
Very Sparse Leaf Languages1

Lance Fortnow2

Department of Computer Science

University of Chicago

Mitsunori Ogihara3

Department of Computer Science

University of Rochester

Technical Report 899

University of Rochester

Department of Computer

June, 2006

1This work is support in part by XEROX/NYSTAR Grant C040130 and NSF-EIA Grant 0205061.
2Department of Computer Science, University of Chicago, 1100 E. 58th St., Chicago, IL 60637. email:

fortnow@cs.uchicago.edu.
3Box 270226, Department of Computer Science, University of Rochester, Rochester, NY 14627-0226.

email: ogihara@cs.rochester.edu.

Abstract

Unger studied the balanced leaf languages defined via poly-logarithmically sparse leaf pattern sets.
Unger shows that NP-complete sets are not polynomial-time many-one reducible to such balanced
leaf language unless the polynomial hierarchy collapses to Θp

2 and that Σp
2-complete sets are not

polynomial-time bounded-truth-table reducible (respectively, polynomial-time Turing reducible) to
any such balanced leaf language unless the polynomial hierarchy collapses to ∆p

2 (respectively, Σp
4).

This paper studies the complexity of the class of such balanced leaf languages, which will be
denoted by VSLL. In particular, the following tight upper and lower bounds of VSLL are shown:

1. coNP ⊆ VSLL ⊆ coNP/poly (the former inclusion is already shown by Unger).

2. coNP/1 6⊆ VSLL unless PH = Θp
2.

3. For all constant c > 0, VSLL 6⊆ coNP/nc.

4. P/(log log(n) + O(1)) ⊆ VSLL.

5. For all h(n) = log log(n) + ω(1), P/h 6⊆ VSLL.

1 Introduction

Bovet, Crescenzi, and Silvestri [2] introduced the concept of leaf languages — the languages defined
in terms of the pattern appearing at the leaf-level a polynomial-time nondeterministic Turing
machine that outputs a symbol along each computation path. The concept of using outputs of
nondeterministic Turing machines for defining complexity classes appears earlier, in a paper by
Goldschlager and Parberry [7], but it is in this work of Bovet, Crescenzi, and Silvestri that the
concept was formulated and fully explored. Given a polynomial-time nondeterministic Turing
machine M that accepts all inputs on all computations and that outputs a symbol from an alphabet
Γ, leafstringM is the function that maps each input of M to the word produced by reading the
output symbols in the computation tree of M on input x according to the dictionary order over
the computation paths of M on x. Given a language K over the alphabet Γ, the leaf language with
respect to M and K, is the set of all inputs x such that leafstringM (x) ∈ K.

Bovet, Crescenzi, and Silvestri showed that many well-known complexity classes can be charac-
terized this way using some simple leaf languages, including NP, coNP, and PP. The leaf languages
offer a rich theory of complexity classes and are very strongly connected with branching programs [1]
and bottleneck Turing machines [5].

Recently, Unger [14] studied the leaf languages defined with respect to poly-logarithmically
sparse leaf pattern sets. We call this complexity class VSLL (Very Sparse Leaf Languages) as
Unger did not give a name to this class. Unger showed that if SAT is polynomial-time many-one
reducible to a language in VSLL then PH = Θp

2 and that if a Σp
2-complete set is polynomial-time

bounded-truth-table reducible to a language in VSLL then PH = ∆p
2.

The leaf languages defined with respect to such very sparse leaf pattern sets are related to
polynomially sparse sets. Although he did not make it an explicit claim, Unger’s proof of the
former result essentially uses the fact that VSLL is included coNP/poly. Here coNP/poly is the
“nonuniform-coNP” [10], in the sense that each language in the class is decidable in coNP with
the aid of an “advice” string that is polynomially long and that is dependent solely on the input
length. As we will show explicitly in this paper, for each language L ∈ VSLL, the advice function
that puts L in coNP/poly maps each input length to a polynomial number of members of L and
the set of the words appearing in advice strings is a sparse subset of L.

We thus naturally question the connection between VSLL and sparse sets. Indeed, the proof of
the former of the two results of Unger is reminiscent of the technique that uses the census function
in NP exploited in the result of Kadin [9] that showed the existence of sparse Turing-complete
sets for NP collapses the polynomial hierarchy to Θp

2; and the proof of the latter directly uses the
left-set technique of Ogihara and Watanabe [12]. However, it is unclear whether the assumption
NP ⊆ VSLL for the first result implies the existence of sparse Turing-complete sets for NP. This
observation motivates us to explore the complexity of VSLL.

It is easy to see that coNP ⊆ VSLL, via the poly-logarithmically sparse leaf pattern language
{02n

| n ≥ 0} (see [14]). We show that this is in fact a tight lower bound of VSLL. The class coNP/1,
i.e., coNP with a single-bit of advice, is not included in VSLL unless NP is already included in
VSLL, which, according to the result of Unger, collapses the polynomial hierarchy to Θp

2. In fact,
we show that for any recursive complexity class C, if C/1 ⊆ VSLL then C ⊆ P/poly. We also show
a “provably” tight lower bound for VSLL with respect to polynomial-time decision with advice.
While P/ log log ⊆ VSLL, P/(log log(n) + ω(1)) 6⊆ VSLL.

Along with the above lower bound results, we show two tight upper bounds. First, if VSLL ⊆
P/poly then PH collapses to Σp

2, more precisely, to class Sp
2 [6, 13]. Second, for an arbitrary constant

c > 0, VSLL 6⊆ coNP/nc holds with no assumption.

1

2 Preliminaries

Let Σ be the alphabet {0, 1}. As usual, Σ∗ denotes the set of all words over Σ and N denotes the
set of all natural numbers. For each n ∈ N , Σn denotes the set of all words over Σ having length
n. For each n ∈ N and for each language L, L=n denotes {x | x ∈ L ∧ |x| = n} and L≤n denotes
{x | x ∈ L ∧ |x| ≤ n}. For a language A and for a natural number n, censusA(n) = ‖ L≤n ‖. The
function censusA is called the census function of A.

We assume the reader’s familiarity in basic complexity classes and reducibility notions, including
classes P, NP, coNP, PH, {Σp

k,Π
p
k,∆

p
k,Θ

p
k}k≥0, L, and NL and reducibility notions ≤p

m, ≤p
T , and

≤p
btt.

Let M be a polynomial time-bounded nondeterministic Turing machine transducer such that
M accepts on all inputs and along all computation paths and such that on each computation path
M outputs a symbol from an alphabet Γ. We call such a machine M an NP character transducer.
For each input x and for each computation path π on M on x, let Mπ(x) be the output of M on x
along path π. For each input x, define

leafstringM (x) = Mπ1(x) · · ·Mπr(x),

where π1, . . . , πr is the enumeration in the dictionary order of all computation paths of M on input
x. By abuse of notation, for a set of inputs S, we define

leafstringM (S) = {leafstringM (x) | x ∈ S}.

For A ⊆ Γ∗, let LeafPM (A) be the language consisting of all inputs x such that leafstringM (x) ∈ A.

Definition 2.1 For a language A ⊆ Γ∗, the language class LeafP(A) is the set of all languages

LeafPM (A), where M is an NP character transducer.

For a language class C, the language class LeafP(C) is {LeafP(A) | A ∈ C}.

We pay a special attention to the leaf language defined via a Turing machine whose computation
tree is balanced in the following sense: there exists a polynomial p such that for all inputs x, the
computation tree of the Turing machine on input x is the full complete binary tree of height p(|x|).
We call such a machine a balanced-tree NP character transducer. We will use BalancedLeaf P(A)
and BalancedLeafP(C), respectively, to denote LeafP(A) and LeafP(C) in which the NP character
transducers are restricted to be balanced-tree character transducers.

2.1 Sparse sets

A language S is sparse if there exists a polynomial p such that for all n censusS(n) ≤ p(n). By
SPARSE we denote the set of all sparse sets.

A language S is poly-logarithmically sparse (or polylog sparse, for short) if there exist positive
constants c and d such that for all n censusS(n) ≤ c(log n)d. By PLOGSPARSE we denote the set
of all poly-logarithmically sparse sets.

2.2 Advice classes

Let f be a function from N to itself and let C be a complexity class. Then C/f is the set of all
languages L for which there exist A ∈ C and a function h such that

• for all x, |h(x)| ≤ f(|x|), and

2

• for all x, x ∈ L if and only if 〈x, h(0|x|)〉 ∈ A.

Complexity classes defined this way are called “advice” classes and the function h is called an
“advice” function. By poly we denote the set of all polynomials. It is a well-known fact that
P/poly = PSPARSE [10].

2.3 Very sparse leaf languages

We define VSLL (Very Sparse Leaf Languages) to be the set of all leaf languages whose leaf
pattern sets are poly-logarithmically sparse.

Definition 2.2 VSLL = BalancedLeafP(PLOGSPARSE).

Unger [14] showed the following:

Theorem 2.3 (Unger)

1. If NP ≤p
m VSLL then PH = Θp

2.

2. If Σp
2 ≤p

btt VSLL then PH = ∆p
2.

3. If Σp
2 ≤p

T VSLL then PH = Σp
4.

3 Fundamental Properties of VSLL

We show below a number of properties of the class VSLL.
First, the class VSLL is closed under ≤p

m-reductions; that is, if A ≤p
m B and B ∈ VSLL then

A ∈ VSLL.

Proposition 3.1 VSLL is closed under ≤p
m-reductions.

Proof Let A ≤p
m B and B ∈ VSLL. Let f be a polynomial-time computable function that

maps A to B. Let B ∈ VSLL via a machine M and a polylog sparse S ⊆ Γ∗. Let a and b be two
symbols not in Γ and let Υ = Γ ∪ {a, n}. Let p be a polynomial such that the computation tree
of M on each input x has height p(|x|). Let q be a polynomial such that for all x |f(x)| ≤ q(|x|).
Define N to be a Turing machine that on input x behaves as follows:

• N nondeterministically chooses a bit b.

• If b = 0 then N executes the following:

– N nondeterministically selects w ∈ Σp(q(n)).

– If w ∈ 0∗ then N outputs a.

– If w 6∈ 0∗ then N outputs b.

• If b = 1 then N executes the following:

– N computes f(x) and sets y to f(x).

– N sets k to p(|y|) and l to p(q(|x|)) − k.

– N nondeterministically selects u ∈ Σl.

– If u 6∈ 0∗, then N nondeterministically selects v ∈ Σk and outputs a.

3

– If u ∈ 0∗, then N nondeterministically simulates M on y and outputs the symbol that
M outputs.

It is easy to see that the machine N can be made to run in polynomial time. For every x, N on
input x uses exactly p(q(|x|) + 1 nondeterministic steps along each computation path. So, N is a
balanced-tree nondeterministic Turing machine character transducer. For each x, we have

leafstringN (x) = ab(2p(q(|x|))−1)leafstringM (f(x))a(2p(q(|x|))−2p(|f(x)|)).

Define T to be the set of all words of the form

ab(2p(m)−1)wa(2p(m)−|w|)

such that m ∈ N and w ∈ S≤2p(m)
. Since a, b 6∈ Γ and S ⊆ Γ∗, w does not contain a or b. So, N

and T witness that A ∈ BalancedLeafP(T).
It remains to show that T ∈ PLOGSPARSE. For each n ∈ N , if z is a member of T ≤n then

|z| = 2r for some r ∈ N and z is of the form abiwaj such that 1 + i = 2r−1 and w ∈ S≤n.
So, for each w ∈ S≤n there are at most log(n) words in T≤n that contain w as a substring. So,
censusT (n) ≤ log(n)censusS(n). Thus, T ∈ PLOGSPARSE. This proves the proposition.

Next, we present a property that is explicitly shown by Unger [14].

Proposition 3.2 (Unger) L ∈ VSLL if and only if there exist a sparse set S and a balanced-tree

NP character transducer M such that for all x,

x ∈ L ⇐⇒ (∃y ∈ S=|x|)[leafstringM (x) = leafstringM (y)].

Proof Suppose L ∈ VSLL and this is witnessed by a balanced-tree NP character transducer
M and T ∈ PLOGSPARSE. Let p the polynomial such that p(n) is the height of the computation
tree of M on any input of length n. Let c, d > 0 be constants such that censusT (n) ≤ (log(n))d.

Define S = {x | x ∈ L ∧ (∀y ∈ Σ|x|, y < x)[leafstringM (x) 6= leafstringM (y)]}. Let n be fixed.
Let x1, · · · , xm be the enumeration of the words in S=n in the lexicographic increasing order. Then
leafstringM (x1), . . . , leafstringM (xm) are pairwise distinct elements in T =2p(n)

. By our supposition
about c and d, m ≤ c(log(2p(n)))d = c(p(n))d. This implies that S is a sparse set. Also, for each
z ∈ Σn, the following properties hold:

• If z ∈ Sn, then for some i, 1 ≤ i ≤ m, leafstringM (z) = leafstringM (yi) (otherwise, z would
have been chosen to be in Sn).

• If z 6∈ Sn, then for all i, 1 ≤ i ≤ m, leafstringM (z) 6= leafstringM (yi).

Thus, for all x,
x ∈ L ⇐⇒ (∃y ∈ S=|x|)[leafstringM (x) = leafstringM (y)]

as desired.
On the other hand, suppose there exist a sparse S and a balanced-tree NP character transducer

M such that for all x,

x ∈ L ⇐⇒ (∃y ∈ S=|x|)[leafstringM (x) = leafstringM (y)].

Let p be a polynomial such that for all x the computation tree of M on input x has height
p(|x|). Let q be a polynomial that bounds censusS . Define T = leafstringM (S). Then for all
x, x ∈ L ⇐⇒ leafstringM (x) ∈ T . So, L ∈ BalancedLeafP(T). For all n, censusT (n) ≤
censusS(log(n)) ≤ q(log(n)). So, T ∈ PLOGSPARSE. This implies that L ∈ VSLL.

A language A is ≤NP
ctt -reducible to a language B if there exists a polynomial time-bounded

nondeterministic Turing machine transducer N with the property that, on each input x,

4

• along each computation path of N on x, N produces a nonempty collection of words,
(y1, . . . , yk); and

• x ∈ A if and only if there exists a computation path π of N on x such that every word in the
collection produced along π is a member of B.

Theorem 3.3 If L ∈ VSLL then L ∈ coNP/poly with an “advice” function that is computable in

polynomial time using an oracle that is ≤NP
ctt -reducible to L.

Proof Suppose L ∈ VSLL. By Proposition 3.2, there exist a sparse set S and a balanced-tree
NP character transducer M such that for all x,

x ∈ L ⇐⇒ (∃y ∈ S=|x|)[leafstringM (x) = leafstringM (y)]

Here S = {x | x ∈ L ∧ (∀y ∈ Σ|x|, y < x)[leafstringM (x) 6= leafstringM (y)]}.
Suppose that for each n S=n is encoded as

en = #x1#x2# · · ·#xm#,

where {x1, · · · , xm} = S=n and x1 < · · · < xm. Define the prefix set of S, denoted by pref(S), as
follows

pref(S) = {0nw | (∃y)[wy = sn]}.

This set is ≤NP
ctt -reducible to L. This is because 0n#w ∈ pref(S) if and only if there exists some y

such that wy is of the form #x1# · · ·#xm# satisfying the following conditions:

• x1 < · · · < xm and |x1| = · · · = |xm| = n,

• for all i, 1 ≤ i ≤ m, xi ∈ L, and

• for all i and j, 1 ≤ i < j ≤ m, there exists some path π such that Mπ(xi) 6= Mπ(xj)

For each n, en can be computed using prefix search as follows:

• Set the initial value of the prefix E to #.

• Execute the following:

– If E ends with a #, test whether 0nE0 ∈ pref(S) and whether 0nE1 ∈ pref(S). Then,

∗ if the former holds then set E to E0;

∗ if only the latter holds then set E to E1;

∗ if neither hold then terminate the prefix search.

– If E is of the form u#v such that v ∈ Σ∗ and |v| = n, then set E to E#.

– If E is of the form u#v such that v ∈ Σ∗ and 1 ≤ |v| ≤ n−1, test whether 0nE0 ∈ pref(S)
and whether 0nE1 ∈ pref(S). Then,

∗ if the former holds then set E to E0;

∗ otherwise, set E to E1.

5

In the above algorithm, when E is extendible both by appending a 0 and by appending a 1 the
priority is given to appending a 0. So, sn is correctly computed in polynomial time using pref(S)
as the oracle.

Define

A = {〈u,#x1# · · ·#xm〉 | |u| = |x1| = · · · = |xm| ∧

(∃i, 1 ≤ i ≤ m)[leafstringM (u) = leafstringM (xi)]}.

Let p be a polynomial such that for each x the height of the computation tree of M on input x
is p(|x|). For every 〈u, v〉 such that |u| = |v|, leafstringM (u) = leafstringM (v) if and only if for all
computation paths π of length p(|u|) it holds that Mπ(u) = Mπ(v). This property certainly can be
tested coNP, and so, A ∈ coNP. Also, for all u, u ∈ L ⇐⇒ 〈u, e|u|〉 ∈ A. Thus, L ∈ coNP/poly.
This proves the proposition.

The corollary follows immediately from the above theorem.

Corollary 3.4 If NP ⊆ VSLL then NP ⊆ coNP/poly with an “advice” function computable in

∆p
2.

4 Lower Bounds of VSLL

Next we explore lower bounds of VSLL.

Proposition 4.1 SPARSE ⊆ VSLL.

Proof Let S be an arbitrary sparse set. Define M to be a nondeterministic Turing machine
that on input x behaves as follows: M nondeterministically selects π ∈ Σ|x|, and then outputs 1
if π = x and 0 otherwise. For each x, let rx denote the lexicographic order of x in Σ|x|. Then,
for every x, leafstringM (x) = 0rx−1102|x|−rx. Define K = {0rx−1102|x|−rx | x ∈ S}. Then K ∈
PLOGSPARSE. Thus, (M,K) witnesses that S ∈ VSLL.

Proposition 4.2 coNP ⊆ VSLL ⊆ coNP/poly.

Proof The inclusion VSLL ⊆ coNP/poly follows from Theorem 3.3. The inclusion coNP ⊆
VSLL is shownby by Unger [14].

It immediately follows from the above proposition that: if A is Turing-reducible to a language in
VSLL then A ∈ ∆p

2/poly. In the case where A is Σp
2-complete, the set A being Turing-reducible to a

language in VSLL implies that Σp
2 ⊆ ∆p

2/poly, Then, by invoking Yap’s Theorem [15] as presented
in [4], we have the collapse PH = (Sp

2)
NP, where Sp

2 is the symmetric-Σp
2 class [6, 13] and is known

to reside between NP ∪ coNP and ZPPNP [3].

Proposition 4.3 If Σp
2 ⊆ PVSLL then PH = (Sp

2)
NP.

The above result improves part 3 of Theorem 2.3.

Theorem 4.4 Suppose coNP/1 ⊆ VSLL. Then NP ⊆ VSLL and NP ⊆ P/poly.

6

Proof Suppose coNP/1 ⊆ VSLL. For each infinite bit sequence ~a = (a0, a1, a2, · · ·), define a
language Q[~a] as follows: For each x,

x ∈ Q[~a] ⇐⇒ (a|x| = 1 ∨ x 6∈ SAT).

Then, for every ~a, Q[~a] ∈ coNP/1, and thus, Q[~a] ∈ VSLL by our supposition.
Take ~a to be the characteristic function of a bi-immune set. Then, no recursive function can

compute infinitely many bits of ~a. This bi-immune requirement is met by choosing ~a be Kolmogorov
random infinite sequence [11]. Suppose Q[~a] ∈ VSLL is witnessed by a balanced-tree NP character
transducer M and K ∈ PLOGSPARSE. Let p be a polynomial such that p(n) is the height of the
computation tree of M . Let c, d > 0 be constants such that K is c(log n)d sparse. Define q(n) to
be the polynomial c(log(2p(n)))d = c(p(n))d.

For each n, let

W1(n) = { leafstringM (x) | |x| = n ∧ x ∈ SAT } and

W0(n) = { leafstringM (x) | |x| = n ∧ x 6∈ SAT }.

Note that, for all n,

1. if an = 0 then W1(n) ∩ W0(n) = ∅ and ‖ W0(n) ‖≤ q(n), and

2. if an = 1 then ‖ W0(n) ∪ W1(n) ‖≤ q(n).

Assume that there are infinitely many n for which

either W1(n) ∩ W0(n) 6= ∅ or ‖ W0(n) ∪ W1(n) ‖> q(n).

Let D be a deterministic Turing machine that, on input n,

• deterministically simulates M on all inputs of length n to check whether one of the above two
conditions holds, and then

• outputs 1 if the former condition holds (since, by (1) in the above, it must be the case that
an = 1), 0 if the latter condition holds (since, by (2) in the above, it must be the case that
an = 0), and “?” otherwise.

This machine D correctly computes an for infinitely many n. This contradicts the assumption that
~a is Kolmogorov random. So, for all but finitely many n,

• W1(n) ∩ W0(n) = ∅ and

• ‖ W0(n) ∪ W1(n) ‖≤ q(n).

By making changes for a finite number of input lengths, M can be made to satisfy these conditions
for all n. Define K ′ = ∪n≥0W1(n). Then, K ′ is polylog sparse and (M,K ′) witnesses that SAT ∈
VSLL.

To prove that the same assumption implies that NP is in P/poly, note that, for each n and
for each pair (u, v) of distinct words in W0(n) ∪ W1(n), there is a bit position j at which u and v
disagree. Such a position corresponds to a computation path of M on inputs of length n. Select such
a position for each distinct pair from W0(n)∪W1(n). For each u ∈ W0(n)∪W1(n), by examining the
output of M(u) for the selected paths, leafstringM (u) can be uniquely distinguished. The number
of such pairs is bounded by (q(n))2/2. Since each position corresponds to a computation path of
M , the list of all these positions and how the words W0(n)∪W1(n) can be distinguished using the
list can be described using a polynomially long string. This implies that SAT ∈ P/poly.

The following corollary follows from the above theorem by applying Theorem 2.3.

7

Corollary 4.5 If coNP/1 ⊆ VSLL then PH = Θp
2.

Note that, in the proof of the part that shows NP ⊆ P/poly in the above theorem, the fact that
the decision for Q given ~a is in coNP is never used. So, we can generalize the proof and show the
following:

Theorem 4.6 For every reasonable class C of recursive sets, C/1 ⊆ VSLL implies C ⊆ P/poly.

Corollary 4.7 If (NP ∩ coNP)/1 ⊆ VSLL then NP ∩ coNP ⊆ P/poly.

Corollary 4.8 If UP/1 ⊆ VSLL then UP ⊆ P/poly.

In the following, define log log(0) = log log(1) = 0.

Proposition 4.9 P/(log log +O(1)) ⊆ VSLL.

Proof Let L ∈ P/(log log +O(1)) via A ∈ P and a function f(n). We can assume that there

exists an integer k such that, for all n, |f(0n)| ≤ dlog log(n) + ke. Define µ(n) =
∑dlog log(n)+ke

i=0 2i.
Then, for each n µ(n) is the number of possibilities for the “advice” string at length n and
µ(n) ≤ 2log log(n)+k+2. Let p be an arbitrary polynomial such that 2p(n) ≥ µ(n). Let M be a
nondeterministic Turing machine that on input x behaves as follows:

1. M nondeterministically guesses y ∈ Σp(|x|) and computes its lexicographic order j of y in
Σp(|x|).

2. M outputs 0 if j > µ(n).

3. M computes the word w that has the lexicographic order j in Σ∗.

4. M outputs 1 if 〈x,w〉 ∈ A and 0 otherwise.

Clearly, M can be made to run in polynomial time. For each x, leafstringM (x) has length 2p(|x|)

and satisfies the following:

• for every j, 1 ≤ j ≤ µ(|x|), the j-th bit of leafstringM (x) is 1 if (x is in L in the case where
the j-th word is the “advice” string) and 0 otherwise, and

• for every j, µ(|x|) + 1 ≤ j ≤ 2p(|x|), the j-th bit of leafstringM (x) is 0.

For each n, let jn be the lexicographic order of the “advice” string for length n. Let Kn be the
set of all words w having length 2p(n) such that the jn-th bit of w is 1 and such that for every j,
µ(n) + 1 ≤ j ≤ 2p(n), the j-th bit of w is 0. Define K = ∪n≥0Kn.

We claim that the membership of L in VSLL is witnessed by M and K. For all x, x ∈ L
if and only if leafstringM (x) ∈ K|x|. To show that K ∈ PLOGSPARSE, note that, for each n,

µ(n) ≤ 2log log(n)+k+2, ‖ Kn ‖≤ 2µ(n), and each word in Kn has length 2p(n). Let N = 2p(n).
Then, we have n ≤ p(n) = log(N), so µ(n) ≤ 2log log log(N)+k+2 = 2k+2(log log(N)), and thus,

2µ(n) ≤ 22k+2(log log(N)) = (log N)2
k+2

, which implies that K ∈ PLOGSPARSE.

Theorem 4.10 For all functions h(n) = log log(n) + ω(1), P/h 6⊆ VSLL.

8

Proof Let h(n) be a polynomial-time computable function such that h(n) = log log(n)+ω(1).
Without loss of generality, we may assume that h(n) is monotonically nondecreasing and h(n) ≤
log(n) for all n.

For each infinite bit sequence ~a = (a0, a1, a2, · · ·), define Q[~a] as follows. Divide ~a into blocks of
consecutive bits having length h(0), h(1), h(2), More precisely, the first h(0) bits of ~a (that is,
a0, . . . , ah(0)−1) become the first block, the next h(1) bits (that is, ah(1), . . . , ah(0)+h(1)−1) become
the second block, the next h(2) bits (that is, ah(1)+h(2), . . . , ah(0)+h(1)+h(2)−1) become the third
block, and so on. For each n, let Bn be the n-th block. For each n, we define Q[~a]=n, the length-n

portion of Q[~a], as follows: Let Bn = (d1, . . . , dh(n)) and let D = 1 +
∑h(n)

i=1 di2
i−1. Then, Q[~a]=n is

the set of all x ∈ Σn whose D-th bit is a 1. For every ~a, Q[~a] ∈ P/h.
Assume, by way of contradiction, that P/h ⊆ VSLL. Take ~a to be a sequence with the following

property:

(*) For every exponential-time deterministic Turing machine transducer M , if for all but finitely
many n M on input 0n outputs a word of length h(n), then for infinitely many n, Bn is equal
to the output of M on input 0n.

A sequence ~a with this property can be constructed by simple diagonalization, but it suffices to
take ~a to be a Kolmogorov random sequence relative to h.

Suppose that Q[~a] ∈ VSLL is witnessed by a balanced-tree NP character transducer M and a
polylog sparse K. We then construct a deterministic algorithm that for all but finitely many n
computes an h(n)-bit pattern ρn such that Bn 6= ρn.

By our assumption, Q[~a] ∈ VSLL, so there exists a polynomial p such that for all n it holds
that

‖ leafstringM (Q[~a]=n) ‖≤ p(n).

Let n be sufficiently large. Let Bn = (d1, . . . , dh(n)) and let D = 1+
∑h(n)

i=1 di2
i−1. The range of the

integer D is 1 to ∆ = 2h(n). For each i, 1 ≤ i ≤ ∆, and for each b ∈ {0, 1}, let

Wb(i) = {leafstringM (x) | x ∈ Σn ∧ the i-th bit of x is b}.

Suppose that there exists an i, 1 ≤ i ≤ ∆, such that W0(i) ∩ W1(i) 6= ∅. Let i be such one.
There exist y, z ∈ Σn such that the i-th bit of y is 0, the i-th bit of z is 1, and leafstringM (y) =
leafstringM (z). This means that either both y and z are members of Q[~a]=n or both y and z are
nonmembers of Q[~a]=n. If D were i, then only z would be a member of Q[~a]=n. So, it must be the
case that D 6= i. Thus, if there exists an i, 1 ≤ i ≤ ∆, such that W0(i) ∩ W1(i) 6= ∅, then it holds
that Bn 6= βi, where βi is the word in Σh(n) whose rank is i; that is, ‖ {w ∈ Σh(n) | w ≤ βi} ‖= i.
So, we take the smallest such i and set ρn to βi.

We claim that there is always such an i. Assume, by way of contradiction, that for all i,
1 ≤ i ≤ ∆, W0(i) ∩ W1(i) = ∅. Divide Σn according the first ∆ bits. For each u ∈ Σ∆, let
w(u) = leafstringM (u0n−∆). By our assumption, for all u, u′ in Σ∆ u 6= u′ ⇒ w(u) 6= w(u′). So,
regardless of what the value of D is, for exactly half of u ∈ Σ∆, u0n−∆ ∈ Q[~a]=n. This implies that

‖ leafstringM (Q[~a]=n) ‖≥ 2∆−1.

Then, by our supposition about h(n), we have

‖ leafstringM (Q[~a]=n) ‖ ≥ 2∆−1

= 22h(n)−1

= 22log log(n)+ω(1)−1

= 2log(n)ω(1)−1.

9

The last quantity is super-polynomial, that is, a function that grows faster than any polynomial, in
particular, faster than p(n). This contradicts our supposition that ‖ leafstringM (Q[~a]=n)x) ‖≤ p(n).
Thus, the claim holds.

Define T to be a machine that, on input 0n, executes the above algorithm and outputs ρn. It
is not hard to see that M runs in time 2cn for some constant c. For all but finitely many n, M on
input 0n outputs a word having length h(n) not equal to Bn. This contradicts the property (*) of
~a. Hence, Q[~a] 6∈ VSLL. This proves the theorem.

5 Upper Bounds of VSLL

Next we prove upper bounds of VSLL.
Since coNP ⊆ VSLL and P/poly is closed under complementation, by the Karp–Lipton Theo-

rem [10] (see [3, 4]), we have the following:

Proposition 5.1 VSLL ⊆ P/poly then PH = Sp
2.

Also, we show that the upper bound coNP/poly ⊇ VSLL is a tight one.

Theorem 5.2 For any constant c, VSLL 6⊆ REC/nc, where REC is the class of all recursive sets.

Proof Let c > 0 be a fixed integer. Assume, by way of contradiction, that VSLL ⊆ REC/nc.
By Proposition 4.1, SPARSE ⊆ VSLL. We show that there is a sparse set not in REC/nc.

Let d = c + 2. Let ~a be a Kolmogorov random string. We construct a S from ~a as follows.
Fix an integer ν such that 2ννd ≤ 22ν . As in the proof of Theorem 4.10, we divide ~a into

blocks. This time the first block has length µd+1, the second block has length (µ +1)d+1, the third
block has length (µ + 2)d+1, and so. In other words, for each i ≥ 1, the i-th block consist of the
(µ + i − 1)d+1 bits of a positioned between

∑i−1
j=1(µ + j)d+1 and (

∑i
j=1(µ + j)d+1) − 1. Then, for

each i ≥ 1, divide the i-th block, which has length (µ + i − 1)d+1, into (µ + i − 1) words of length
(µ + i − 1)d.

The (m − ν + 1)-st block of ~a, which consists of md words of length m, defines S ∩ Σ2m as
follows. Let w1, . . . , wmd be the md words. Let b1, . . . , bmd be the rank of these words in Σm; that
is, for each i, 1 ≤ i ≤ md, bi =‖ {y ∈ Σm | y ≤ wi} ‖. Then, for each i, 1 ≤ i ≤ md, define zi to be
the word in Σ2m whose rank is b1 + · · ·+ bi. For all i, 1 ≤ i ≤ md, 1 ≤ bi ≤ 2m. Since 2mmd ≤ 22m,
z1, . . . , zmd are well defined and z1 < · · · < zmd . Also, the (m−ν +1)-st block of ~a can be recovered
from z1, · · · , zmd .

For all n, censusS(n) =
∑

i:1≤i≤n(i/2)d ≤ nd+1/2d, so S is sparse, and thus, S ∈ VSLL.
Since VSLL ⊆ REC/nc by our assumption, we have a halting Turing machine M and an advice

function h such that

• for all n, |h(0n)| ≤ nc, and

• for all x, x ∈ S if and only if M on input 〈x, h(0|x|)〉 accepts.

For each even n, let Hn = h(1)#h(2)# · · · #h(n). Let N be a machine that, on input w of the form
u1#u2# · · ·#uk such that k ≥ 2ν, k is even and u1, . . . , uk contain no #, simulate M on all inputs
of the form 〈x, u|x|〉 such that |x| is even and is greater than or equal to 2ν, and then recover the
blocks of ~a corresponding to those x’s accepted by M . Then, for all even n ≥ 2ν, N on input Hn

produces the prefix of ~a having length
∑n/2

i=ν id > nd/2d. Since d = c + 2, for all but finitely many
n, the length of the prefix thus produced is greater than or equal to nc+1.5.

10

On the other hand, the combination of machine N and the advice Hn can be encoded as an input
word to a universal Turing machine having length |Hn| + α, where α is a constant not depending
on n. For all but finitely many n, |Hn| ≤

∑
i:1≤i≤n nc < nc+1.

This implies that for all but finitely many n, the prefix of ~a having length at least nc+1.5 has
Kolmogorov complexity at most nc+1, which contradicts the assumption that ~a is Kolmogorov
random. Thus, S 6∈ REC/nc. Hence, VSLL 6⊆ REC/nc.

6 Logarithmic Space-bounded Character Transducers

We extend the concept of very sparse leaf languages by considering logarithmic space-bounded
nondeterministic computation in place of polynomial time-bounded nondeterministic computation.
Logarithmic space-bounded nondeterministic machines have polynomially many IDs. We often
shrink their computation trees by identifying nodes corresponding to the same ID to one, but for
defining leafstring, we will view the computation trees as binary trees without collapsing nodes.
Let Leaf log and BalancedLeaf log respectively denote the LeafP and BalancedLeafP thus defined.
Let VSLLlog be the VSLL defined in terms of BalancedLeaf log.

For a logarithmic space-bounded balanced-tree nondeterministic Turing machine character
transducer M , whether two inputs x and y produce the same leafstringM can be tested as follows:
Simulating M concurrently on the two inputs x and y choosing the same branch for both of them at
each nondeterministic step. If such simulation arrives at an accepting state with two distinct output
symbols for x and y, then leafstringM (x) 6= leafstringM (y). If every simulation arrives at an ac-
cepting state with an identical output character for x and y, then leafstringM (x) 6= leafstringM (y).
So, the equality can be tested in coNL. Since NL is closed under complement, this implies that the
test can be done in NL.

Theorem 6.1

1. NL ⊆ VSLLlog ⊆ NL/poly.

2. If NL/1 ⊆ VSLLlog then NL ⊆ L/poly.

3. For all constants c > 0, VSLLlog 6⊆ REC/nc.

4. VSLLlog ⊇ L/(log log(n) + O(1)).

5. VSLLlog 6⊇ L/(log log(n) + ω(1)).

7 Conclusion

We would like to find a natural problem in VSLL. Graph Isomorphism is an obvious candidate
because Graph Isomorphism is in coAM ⊆ coNP/poly [8] but not known to lie in coNP. However a
similar proof to Theorem 2.3 will show that NP∩VSLL is low for Θp

2. Since Graph Isomorphism is
in NP, Graph Isomorphism in VSLL implies Graph Isomorphism is low for Θp

2, which is not known
to hold.

Acknowledgments

The authors would like to thank Lane Hemaspaandra and Falk Unger for useful discussions.

11

References

[1] D. Barrington. Bounded-width polynomial-size branching programs recognize exactly those
languages in NC1. Journal of Computer and System Sciences, 38:150–164, 1989.

[2] D. Bovet, P. Crescenzi, and R. Silvestri. A uniform approach to define complexity classes.
Theoretical Computer Science, 104(2):263–283, 1992.

[3] J. Cai. Sp

2 ⊆ ZPPNP. In Proceedings of the 42nd IEEE Symposium on Foundations of Computer

Science, pages 620–629. IEEE Computer Society Press, Los Alamitos, CA, 2001.

[4] J. Cai, V. Chakaravarthy, L. Hemaspaandra, and M. Ogihara. Competing provers yield im-
proved Karp–Lipton collapse results. In Proceedings of the 20th Annual Symposium on Theoret-

ical Aspects of Computer Science, pages 535–546, Springer-Verlag Lecture Notes in Computer
Science 2607, 2003.

[5] J. Cai and M. Furst. PSPACE survives constant-width bottlenecks. International Journal on

Foundations of Computer Science, 2(1):67–76, 1991.

[6] R. Canetti. More on BPP and the polynomial-time hierarchy. Information Processing Letters

57(5):237–241, 1996.

[7] L. Goldschlager and I. Parberry. On the construction of parallel computers from various bases
of boolean functions. Theoretical Computer Science, 43:43–58, 1986.

[8] O. Goldreich, S. Micali and A. Wigderson. Proofs that yield nothing but their validity or
all languages in NP have zero-knowledge proof systems. Journal of the ACM, 38(3):690–728,
1991.

[9] J. Kadin. PNP[log n] and sparse Turing-complete sets for NP. SIAM Journal on Computing.
17(6):1263–1282, 1988. Erratum, 20(2):404, 1991.

[10] R. Karp and R. Lipton. Some connections between nonuniform and uniform complexity classes.
In Proceedings of the 12th Symposium on Theory of Computing, pages 302–309, ACM Press,
New York, NY, 1980.

[11] M. Li and P. Vitányi. An introduction to Kolmogorov complexity and its application. Springer-
Verlag, New York, NY, 1993.

[12] M. Ogiwara and O. Watanabe. On polynomial time bounded truth-table reducibility of NP
sets to sparse sets. SIAM Journal of Computing. 20(3):471–483, 1991.

[13] A. Russell and R. Sundaram. Symmetric alternation captures BPP. Computational Complexity

7(2):152–162, 1998.

[14] F. Unger. On small hard leaf languages. In Proceedings of the 30th International Symposium

on Mathematical Foundations of Computer Science, pages 781-792, Lecture Notes in Computer
Science 3618, Springer-Verlag, 2005.

[15] C.-K. Yap. Consequences of non-uniform conditions on uniform classes. Theoretical Computer

Science 26:287–300, 1983.

12

