Skip to main content

Concrete Multiplicative Complexity of Symmetric Functions

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4162))

Abstract

The multiplicative complexity of a Boolean function f is defined as the minimum number of binary conjunction (AND) gates required to construct a circuit representing f, when only exclusive-or, conjunction and negation gates may be used. This article explores in detail the multiplicative complexity of symmetric Boolean functions. New techniques that allow such exploration are introduced. They are powerful enough to give exact multiplicative complexities for several classes of symmetric functions. In particular, the multiplicative complexity of computing the Hamming weight of n bits is shown to be exactly n − H (n), where H (n) is the Hamming weight of the binary representation of n. We also show a close relationship between the complexity of symmetric functions and fractals derived from the parity of binomial coefficients.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aleksanyan, A.A.: On realization of quadratic Boolean functions by systems of linear equations. Cybernetics 25(1), 9–17 (1989)

    Article  MathSciNet  Google Scholar 

  2. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness Theorems for Non-Cryptographic Fault-Tolerant Distributed Computation. In: Proceedings of the 20th ACM Symposium on the Theory of Computing, pp. 1–10 (1988)

    Google Scholar 

  3. Boyar, J., Damgård, I., Peralta, R.: Short non-interactive cryptographic proofs. Journal of Cryptology 13, 449–472 (2000)

    Article  MATH  Google Scholar 

  4. Boyar, J., Peralta, R., Pochuev, D.: On the multiplicative complexity of Boolean functions over the basis ( ∧ , ⊕ , 1). Theoretical Computer Science 235, 43–57 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bürgisser, P., Clausen, M., Shokrollahi, M.A.: Algebraic Complexity Theory. Grundlehren der mathematischen Wissenschaften, vol. 315. Springer, Heidelberg (1997)

    MATH  Google Scholar 

  6. Cramer, R., Damgård, I.B., Nielsen, J.B.: Multiparty computation from threshold homomorphic encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 280–300. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  7. Chaum, D., Crépeau, C., Damgård, I.: Multi-party unconditionally secure protocols. In: Proceedings of the 20th ACM Symposium on the Theory of Computing, pp. 11–19 (1988)

    Google Scholar 

  8. Kummer, E.E.: Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen. J. Reine Angew. Math. 44, 93–146 (1852)

    Article  MATH  Google Scholar 

  9. Hirt, M., Nielsen, J.B.: Upper bounds on the communication complexity of optimally resilient cryptographic multiparty computation. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 79–99. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  10. Mihaĭljuk, M.V.: On the complexity of calculating the elementary symmetric functions over finite fields. Sov. Math. Dokl. 20, 170–174 (1979)

    Google Scholar 

  11. Mirwald, R., Schnorr, C.: The multiplicative complexity of quadratic Boolean forms. Theoretical Computer Science 102(2), 307–328 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  12. Paul, W.J.: A 2.5n lower bound on the combinational complexity of boolean functions. In: Proceedings of the 7th ACM Symposium on the Theory of Computing, pp. 27–36 (1975)

    Google Scholar 

  13. Rueppel, R., Massey, J.: The knapsack as a nonlinear function. In: Abstracts of papers, IEEE Int. Symp. on Information Theory, p. 46 (1985)

    Google Scholar 

  14. Schnorr, C.P.: The multiplicative complexity of Boolean functions. In: Mora, T. (ed.) AAECC 1988. LNCS, vol. 357, pp. 45–58. Springer, Heidelberg (1989)

    Google Scholar 

  15. Stockmeyer, L.: On the combinational complexity of certain symmetric Boolean functions. Mathematical Systems Theory 10, 323–336 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  16. van der Waerden, B.L.: Algebra. Frederick Ungar Publishing

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Boyar, J., Peralta, R. (2006). Concrete Multiplicative Complexity of Symmetric Functions. In: Královič, R., Urzyczyn, P. (eds) Mathematical Foundations of Computer Science 2006. MFCS 2006. Lecture Notes in Computer Science, vol 4162. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11821069_16

Download citation

  • DOI: https://doi.org/10.1007/11821069_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37791-7

  • Online ISBN: 978-3-540-37793-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics