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Abstract. Random 3-colorable graphs that are generated according to
a G(n, p)-like model can be colored optimally, if p ≥ c/n for some large
constant c. However, these methods fail in a model where the edge-
probabilities are non-uniform and not bounded away from zero. We
present a spectral algorithm that succeeds in such situations.

1 Introduction

Graph coloring [9] is one of the central problems in graph theory and combina-
torics. A (proper) graph coloring is the assignment of colors to vertices so that
adjacent vertices are always colored differently. The problem of coloring graphs
with the minimum number of colors is of large theoretical interest. Furthermore,
efficient coloring algorithms are important for applications, as many practical
problems can be formulated as graph coloring problems. However, even if it is
known that a graph G is k-colorable, it is NP-hard to properly color G with k
colors, for any fixed k ≥ 3 [6].

Much research has focused on k-coloring random k-colorable graphs with high
probability [11,4,15,1,5,12], see [10] for a survey on random graph coloring. (We
say that an algorithm succeeds with high probability (w. h. p.) if its failure prob-
ability tends to zero as the input size tends to infinity.) There are several models
for random k-colorable graphs, all of which have the property in common, that
every possible edge (i. e., every pair of differently colored vertices) is included in
a sampled graph with non-zero probability.

In this paper we propose a more general model for 3-colorable graphs, where
there is no lower bound on the edge probabilities. We show that the algorithms
from [1,12] can not color graphs from this model and present a more general
spectral algorithm that can cope with these distributions. The assumptions that
we need for our algorithm are simultaneously more restrictive and more general
than those for known algorithms. Thus, we provide an alternative description
for random graphs that are easy to color. We believe that our ideas have similar
implications for other spectral algorithms (e. g., [12]) that recover “hidden” com-
binatorial objects (like cliques, independent sets, or minimum cuts) in random
graphs.
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Our paper is organized as follows. In Sect. 2, we review known models for
random 3-colorable graphs, propose a generalization of these models, and present
our algorithm and the assumptions under which it succeeds. Section 3 presents
general observations regarding planted partitions and spectral algorithms. The
ideas developed there are used in Sect. 4 to prove our main theorem. In Sect. 5,
we provide the proofs that traditional methods do not work on our generalized
model and Sect. 6 outlines implications for related problems.

Notation. If A is a matrix, then Auv denotes the uv’th entry of A. In this paper,
the rows and columns of matrices are often understood as being indexed by the
vertices of a graph. We frequently use the notation A(v) to denote the column
of A that is indexed by the vertex v. The transpose of a matrix A is denoted by
AT and is defined by AT

uv = Avu.
For vectors v ∈ R

n we use the Euclidean norm, defined by ‖v‖2 =
∑n

i=1 v2
i .

The distance between two vectors u and v is ‖u − v‖. We recall the definition of
two matrix norms: the 2-norm

‖A‖2 = max
‖v‖=1

‖A(v)‖ ,

and the Frobenius norm ‖A‖2
F =

∑n
u,v=1 A2

uv. More background on linear algebra
is in [13,8].

2 Background and Results

2.1 Previous Models and Known Results

We review first two random graph models for 3-colorable graphs. Let r be a
positive integer and p a real number, 0 ≤ p ≤ 1. The random graph model
G(r, p, 3) is a probability distribution for graphs on n = 3r vertices, partitioned
into three color classes of size r. The edges between vertices from different color
classes are included independently with probability p. The best result for this
model (i. e., the algorithm that works for the smallest non-trivial p) is from Alon
and Kahale [1], who gave a spectral algorithm that (w. h. p.) 3-colors graphs from
G(r, p, 3), if p ≥ c/n, for a sufficiently large constant c. McSherry [12] described
a different spectral algorithm for a more general problem that (w. h. p.) 3-colors
graphs from G(r, p, 3), if p ≥ c log3(n)/n.

It has been pointed out (compare [14]), that random graphs from G(r, p, 3)
have very special properties that graphs encountered in applications usually do
not have. It is more demanding to design algorithms for graph models that
mediate between the uniformly structured graphs from G(r, p, 3) and worst-case
instances. One possibility to generate such graphs are the so-called semi-random
graph models. In the semi-random model GS(r, p, 3), first a “true random” graph
is drawn from G(r, p, 3), then an adversary can decide to introduce additional
edges between vertices from different color classes. While, at a first glance, it
seems to help an algorithm if more bi-colored edges are introduced, this is not the
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case. The fact that the random structure of the graph from G(r, p, 3) is spoiled
counts more than the benefit from the additional edges. Feige and Kilian [5]
showed that there is a polynomial time algorithm that optimally colors almost all
graphs from GS(r, p, 3) if p is as large as p ≥ (1+ε)3 logn/n, for every ε > 0. The
algorithm from [5] is not based on spectral methods. Instead it uses semidefinite
programming, followed by several sophisticated post-processing steps.

It should be noted that graphs from GS(r, p, 3) have a substantial subgraph
that is a random graph from G(r, p, 3). The adversary is only allowed to add
more edges and cannot force any pair of differently colored vertices to be non-
adjacent. In this paper, we consider a different probability distribution, where
there is no lower bound on the edge-probabilities.

2.2 A Generalization of G(r, p, 3)

To generalize the random graph model G(r, p, 3), consider the matrix A(p) in the
lefthand-side of (1). (The nine blocks of A(p) are understood as being constant
r × r blocks.) It is easy to see that the sampling process from G(r, p, 3) can be
described as follows: construct a graph on n = 3r vertices, where an edge {u, v}
is introduced with probability equal to A

(p)
uv . The matrix A(p) is the expected

adjacency matrix of the distribution G(r, p, 3).

A(p) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 · · · 0
...

...
0 · · · 0

p · · · p
...

...
p · · · p

p · · · p
...

...
p · · · p

p · · · p
...

...
p · · · p

0 · · · 0
...

...
0 · · · 0

p · · · p
...

...
p · · · p

p · · · p
...

...
p · · · p

p · · · p
...

...
p · · · p

0 · · · 0
...

...
0 · · · 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

A[XY Z] =

⎡

⎣
[0] X Y
XT [0] Z
Y T ZT [0]

⎤

⎦ (1)

The fact that the diagonal blocks of A(p) are zero ensures that graphs from
G(r, p, 3) are 3-colorable. The off-diagonal blocks of A(p) describe the expected
adjacency structure between two different color classes. In G(r, p, 3) this structure
is uniform. Every vertex has the same probability to connect to every other dif-
ferently colored vertex. We generalize the model G(r, p, 3) by allowing arbitrary
adjacency structure between different color classes.

Definition 1. Let r be an integer and n = 3r. Further, let X, Y , and Z, be
arbitrary real r × r matrices whose entries are between zero and one and let
A = A[XY Z] be defined as in the righthand-side of (1). A graph drawn from the
probability distribution G(A) is a graph on n vertices, where a set of two vertices
{u, v} is independently chosen to be an edge with probability Auv. The matrix A
is the expected adjacency matrix for the distribution G(A).
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As an example, the distribution G(r, p, 3) is equivalent to G(A(p)).
The restrictions on the form of A in Def. 1 ensure only that every graph

drawn from G(A) admits a proper 3-coloring whose color classes are all of size r.
In particular, the problem of 3-coloring graphs from G(A) includes the problem
of 3-coloring graphs that are 3-colorable with equally sized color classes. Since
this problem is NP-complete in general we cannot hope to develop an algorithm
that works for all A.

The distribution G(A) is obviously much more general than G(r, p, 3). It is
simultaneously more restrictive and more general than the semi-random model
GS(r, p, 3): In G(A) we do not allow for an adversary to add edges to a sam-
pled graph. On the other hand, in GS(r, p, 3), each possible (bi-colored) edge is
included with probability at least p (independent on the adversary’s decisions),
whereas in G(A), the structure of A can force large sets of possible edges to be not
included. Thus, the model G(A) is an alternative possibility to mediate between
the uniformly structured graphs from G(r, p, 3) and worst-case instances.

2.3 Main Results

Our main contribution is a spectral algorithm that 3-colors (w. h. p.) graphs from
G(A) if the matrices X , Y , and Z are regular with a common degree and if the
spectral properties of A “do not obfuscate” the planted 3-coloring. In particular,
our algorithm succeeds for many matrices X , Y , and Z for which the algorithms
from [1,12] do not work. The algorithm is presented below and gets the n × n
adjacency matrix Â of a sampled graph as input.

Spectral 3-Coloring Algorithm(Â)

1. Compute d =
∑n

i,j=1 Âij/(2n).
2. Compute (orthonormalized) eigenvectors {v1, v2, v3} of Â associated to

those eigenvalues that have the smallest distance to 2d, −d and −d.
3. Let P be the 3×n matrix whose rows are the vi and compute Ŝ = PTP .
4. Compute the pairwise distances of vertices according to the distance

between their columns in Ŝ.
5. Successively join vertices with the smallest distance until three color

classes are left.

See, e. g., [8] for the efficient computation of eigenvectors. Of course, the com-
puted 3-coloring is not necessarily proper for Â. In the following we clarify the
assumptions under which the above algorithm succeeds with high probability.

A matrix is called regular (of degree d) if the sum of every row and column is
equal to d. The first assumption we need for our algorithm is that X , Y , and Z
must be regular with a common degree.

We turn our attention to the spectral properties of A: If X , Y , and Z are
regular of degree d, then (see Theorem 6) A has the three eigenvalues

λi1 = 2d, and λi2 = λi3 = −d (i2 �= i3) . (2)
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It is crucial for our algorithm that the other eigenvalues of A are separated from
those specific eigenvalues. The separation sep3(A) of the planted 3-coloring in
A is defined to be the minimal distance from λi1 , λi2 , and λi3 to any other
eigenvalue of A. We define the variance of the distribution G(A) to be σ2 =
maxu,v(Auv − A2

uv) (i. e., the maximal variance of individual entries). The vari-
ance is bounded by 1/4 and goes to zero if all entries of A go either to zero or to
one. For instance, for the distribution G(r, p, 3), if p = c/n (that is the smallest
p for which the algorithm from [1] is guaranteed to work), then the variance
decreases linearly in n, i. e., σ2 is in O(1/n). Our main result is the following.

Theorem 1. Let X, Y , and Z be regular matrices of degree d and A = A[XY Z].
Let σ2 be the variance of G(A) and assume that sep3(A) is in ω(nσ) and that
σ2 � (log6 n)/n. Then, the Spectral 3-Coloring Algorithm properly 3-colors
graphs from G(A), with high probability.

Theorem 1 is proved in Sect. 4.
As a corollary, we get an algorithm that 3-colors (with probability one) a given

graph with adjacency matrix A[XY Z] assumed that X , Y , and Z are regular of
common degree and that the separation of the planted 3-coloring is not zero.

Corollary 1. Let X, Y , and Z be regular {0, 1} matrices of degree d and assume
that sep3(A[XY Z]) �= 0. Then, the Spectral 3-Coloring Algorithm properly
3-colors the graph G with adjacency matrix A[XY Z].

Interpretation of assumptions. To interpret the assumptions that we make in our
theorems, we note first that also the traditional model G(r, p, 3) implicitly makes
assumptions on both, the regularity of the block matrices and the separation
of certain eigenvalues. The specific form of the matrix A(p) in (1) ensures in
particular that the submatrices are regular of degree d = rp. In this paper the
property of being constant is relaxed to that of being regular. From the point of
view of the coloring this means that vertices are no longer required to have the
same probability to connect to all vertices of different color, but they are only
required to have the same expected number of neighbors of each different color.

Turning to the assumption on the separation, we remark that the specific form
of the expected adjacency matrix A(p) implies that A(p) has the three eigenvalues
2d, −d and −d, whereas all other eigenvalues are zero and thus well-separated
from the aforementioned. Both previous results [1,12] use this observation and
the fact that the random deviation from the expected adjacency matrix has
w. h. p. eigenvalues in O(

√
d). Thus, an assumption on the separation of eigen-

values is also made when assuming that graphs are drawn from the standard
model G(r, p, 3). We note however that the assumption on the separation that
we make in our paper in not competitive to that of [1,12] when applied to the
specific model G(r, p, 3). Currently it is unclear whether the post-processing steps
of [1] could be adapted to the more general model G(A). Similarly, [12] uses the
fact that vertices that are in the same color class have identical columns in A(p).
Since this is no longer true for our model, it is unclear whether the same bounds
could be derived.
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2.4 Insufficiency of Traditional Methods

We show here that our algorithm can solve many instances that can not be
handled by previous spectral algorithms, e. g., [1,12]. The proofs of the following
two Theorems are deferred to Sect. 5.

Theorem 2. For arbitrary large r, there are r × r matrices X, Y , and Z such
that graphs from G(A[XY Z]) are not colored properly by the algorithms in [1]
and [12], but the Spectral 3-Coloring Algorithm succeeds on these graphs.

The matrices A that appear in the proof of Theorem 2 also seem to yield instances
of G(A) for which the algorithm from [5], which is designed for the semi-random
graph model, does not work. Since this algorithm consists of many randomized
sub-procedures, it is more complicated to provide an example of G(A) for which
it fails surely (or with high probability). However, we can show that the proofs
in [5] do not generalize to G(A): A graph G (with a planted coloring) is said
to have the k-collision property, if for every set U of equally colored vertices
and every set T of vertices that are colored differently than those of U , such
that |T |, |U | ≥ k, there is an edge in G joining U and T . It is proved in [5] (by
translating Lemma 6 of [5] to the graph coloring problem, compare Section 3
of [5]), that semi-random graphs G have with high probability the k-collision
property for k = 2n log log n

c log n . This does not hold for G(A). In particular the proofs
in [5] do not generalize to G(A).

Theorem 3. For arbitrary large r, there are r × r matrices X, Y , and Z, such
that graphs from G(A[XY Z]) do not have the k-collision property for any k that
is in o(n), but are properly colored by the Spectral 3-Coloring Algorithm.

3 Methodology

The expected adjacency matrix A(p) for the distribution G(r, p, 3) (see (1)) is so
convenient for traditional spectral algorithms since vertices from the same color
class have identical columns (neighborhoods) in A(p). Therefore, projecting ver-
tices to the column space of A(p) (that space is spanned by those three eigenvec-
tors that have non-zero eigenvalues) trivially reveals the classes. Moreover, this
spectral projection is stable to random noise (given certain assumptions) and
the algorithm succeeds also on sampled graphs.

This approach fails for the more general model G(A). Consider the expected
adjacency matrix A = A[XY Z] that arises if the off-diagonal blocks are equal
to the matrix shown in (3) and the corresponding graph in Fig. 1(left).

X = Y = Z =

⎡

⎢
⎢
⎣

0 0 p p
0 0 p p
p p 0 0
p p 0 0

⎤

⎥
⎥
⎦ (3)

Two vertices that are colored the same may have very different (even disjoint)
neighborhoods. In particular, projecting vertices to the column space of A does
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not reveal the color classes. Equation (3) and Fig. 1 indicate how to construct
distributions G(A) for which traditional spectral methods [1,12] fail: introduce
large (i. e., of linear size) sub-blocks of X , Y , Z that are zero, i. e., prohibit
edges between large subsets of differently colored vertices. To cope with the
distribution G(A[XY Z]) we have to apply a different projection.

Fig. 1. Left: Small example of a non-uniform expected adjacency structure, defined by
the block-matrices shown in (3). Edges have weight p. Every white vertex has exactly
two black neighbors. Right: Quotient induced by the coloring. Edges have weight 2p.

We represent a vertex k-coloring by a real k × n matrix P , called the charac-
teristic matrix of the coloring, defined by

P�v =
{

1/
√

r if vertex v is colored � and r is the size of the color class �,
0 if vertex v is not colored �.

The characteristic matrix P of the planted 3-coloring projects vertices to 3-
dimensional space, such that vertices are mapped to the same point if and only
if they are equally colored. Thus, P could be used to determine the planted
coloring—we just need a method that identifies the correct P (or a good ap-
proximation of it), given only a sample of the distribution.

To derive such a method we observe that, if the block matrices are regular,
then the planted 3-coloring satisfies the property of the following definition:

Definition 2. A coloring is called structural (for a symmetric matrix A) if its
characteristic matrix P satisfies

∀u, v ∈ V : P (u) = P (v) =⇒ PA(u) = PA(v) .

That is, a coloring is structural if, whenever two vertices are colored the same,
then they have the same number of each color in their neighborhoods. In alge-
braic and spectral graph theory, structural colorings are known under the names
of equitable partitions, or divisors of graphs [7,3]. For example, the coloring of
the graph in Fig. 1(left) is structural.

The idea of structural colorings serves only as a guide to find a projection
that recovers the planted 3-coloring. The property of being a structural coloring
is not robust to random noise. However, it can be shown, that a relaxation of
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structural colorings is stable. It is noteworthy, that we do not relax the property
of being structural but that of being a discrete coloring.

In the remainder of this section we relax the notion of colorings to projections
and similarities, while keeping the property of being structural. In Sect. 4 we
show that (w. h. p.) our algorithm computes the appropriate structural similarity
for the sampled matrix and recovers the planted 3-coloring.

Structural similarities have been introduced in [2] as a relaxation for role as-
signments. (Role assignments identify structurally similar vertices in networks.)
Here we review some concepts from [2] in a slightly different notation.

Projections and similarities are introduced as relaxations of k-colorings and
their associated equivalence relations on the vertex set:

Definition 3. A real k × n matrix P with orthonormal rows is called a pro-
jection. If P is a projection, then the real n × n matrix S = PTP is called the
similarity associated with P . Let, in addition, be A the adjacency matrix of a
graph. Then the real k × k matrix B = PAPT is called the quotient induced by
A and P .

The characteristic matrix of a coloring is a special case of a projection. Projec-
tions are more general than colorings, since they allow vertices to be members of
several color classes: the v’th column of a projection P is a k-dimensional vector
that describes the real-valued membership of vertex v to the k color-classes. The
entry Suv of the associated similarity S is the dot-product of the u’th and v’th
column of P . Thus u and v have high similarity if they are similarly colored.
From an algebraic point of view, a similarity is the orthogonal projection to the
row-space of P (compare [2]). If P is the characteristic matrix of a coloring,
then the quotient B = PAPT is the adjacency matrix of the weighted graph
that has the k color-classes as vertices and two classes c1 and c2 are connected
by an edge whose weight is the sum over all edges between c1 and c2 divided by√

|c1| · |c2|. For an example, see Fig. 1. The following definition introduces the
attribute structural for similarities. It is then noted in Theorem 4 that structural
similarities are indeed relaxations of structural colorings.

Definition 4. Let P be a projection and let S be its associated similarity, then
P and S are called structural for a matrix A if SA = AS.

Theorem 4 ([2]). Let P be the characteristic matrix of a vertex coloring c : V →
{1, . . . , k}. Then, P is a structural projection if and only if c is a structural
coloring. �


The following Theorem provides the link between spectral techniques and struc-
tural similarities. Further it shows how similarities that yield a pre-specified
quotient can be efficiently computed.

Theorem 5 ([2]). Let A be a symmetric n × n matrix, B a symmetric k ×
k matrix, P a projection, and S its associated similarity. Then P and S are
structural for A if and only if the image of S is generated by eigenvectors of A.
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Furthermore, P and S are structural for A and the induced quotient equals B if
and only if those eigenvectors are associated to the eigenvalues of B. �


If P and S are structural, we call the eigenvalues of B associated to P and S.
Traditional spectral methods typically chose projections associated to the

eigenvalues with the largest absolute values (compare [12]). Structural similar-
ities are not restricted to projecting to the largest eigenvalues but can chose
all subsets and thereby can recover partitions in more general situations (as
demonstrated in this paper). The second part of Theorem 5 is important for
determining which eigenvalues have to be chosen for a specific task.

4 Correctness of the Algorithm

Throughout this section, let A = A[XY Z] be a real n × n matrix as in the
righthand side of (1) and let G(A) be the associated distribution of 3-colorable
graphs (compare Def. 1). Let Â be the adjacency matrix of a sample drawn
from G(A). Further, let σ2 be the variance of the distribution and assume that
σ2 � (log6 n)/n.

The following theorem states that, for regular X , Y , and Z, there is a struc-
tural similarity for A, which reveals the planted 3-coloring. Theorem 6 does not
rely on any assumptions on sep3(A).

Theorem 6. Let X, Y , and Z be regular r × r matrices with degree d. Then,
there is a structural similarity S that has 2d, −d, and −d as associated eigen-
values and satisfies for all vertices u and v,

‖S(u) − S(v)‖ =
{

0 if u and v are colored the same, and√
2/r if u and v are colored differently.

(4)

Proof. Since the matrices X , Y , and Z are regular, the planted 3-coloring is
a structural coloring for A. Thus, by Theorem 4 its characteristic matrix P ,
is a structural projection. Furthermore, the induced quotient B = PAPT is
the adjacency matrix of a triangle whose three edges have weight d. Thus, the
associated eigenvalues of P are 2d, −d, and −d. Finally, the similarity S = PTP
satisfies (4). �


We show in Theorem 8 that there is a structural similarity Ŝ for the sampled
adjacency matrix Â that is close enough to S. First we have to recall a well-
known bound on the eigenvalues of random matrices.

Theorem 7. Let F be defined by F = A− Â. Then (w. h. p.) it is ‖F‖2 ≤ 4σ
√

n
[12]. In particular, the eigenvalues of Â differ (w. h. p.) from those of A by at
most 4σ

√
n [13].

Theorem 8. Let X, Y , and Z be regular r × r matrices with common degree d
and A = A[XY Z]. Further, let S be the similarity from Theorem 6 and assume
that sep3(A) is in ω(σ

√
n). Then, w. h .p. the similarity Ŝ that is associated to

those three eigenvalues of Â that have the smallest distance to 2d, −d, and −d
satisfies ‖Ŝ − S‖2 ∈ O(σ

√
n/sep3(A)).
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Proof. (The following assertions hold w. h. p. for sufficiently large n.) By the
assumption on sep3(A) and Theorem 7, there are three well-defined eigenvalues
λi1 , λi2 , and λi3 of Â that have the smallest distance to 2d, −d, and −d. Let vi1 ,
vi2 , and vi3 be three orthonormal eigenvectors of Â, associated to λi1 , λi2 , and
λi3 . Let C be the n × 3 matrix whose columns are the vij , j = 1, 2, 3. We show
that Ŝ = CCT satisfies the assertions of the theorem.

By Theorem 5, Ŝ is structural for Â and λi1 , λi2 , and λi3 are the eigenvalues
associated to Ŝ. To show the bound on ‖Ŝ − S‖, let M = CTÂC, B1 be an
n × 3 matrix whose columns span the image of the similarity S, and B2 be an
n × (n − 3) matrix, such that (B1B2) is an orthogonal n × n matrix. Let F
be defined by Â = A − F and set L = BT

2 AB2. By definition of M and the
fact that Ŝ commutes with Â (Ŝ is structural for Â), it is 0 = ÂC − CM . By
the definition of F it follows FC = AC − CM . Let δ be the minimal distance
between eigenvalues of M and those of L. By the assumptions on the separation
sep3(A) and Theorem 7, δ is in Ω(sep3(A)) and it follows with Theorems V.3.4
and I.5.5 of [13] that

‖S − Ŝ‖2 ≤ 2‖FC‖F

δ
.

The 2-norm of F is bounded by 4σ
√

n (Theorem 7), the Frobenius norm of the
n × 3 matrix FC is at most

√
3-times the 2-norm of FC, and the 2-norm of the

matrix C (having orthonormal columns) is 1. Thus, the assertion follows with

‖FC‖F ≤
√

3‖FC‖2 ≤
√

3‖F‖2 ≤ 4σ
√

3n .

�


To determine Ŝ, the degree d of the block matrices has to be estimated:

Lemma 1. Let X, Y , and Z be regular r × r matrices with common degree d
and A = A[XY Z]. Let Â be the adjacency matrix of a graph drawn from G(A)
and set d̂ =

∑n
i,j=1 Âij/(2n). Then, with high probability, d̂ − d is in O(log n).

Proof. Follows in a straightforward manner from the Hoeffding bound. �


Proof (of Theorem 1). By Lemma 1 and Theorem 7, the similarity Ŝ, as com-
puted by the algorithm, is the similarity from Theorem 8. (Note that Ŝ = PTP
is independent on orthogonal transformations on the rows of P like, e. g., per-
mutation or reflexion of eigenvectors.) Let v be any vertex and let S be the
similarity from Theorem 6. We have by Theorem 8 that w. h. p.

‖S(v) − Ŝ(v)‖ ∈ o(1/
√

n) .

Hence, for two vertices u and v it is (applying Theorem 6)

‖Ŝ(u) − Ŝ(v)‖ ∈
{

o(1/
√

n) if u and v are in the same color class,
Ω(1/

√
n) else .

Thus for sufficiently large n the clustering procedure in Step 5 yields exactly the
planted color classes. �
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Proof (of Corollary 1). Follows from Theorem 1 by considering the zero-variance
distribution that assigns probability one to G (and probability zero to any other
graph). Following the proofs in Sect. 4, it can be seen that the restriction “with
high probability” from Theorem 1 can be dropped in this situation. �


5 Hard Instances for Traditional Methods

Proof (of Theorem 2). The instances for which the algorithm from [1] does not
work are essentially a blown-up version of the example in (3) and Fig. 1 with
a few added edges. For simplicity we take p = 1 in our example. This implies
that only one graph has non-zero probability in the distribution. It should be
obvious that similar examples with probabilities different from zero or one can
be constructed.

Let r = 2k for an integer k. Let H be the graph that is the complete bipartite
graph Kk,k plus the edges of two cycles of length k, connecting the vertices in the
bipartition classes of Kk,k (thereby making H non-bipartite). Let X = Y = Z
denote the adjacency matrix of H and let A = A[XY Z]. Let G be the graph
with adjacency matrix A (the unique graph returned by G(A)).

The preprocessing step from [1] is void in this case since G is regular. The
last eigenvector vn has median zero. Further for t = vn, in the first phase of
the algorithm from [1] the vertices are colored with only two colors, according
to which “bipartition class” they belong to. In particular this coloring is a very
bad approximation to the unique proper 3-coloring and it is easy to see that the
second and third phase in the proposed algorithm do not overcome this.

Examples of distributions for which the algorithm in [12] does not recover the
planted 3-coloring, are quite similar to the one above.

Finally, the above distribution satisfies the assumptions of our theorems and,
hence, G can be colored by our algorithm: The matrices X , Y , and Z are d-
regular by construction, where d = k + 2. By computing the eigenvalues of
the complete bipartite subgraphs and applying facts about the eigenvalues of
the Kronecker product of matrices (compare [3]), we get that the eigenvalues
2d, −d, and −d have non-zero separation from the others and thus Corollary 1
applies. �


Proof (of Theorem 3). In the example above there are suitable sets U and T of
size linear in n such that there is no edge joining U and T . �


6 Concluding Remarks

The ideas of this paper are not restricted to graph coloring. Many heuristics for
NP-hard graph partitioning problems (like min-bisection, clique, or independent
set) are based on spectral techniques that typically chose projections associated
to the eigenvalues with the largest absolute values. McSherry [12] showed that
these specific spectral projections recover partitions if vertices in the same class
have identical columns (neighborhoods) in the expected adjacency matrix. It
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seems that the converse is also true: these specific spectral projections recover
partitions only if vertices in the same class have almost identical neighborhoods
in the expected adjacency matrix. We outlined in Sect. 3 that projections asso-
ciated to eigenvalues that are not necessarily the largest may succeed in more
general situations, where vertices from the same class have only same-colored
(instead of identical) neighborhoods. It seems to be promising to consider these
generalized spectral projections also for the solution of other problems.
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11. L. Kučera. Expected behavior of graph coloring algorithms. In Lecture Notes in
Computer Science 56, pages 447–451. Springer Verlag, 1977.

12. F. McSherry. Spectral partitioning of random graphs. In Proceedings of the 42nd
Annual IEEE Symposium on Foundations of Computer Science (FOCS’01), pages
529–537, 2001.

13. G. W. Stewart and J.-G. Sun. Matrix Perturbation Theory. Academic Press, 1990.
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