even classification functions, can be learfiee technique of Genetic
Programming (GP) was introduced by Koza [7] and has already Buccessfully used
in many different applications [8, 9], demonstrating itdiabto discovering underlying
data relationships and to representing them by expressiog recently, classification
problems have been faced by using GP. In [10], GP has beertaugsdlve equations
(encoded as derivation trees) involving simple arithmetierators and feature vari-
ables. The method was tested on different type of data, diredrimages. In [11], GP
has also been employed for image classification, addingrexgal functions, con-
ditional functions and constants to the simple arithmegierators. In both the above
quoted approaches, the data set is divided in a numbkelusters equal to the number
of predefined classes. Thus, these approaches do not takectaunt the existence of
subclasses within one or more of the classes in the analytaddt.

We present a GP based method for determining a set of pre®ggscribing the
data in a classification problem. In the devised approaath peototype is representa-
tive of a cluster of samples in the training set, and consisismathematical expression
involving arithmetic operators and variables represgfgatures. The devised method
is able to generate a variable number of expressions, altpws to cope with those
classification problems in which single classes may containa priori identifiable
subclasses. Hence, a fixed number of expressions (prof)tyyay not be able to effec-
tively classify all the data samples, since a single exjwassight be inadequate to ex-
press the characteristics of all the subclasses presewtass The proposed approach,
instead, is able to automatically find the number of expogssheeded to represent all
the possible subclasses present in the data set.

According to our method, the set of prototypes describiegthsses makes usiagle
individual of the evolving population. Each prototype iseded as a derivation tree,
thus an individual is a list of trees, call@dlltitree. Given an individual and a sample,
classification consists in attributing the sample to onénefdlasses (i.e. in associating
the sample to one of the prototypes). The recognition rataimdd on the training set
when using an individual is assigned as fitness value to tig@atidual. At any step of
the evolution process, individuals are selected accorttirtheir fitness value. At the
end of the process, the best individual obtained, constittite set of prototypes to be
used for the considered application.

A preliminary version of this method was presented in [12]eve prototypes consisted
of simple logical expressions.

The method presented here has been tested on three pubithhde databases and
the classification results have been compared with thossraat by the preliminary
version of the method and with another GP based method pezksenthe literature
[10].

2 Description of the Approach

In the approach proposed here, a prototype representirgga ot subclass consists of
a mathematical expression, namely an inequality, that roayain a variable number
of variables connected by the four arithmetic operators*(#). Each variable;, (i =
1,...,n) represents a particular feature. Note that an inequalityaatierizes a region
of the feature space delimited by an hypersurface. GivexpressionZ and a sample
represented by a feature vectgrwe say thatF’ matchesthe samplex if the values in

x satisfy the inequality®. Training the classifier is accomplished by the EC paradigm
described in Section 3 and provides a set of labeled expres& be used as prototypes.
Different expressions may have the same label in case tipegsent subclasses of a
class.

Given a data set and a set of labeled expressions, the dassifitask is performed
in the following way: each sample of the data set is matchadhagthe set of expres-
sions andssigned to one of them (i.e. to a class or subclass) or rejected. Riffecases
may occur:

1. The sample is matched by just one expression: it is asigniat expression.

2. The sample is matched by more than one expression wittreliff number of vari-
ables: it is assigned to the expression with the smallestreuif variables.

3. The sample is matched by more than one expression withatine slumber of
variables and different labels: the sample is rejected.

4. The sample is matched by no expression: the sample isadjec

Hereinafter, this process will be referred toassignment process, and the set of sam-
ples assigned to the same expression will be referredchuster.

3 Learning Classification Rules

As already said, the prototypes to be used for classificatiengiven in terms of in-
equalities, thus they may be thought of as computer progearti€an be generated by
adopting the GP paradigm. Our GP based system starts bymdydenerating a pop-
ulation of p individuals. An individual is made by a set of prototypesteancoded as
a derivation tree, so that it israultitree (i.e. a list of trees). The number of trees mak-
ing up an individual will be callediength of the individual: in the initial population, it
ranges from 2 td.,,..... Afterwards, the fitness of the initial individuals is evated. In
order to generate a new population, first the kdsdividuals are selected and copied
in the new population so as to implement an elitist stratétpen (p — ¢)/2 couples
of individuals are selected using the tournament methodwandpulated by using two
genetic operators: crossover and mutation. The crosspezator is applied to each of
the selected couples, according to a chosen probabilitgifac. Then, the mutation is
applied to the obtained individuals according to a proligifihctor p,,,. Finally, these
individuals are added to the new population. The processipscribed is repeated for
N¢ generations. In order to implement the above system thewalg steps must be
executed:

- definition of the structure to be evolved;
- choice of the fitness function;
- definition of the genetic operators.

In the following each of these steps is detailed.

3.1 Structure Definition

In order to generate syntactically correct expressiors {irototypes), a nondetermin-
istic grammar is defined. A gramméris a quadrupl§ = (7, N, S, P), whereT and
N are disjoint finite alphabetd. is theterminal alphabet, whereas\V is the nonter-
minal alphabet. S, is the starting symbol andP is the set ofproduction rules used to
define the strings belonging to the language. The grammalogexgbis given in Table
1.

Each individual consists of a variable number of derivatiees. The root of every
tree is the symbokb that, according to the related production rule, can be oggla
only by the string “C”. The symbol’ can be replaced by any mathematical expres-
sion obtained by recursively combining variables, repnéiag features, and operators.

Table 1. The context free grammar used for generating the expressimployed as prototypes.
In the right column, the probability of being chosen for eatkhe right side clause is shown.

Number Rule Probability
1 S —C 1.0
2 C— [E>V]|[E<V] equiprobable
3 E— PFD|P 0.4,0.6
4 D-—PFD|P|V 0.5, 0.25, 0.25
5 F—x|+|/]|- equiprobable
5 P—uxo|x]|...|an equiprobable
6 V—+40.XX| —0.XX equiprobable
7 X —0[1]2|3|4/|5|6|7|8]9 equiprobable

Summarizing, each individual is a list of derivation tredsose leaves are the terminal
symbols of the grammar defined for constructing the set afuaéties. The set of in-
equalities making up an individual is obtained by visitiragle derivation tree in depth
first order and copying into a string the symbols containgtiénleaves. In such string,
each inequality derives from the corresponding tree iniiieTio reduce the probability
of generating too long expressions (i.e. too deep treesadtien carried out by a pro-
duction rule is chosen on the basis of fixed probability valigaown in the last column
of Table 1). Moreover, an upper limit has been imposed ondted humber of nodes
contained in an individual, i.e. the sum of nodes of each Egamples of individuals
are shown in Fig. 1.

The matching process is implemented by an automaton whiodpée as input an
expression and a sample and returns as output the valuertfals@depending on the
fact that the sample matches or not the expression.

3.2 Training Phase and Fitness Function

The aim of the training phase is that of generating the pypexs. The system is trained
with a set containingv,, samples. During training, the fitness of each individuahim t
population has to be evaluated. This process implies thaimlg steps:

1. The assignment of the training set samples to the expresbelonging to the indi-
vidual is performed. After this step, (n; > 0) samples will have been assigned to
thei-th expression. The expressions for which> 0 will be referred to awalid,
whereas the ones for whiety = 0 will be ignored in the following steps.

2. Each valid expression is labeled with the label most widepresented in the cor-
responding cluster.

3. Therecognition rate (on the training set) of the indiaba evaluated and assigned

as fitness value to that individual.

In order to favor those individuals able to obtain good penfances with a lesser num-
ber of expressions, the fithess of each individual is ine@e&yk/N., whereN, is the
number of expressions in the individual and k is a constant.

Parents

SO e
T, 1, 1dv T, T, T, T,

(a) (b)
Offspring
o
G A
S5 6db oy L Lo ddb
T, T, T, T, T, T, doT,
(©) (@

Fig. 1. An example of application of the crossover operator. Thefigpres (a and b)show a
couple of individuals involved as parents of the crossoymrator. The bottom figures (c and d)
show the offspring obtained after the application of therafme. In this case case, andt; ha
been chosen respectively equal to 2 and 1.

3.3 Genetic Operators

The choice of encoding the individuals as lists of derivaticees (see Section 3.1)
allows us to implementing the genetic operators in a simgabe w

The crossover operator is applied to two individuglendI; and yields two new
individuals by swapping parts of the lists of the initial imiduals (see Figure 1). As-
suming that the lengths @f andI, are respectively,; andL., the crossover is applied
in the following way: the first individual is split in two paby randomly choosing an
integert, in the interval[l, L,], so generating two multitree§ and I, , respectively
of length¢; and L, — t;. Analogously, by randomly choosing an integeiin the in-
terval[1, L], two multitreesl, and/, are obtained froni,. Two new individuals are
obtained: the first, by merging and/, and the second by mergirg and!; .

It is worth noting that the implemented crossover operalioms us to obtain indi-
viduals of variable length. Hence, during the evolutiongaiss, individuals made of a
variable number of prototypes can be evolved.

The mutation operator is independently applied to everydfean individuall with
probability p,,,. More specifically, given a tre€;, the mutation operator is applied by
randomly choosing a single nonterminal nod&jrand then activating the correspond-
ing production rule in order to substitute the subtree rdoteder the chosen node.

4 Experimental Results

Three data sets have been used for training and testing #viopsly described ap-
proach. The sets are made of real data and are available atitd@http://www.ics.uci.
edu~~mlearn/MLSummary.html) with the names IRIS, BUPA and Véhic

IRIS is made of 150 samples of iris flowers of three differdasses, equally dis-
tributed in the dataset. Four features, namely sepal lesgpial width, petal length and
petal width, are used for describing the samples. BUPA isewd®45 samples repre-
senting liver disorder using six features. Two classes efmed. The samples of the
data set Vehicle are feature vectors representing 3D ehithges. The data set has
846 samples distributed in four classes: 18 features cteize each sample.

In order to use the grammar shown in Table 1 the feature valithe data sets taken
into account have been normalized in the rafge.0,1.0]. Given a not normalized
samplex = (z1,...,znN), every feature; is normalized using the formula; = (x; —
T,;) /20, whereZ; ando;, respectively represent the mean and the standard devidtio
thei-th feature computed over the whole data set.

Each dataset has been divided in two parts, a training seh &est set. These sets
have been randomly extracted from the data sets and aréndiajud statistically in-
dependent. The first one has been used during the trainirgegbaevaluate, at each
generation, the fitness of the individuals in the populatime second one has been
used at the end of the evolution process to evaluate therpgaface of our method. In
particular, the recognition rate over the test set has beepuated using for classifica-
tion the best individual generated during the training phas
The values of the evolutionary parameters, used in all tnfopaed experiments, have
been heuristically determined and are: Population size 3; 30urnament size = 6;
Elithism size = 5; Crossover probability = 0.5; Mutation padility = 0.3; Number
of Generations = 300; Maximum number of nodes in an indiidub000; maximum
length of an individual = 20. The value of the constant k (selkesgction 3.2) has been
setto 0.1.

In order to investigate the generalization power of oureysti.e. a measure of its
performance on new data, the recognition rates both oririgaand test sets have been
taken into account for the different considered data set&idure 2 such recognition
rates, evaluated every 50 generations in a typical run,iaptaged for BUPA and Ve-
hicle data sets. It can be seen that the recognition rateases with the number of
generations both for the training set and for the test set.bEst recognition rates occur
in both cases nearby generation 250 and then remain stationa

The proposed approach has been compared with another GiPdggm®ach previ-
ously proposed in [10]. Furthermore, the results obtainethb preliminary version of
the method [12] are also shown for comparison. The substatitierence between the
new and the old version of the method consists in the formegticoded expressions:

Table 2. The recognition rate®new, Roid @and Ruuni Obtained respectively by the method pre-
sented here, its preliminary version and the method predent{10].

Data setRnewl Roid| Emuni
IRIS 99.6/99.498.671
BUPA |78.6/74.369.87
Vehicle |70.2/66.561.75

80,0 T T T T
o4
QD 750 j
— p
©
S
g 70,0
=
c
o 65,0
o
& 60,0 —e— Test set
o Training set
55'050 150 1&‘30 250 2&‘30 300
Generation

75,0
8 70,0 - o
©
= »
c r)
O 65,0
=
c
(@) 60,0 -
(@]
)
o *®°f —e— Test set

o-- Training set

50,0 I I I I
50 100 150 200 250 300

Generation

Fig. 2. Typical runs for BUPA (top) and Vehicle (bottom) datasets.

in [12] each expression contains a variable number of logicadicates connected by
Boolean operators. Each predicate represents an assestaivlishing a condition on
the value of a particular feature of the samples. This inspifeat the hypersurfaces
separating the regions of the feature space belonging fiereiift classes can only be
hyperplanes parallel to the axes. In the new version of thiaodesuch hypersurfaces
are of polynomial type, thus enabling a more effective safiam between classes.

In Table 2 the recognition rates achieved on the test set dyhifee methods are
shown. The results have been obtained by using the 10-fok$aalidation procedure.
Since the GP approach is a stochastic algorithm, the retogmates have been aver-
aged over 10 runs. Hence, 100 runs have been performed todataset. Note that, in
[10], the number of prototypes is a priori fixed, while in ouetinod it is automatically
found. The results show that the proposed method outpesftirase used for compari-
son on all the data sets taken into account, confirming thditsabf the approach.

5

Conclusions

A new GP based approach to prototype generation and clas&ifihias been proposed.
A prototype consists of a set of mathematical inequalitialdishing conditions on
feature values and thus describing classes of data sariplesnethod is able to auto-
matically find the number of clusters in the data, withoutfiog the system to find a
predefined number of clusters. This means that a class eneiecessarily represented
by one single prototype nor by a fixed number of prototypesiarkable feature of
our method is that the hypersurfaces separating the regfdhe feature space belong-
ing to different classes are of polynomial type, thus emaphn effective separation
between classes. The results show that the proposed maitpmtforms those used for
comparison.

References

10.

11.

12.

. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classifizatdohn Wiley & sons, Inc. (2001)
. Zhang, G.P.: Neural networks for classification: a SUrM&EE Transactions on Systems,

Man, and Cybernetics, Part3D (2000) 451-462

. Quinlan, J.R.: CA4.5: programs for machine learning. Mar¢gfaufmann Publishers Inc.

(1993)

. Holland, J.H.: Adaptation in Natural and Artificial Systs: An Introductory Analysis with

Applications to Biology, Control and Artificial Intelligere. MIT Press (1992)

. Goldberg, D.E.: Genetic Algorithms in Search, Optinmimatand Machine Learning.

Addison-Wesley Longman Publishing Co., Inc. (1989)

. Koza, J.R.: Genetic Programming: On the Programming ofi@ders by Means of Natural

Selection. MIT Press, Cambridge, MA, USA (1992)

. Koza, J.R.: Genetic programming Il: automatic discow@rseusable programs. MIT Press,

Cambridge, MA, USA (1994)

. Sette, S., Boullart, L.: Genetic programming: principéend applications. Engineering Ap-

plications of Artificial Intelligencel4 (2001) 727-736

. Bastian, A.: ldentifying fuzzy models utilizing geneficogramming. Fuzzy Sets and Sys-

tems113(2000) 333-350

Muni, D.P., Pal, N.R., Das, J.: A novel approach to deslgssifiers using genetic program-
ming. IEEE Trans. Evolutionary Computati8r(2004) 183-196

Agnelli, D., Bollini, A., Lombardi, L.: Image classifitian: an evolutionary approach. Pat-
tern Recognition Letter23 (2002) 303—309

Cordella, L.P., De Stefano, C., Fontanella, F., Marc&ll Genetic programming for gener-
ating prototypes in classification problems. In: Procegsliof the 2005 IEEE Congress on
Evolutionary Computation. Volume 2., IEEE Press (2005)9:14 55

