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Abstract. We study the approximability of Mx ONES when the number of
variable occurrences is bounded by a constant. For corisengmnstraint lan-
guages (i.e., when the unary relations are included) we ajisemplete classifi-
cation when the number of occurrences is three or more andialgdassification
when the bound is two.

For the non-conservative case we prove that it is eitheratrar equivalent to
the corresponding conservative problem under polynotiigd-many-one reduc-
tions.
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1 Introduction

Many combinatorial optimisation problems can be formuads various variants of
constraint satisfaction problems (CSPs)AMONES is a boolean CSP where we are
not only interested in finding a solution but also the meastirthe solution. In this
paper we study a variant of Mk ONESwhen the number occurrences of each variable
is bounded by a constant.

We denote the set of all-tuples with elements fronj0, 1} by {0,1}". A subset
R C {0,1}" is arelation andn is thearity of R. A constraint languagés a finite set
of relations. A constraint language is said todmmservativef every unary relation is
included in the language. In the boolean case this meanshhatlations{(0)} and
{(1)} are in the language. The constraint satisfaction probleen the constraint lan-
guagel’, denoted GP(I"), is defined to be the decision problem with instafigeC),
whereV is a set of variables and' is a set of constraint§Ci, ..., C,}, in which
each constrainC; is a pair (R;, s;) with s; a list of variables of lengtm,, called
the constraint scope, an; an n;-ary relation over the sef0, 1}, belonging toI,
called the constraint relation. The question is whetheretlegists a solution t¢V, C')
or not. A solution to(V, C) is a functions : V' — {0,1} such that, for each con-
straint(R;, (v1,ve,...,vp,;)) € C, the image of the constraint scope is a member of
the constraint relation, i.e(s(v1), s(vs), ..., s(vn,)) € R;.

The optimisation problem W-Mkix ONES can be defined as follows:

Definition 1 (W-MAX ONES). W-MAX ONES over the constraint languagE is de-
fined to be the optimisation problem with
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Instance: Tuple(V, C,w), where(V, C) is an instance o€sp(I") andw : V — N is

a function.

Solution: An assignmenf : V — {0, 1} to the variables which satisfies ti@sp(I")

instance(V, C).

Measure: " w(v) - f(v)

veV
The functionw : V' — N is called aweight functionIn the corresponding unweighted
problem, denoted Mx ONES(I"), the weight function is restricted to map every vari-
able to 1. The approximability of (W-)kX ONES has been completely classified
by Khanna et al.[]20]. Several well-known optimisation geshs can be rephrased
as (W-)Max ONESs problems, in particularNDEPENDENT SET. We will study W-
Max ONEs(I") with a bounded number of variable occurrences, denoted by A%-
ONES(I")-k for an integerk. In this problem the instances are restricted to contain at
mostk occurrences of each variable. The corresponding boundrdrence variant of
CsH(I") will be denoted by GP(I")-k.

Schaeferl[26] classified the complexity o§& ") for every constraint language.
Depending onl”, Schaefer proved that<®(I") is either solvable in polynomial time
or is NP-complete. The conservative bounded occurrence varia@sefl") has been
studied by a number of authofs J12[14.1%,16]. One resuliaifresearch is that the dif-
ficult case to classify is when the number of variable ocawres are restricted to two,
in all other cases the bounded occurrence problem is nordhsie the unrestricted
problem. Kratochvil et al.[I21] have studigdSAT-I, i.e., satisfiability where every
clause have length and there are at moébccurrences of each variable.SAT- is a
non-conservativeonstraint satisfaction problem. The complexity clasaffan seems
to be significantly harder for such problems compared to timservative ones. In par-
ticular, Kratochvil et al[[2l1] proves that there is a fupctif such thak-SAT-[ is trivial
if I < f(k) (every instance has a solution) aNé-complete ifl > f(k) + 1. Some
bounds off is given in [21], but the exact behaviour ffis unknown.

MAax ONES(I")-k can represent many well-known problems. Eor 3, we have
for example, thatiDEPENDENTSET in graphs of maximum degréds precisely Max
ONES({{(0,0), (1,0),(0,1)}})-k. However, the more interesting case is pertiaps2
due to its connection to matching problems. (Seé [24] fomitedhs and more infor-
mation about the matching problems mentioned below.) @rglinveighted maximum
matching in graphs is, for example, straightforward to folae and we get certain gen-
eralisations “for free” (because they can be rephraseddisary matching problems),
such asf-factors and capacitatédmatchings. The general factor problem can also be
rephrased as a Mk ONES(+)-2 problem. A dichotomy theorem for the existence prob-
lem of general factors has been proved by Cornuélbls [Fhesesearch has also been
done on the optimisation probleir [8].

In this paper, we start the classification of bounded ocogagdviax ONES. Our
first result is a complete classification of WAW ONES(I")-k whenk > 3 and{(0)}
and{(1)} are included in". We show that, depending dn, this problem is either in
PO, APX-complete opoly-APX-complete. Our second result is a partial classification
of W-MAx ONES(I")-2. We also give hardness results for the non-conservative cas

The outline of the paper is as follows: in Sectidn 2 we define matation and
present the tools we use. Sectidn 3 Bhd 4 contains our résuttsree or more occur-



rences and two occurrences, respectively. SeElion 5 cantair results for the general
case, i.e., when the constraint language is not necessarikervative. Sectidd 6 con-
tains some concluding remarks. Due to lack of space mostegpthofs can be found
in the appendix.

2 Preliminaries

For an integer. we will use[n] to denote the s€ftl, 2, ..., n}. The Hamming distance
between two vectors andy will be denoted byl (xz, y). For a tuple or vectog the
n:th component will be denoted hw{n].

Unless explicitly stated otherwise we assume that the cainstanguages we are
working with areconservativei.e., every unary relation is a member of the constraint
language (in the boolean domain, which we are working wiis means thaf(0)}
and{(1)} are in the constraint language).

We define the following relations

— NAND™ = {(x1,...,&m) | 1+ ... + Tty < M},
- EQm ={(x1,...,Zm) |T1 =22 =... = T },
- IMPL = {(070)5 (071)’ (1,1)},00 = {(0)},01 = {(1)}

and the functiomn(xl, To, ... ,CCn+1) = \/?:11(:61 Noo U ANZi 1 NZipr NN CCn+1).
For a relationR of arity r, we will sometimes use the notatidt(z1, . . ., z,) with the
meaningxy,...,z,) € R,i.e.,R(z1,...,2,) < (21,...,z,) € R.If risthe arity
of Randl = {iy1,...,i,} C[r], 41 < iz < ... < iy, then we denote the projection of
Rtol byR|I' i.e.,R|I = {($i1,$i2, ey Izn) | (xl, T2, ..., IT) S R}

Representations (sometimes called implementations)leae central in the study
of constraint satisfaction problems. We need a notion afasgntability which is a bit
stronger that the usual one, because we have to be careffuh@ait many occurrences
we use of each variable.

Definition 2 (k-representable).An n-ary relation R is k-representablby a set of re-

lations F' if there is a collection of constraint€’,. .., C; with constraint relations
from F' over variablesz = (z1,z2,...,z,) (called primary variablesand y =
(y1,Y2,--.,ym) (calledauxiliary variableysuch that,

— the primary variables occur at most once in the constraints,

— the auxiliary variables occur at mogttimes in the constraints, and

— for every tuplez, z € R if and only if there is an assignmentgosuch thate = z
satisfies all of the constraints;, Cs, ..., C).

The intuition behind the definition is that if every relationl; is k-representable by
relations inl; then W-Max ONES(I)-k is no easier than W-Mx ONES(I7)-k. This
is formalised in Lemmfl6.



2.1 Approximability, Reductions, and Completeness

A combinatorial optimisation probleiis defined over a set afistancegadmissible in-
put data)Z; each instancé € 7 has a finite sesoL(/) of feasible solutiongassociated
with it. The objective is, given an instanéeto find a feasible solution afptimumvalue
with respect to some measure functiendefined for pair§z, y) such thatz € Z and
y € soL(x). Every such pair is mapped to a non-negative integembyhe optimal
value is the largest one fonaximisatiornproblems and the smallest one fomimisa-
tion problems. A combinatorial optimisation problem is said ®@dnNPO problem
if its instances and solutions can be recognised in polyabtime, the solutions are
polynomially-bounded in the input size, and the objectivedtion can be computed in
polynomial time (see, e.gLI[1]).

Definition 3 (r-approximate). A solutions € soL(/) to an instancel of an NPO
problemIT is r-approximatef max { ’géf(f)), SZ;(?) } < r, whereopT([) is the optimal
value for a solution td.

An approximation algorithm for aNPO problemII hasperformance ratioR(n) if,
given any instancé of IT with |I| = n, it outputs ariR (n)-approximate solution.

Definition 4 (PO, APX, poly-APX). PO is the class ofNPO problems that can be
solved (to optimality) in polynomial time. AYPO problem 7 is in the classAPX if
there is a polynomial-time approximation algorithm farwhose performance ratio is
bounded by a constant. Similarli is in the clasgoly-APX if there is a polynomial-
time approximation algorithm fofl whose performance ratio is bounded by a polyno-
mial in the size of the input.

Completeness iAPX and poly-APX is defined usingd P-reductionsl([l1]. How-
ever, we do not need P-reductions in this paper, the simplér andS-reductions are
sufficient for us.

Definition 5 (L-reduction). AnNPO problem/7; is said to bel.-reducibleto anNPO
problemI1,, written IT; <j II,, if two polynomial-time computable functioAsand
G and positive constant$ and~ exist such that

— given any instancé of II;, algorithm F' produces an instanc€ = F(I) of I1s,
such thatorT(I’) < 8- oPT(I).

— givenI’ = F(I), and any solutiors’ to I’, algorithm G produces a solutior to
I such thatjmy(I,s) — oPT(I)| < 7 - |ma(I’,s") — OPT(I")|, wherem, is the
measure fodl; andms is the measure fofl,.

It is well-known (see, e.g., Lemma 8.2 il [1]) that, if; is L-reducible toIl, and
II; € APX then there is anl P-reduction from/7; to 1.

S-reductionsare similar toL-reductions but instead of the conditiap1(I’) <
B - opPT(I) we require thabpT(I’) = oPT(I) and instead ofm; (I, s) — oPT(I)| <
v - Imao(I’, ") — OPT(I")| we require thatn;(I,s) = mao(I’,s'). If there is anS-
reduction fromII; to I1, (written asll; <g II;) then there is am P-reduction from
11, to II,. An NPO problem T is APX-hard (poly-APX-hard) if every problem in



APX (poly-APX) is AP-reducible to it. If, in addition/7 is in APX (poly-APX), then
11 is calledAPX-completgpoly-APX-completg.

We will do several reductions frorNDEPENDENTSET (hereafter denoted by MIS)
which is poly-APX-complete[[1B]. We will also use the fact that for akiy> 3, MIS
restricted to graphs of degree at mb$s APX-completel[2R]. We will denote the latter
problem by MIS%.

The following lemma shows the importanceksfepresentations in our work.

Lemma 6. For constraint language$’ and I'; if every relation inl} can bek-repre-
sented by, thenW-MAXx ONES(11)-k <g W-MAX ONES(I%)-k.

Proof. Given an arbitrary instancé = (V, C,w) of W-MAXx ONES(I7)-k, we will
construct an instancE = (V’/,C’,w’) of W-MAX ONES(I%)-k, in polynomial time.
For eachc € C, add thek-representation of to C’ and also add all variables which
participate in the representationtt in such a way that the auxiliary variables used in
the representation are distinct from all other variableBinLet w’(x) = w(x) for all

xz € Vandw(z) =0if = € V (i.e., all auxiliary variables will have weight zero).

Itis not hard to see that: (a) every variabldiccurs at most times (b)opPT(I’) =
opPT(I), and (c) given a solutior’ to I’ we can easily construct a solutiarto 7 (let
s(x) = §'(x) for everyz € V) such thatn(I,s) = m(I’,s’). Hence, there is aS-
reduction from W-Max ONES(I7)-k to W-MAX ONES(I%)-k. O

2.2 Co-clones and Polymorphisms

Given an integet, a functionf : {0,1}* — {0,1} can be extended to a func-

tion over tuples as follows: let;, s, ..., tx be k tuples withn elements each then
f(t1,ta,... tg) is defined to be the tupléf (¢1[1], t2[1],. .., tk[l]),..., f(ti[n],
ta[n], ..., tk[n])). Given an-ary relationR we say thatR is invariant (or, closed) un-

der f if t1,t2,...,tp, € R = f(t1,t2,...,t,) € R. Conversely, for a functiorf
and a relationR, f is apolymorphisnof R if R is invariant underf. For a constraint
languagel” we say thatl” is invariant underf if every relation inI" is invariant under
f. We analogously extend the notion of polymorphisms to cairgtlanguages, i.e., a
function f is a polymorphism of " if I" is invariant undelf. Those concepts has been
very useful in the study of the complexity of various conistraatisfaction problems
(see, e.g.[117]) and play an important role in this work, too

The set of polymorphisms for a constraint languageill be denoted byPol(I"),
and for a set of function€’ the set of all relations which are invariant undewill be
denoted bylnv(B). The setPol(I") areclonesin the sense of universal algebra. For
a cloneC, Inv(C) is called a relational clone or a co-clone. Over the booleanain
Emil Post has classified all such co-clones and their ingtustructure in[[23].

For a set of relationg’ we define a closure operat(f) as the set of relations that
can be expressed with relations frdrrusing existential quantification and conjunction
(note that we are only allowed to use the relationE'jfnence equality is not necessarily
allowed). Intuitively(I"U{ EQ?}) is the set of relations which can be simulated/bin
CsP(I'). An alternative classification of this set{f U { EQ?}) = Inv(Pol(I")) [25].
These few paragraphs barely scratch the surface of theh@dry of clones and their



relation to the computational complexity of various coatt satisfaction problems, for
a more thorough introduction se€![l,.6,10].

We say that a set of relatiorf$ is aplain basisfor a constraint languagg if every
relation inI" can be expressed with relations frdsrusing relations fronB U {=} and
conjunction. Note that this differs from the definition oktblosure operatof) as we
do not allow existential quantification. Séel[11] for morfoimation on plain bases.

We can not only study the co-clones when we try to classifgxxMONES(I)-k
because the complexity of the problem do not only depend edhclone(I"). How-
ever, the co-clone lattice with the corresponding plainebagnd invariant functions
will help us in our classification effort. Furthermore, as mestly study the conserva-
tive constraint languages we can concentrate on the c@shhich contairzy andce; .
Figurell contains the conservative part of Post’s lattic Bable[1 contains the plain
bases for the relational clones which will be interestingi$aco-clones at and below
1V have been omitted as Ak ONESis in PO there).

Co-clondBase for clone  |Plain Basis

1E, and {Nx | ke N}U
{(mz1V.. . VozkVy) |
k e N}

1510 zA(yVz) {e1,IMPL}U
{Ny | k e N}

IS |lxA(yVz),hn |{c1,IMPL, N, }*

1512 A (yV—z) {EQ? c1} U
{Ni | k e N}

@ 1575 A YV -2),he {EQ? c1, Ny}t

IL> TRY Dz {T1®... 0z =c]
kEeN,ce{0,1}}

1D, ryVuyzVaz {co, c1, 2V y,
IMPL, NAND?*}

1D, zyVy(—z)Vy(=z)|{co, c1,z®y =0,
rdy=1}

1M, and, or {co,c1,IMPL}

IR> or,z A (y®z®1)|{EQ? co,c1}

Table 1: Plain bases for some rela-

tional clones. The list of plain bases are
Fig. 1: Lattice of idempotent co-clonegrom [11].}

3 Three or More Occurrences

In this section we will prove a classification theorem for WaMONES(I")-k where
k > 3. The main result of this section is the following theorem.

Theorem 7. LetI" be a conservative constraint language ang- 3,

In 1] the listed plain basis fof ST} is { EQ?, c1} U { Ny |k < m} however, if we haveV,,
thenN,,—1 can be represented without auxiliary variable\y_1 (z1, z2, ..., Tm-1) <
N (x1, 21,72, 73, . ..,Tm—1), hence the set of relations listed in Table 1 is a plain basis f
1575. The same modification has been dond $3;.



1. If I' C IV, thenW-MAX ONES(I)-k is in PO.

2. Else ifIS%, C (I') C 1512 then(W-)MAX ONES(I')-k is APX-complete ifEQ?
is notk-representable by” andW-MAX ONES(I")-k is poly-APX-complete oth-
erwise.

3. OtherwiseWW-Max ONES(I") andW-MAX ONES(I")-k are equivalent undes§-
reductions.

The first part of Theored 7 follows from Khanna et al.'s res@itr MAX ONES [20].
Intuitively the second part follows from the fact that WAM ONES({ N AN D?}) is
equivalent to MIS, hence if we have access to the equalitiosl then the problem
getspoly-APX-complete. On the other hand, if we do not have the equallgtios
then we essentially get MI1&; for somek, which is APX-complete. The third part
follows from Lemma§&id19.10, afidlil.

Dalmau and Ford proved the following lemmalini[12].

Lemma 8. If there is a relationR in the constraint languagé’ such thatR ¢ IF,,
then eitherx Vv y or x # y can be3-represented by’. By duality, if there is a relation
R € I' such thatR ¢ IV5, then eitherN AN D? or = # y can be3-represented.

We can use the lemma above to gei-eepresentation of eithefQ? or IM PL.
We will later, in Lemmdl, show that those relations makespttoblem as hard as the
unbounded occurrence variant.

Lemma 9. If there is a relationR in the constraint languagé€ such thatk ¢ I FE» and
R ¢ IVs, then eitherEQ? or IM PL can be3-represented by'.

Proof. From LemmdB we know that either+ y or bothz vV y and N AN D? are3-
representable. Inthe first case: = # 2 A z # y is a3-representation oF Q2. In the
second cas@z : NAND?(x,z) A (2 V y) is a 3-representation dM PL(x,y). O

To get the desired hardness results forf8g, chain we need to prove that we can
represent(Q, or IM PL in that case too. To this end we have the following lemma.

Lemma 10. If there is a relationR in the constraint languagé’ such thatk € IF,
andR ¢ 1515, then eitherEQ? or IM PL can be3-represented by'.

Proof. Letr be the arity ofR then, ask ¢ 152, there exists a set of minimal cardinality
I C [r], such thatR|l ¢ IS),.

Asg(x,y) = x Ay is a base of the clone which correspond$ i3, R\I € [FE,im-
plies thatg is a polymorphism o’rR\I. Furthermore, ag(x,y,2) = = A (y V —z)
is a base of the clone which corresponds/ ., R|1 ¢ 1512 implies thatf is
not a polymorphism ofR\I. Hence, there exists tuples, ta,t3 € R\I such that
f(ty,ta,t3) =t € R|,.

There exists a coordinate, 1 < Iy < r such that(tq [l1], t2[l1], ts[l1]) = (1,0, 1),
because otherwisg(ty, t2, t3) = t1. Similarly there exists a coordinatg 1 < Iy <r
such thai(tq [I2], t2[l2], t3[l2]) is equal to one of0, 1, 0), (0,1,1) or (1,0, 0). Because
otherwisef (t1,tz2,t3) = t2. From now on, the cas@1 [l2], t2[l2], t3[l2]) = (1,0,0)
will be denoted by (*). Finally, there also exists a coordélg, 1 < I3 < r such that



(t1[l3], t2[ls], ts[ls]) is equal to one of0, 0, 1), (0,1, 1), (1,0,0), (1,0,1) or (1,1, 0),
because otherwisg(t1,t2,t3) = ts. The casdty [Is], t2[ls], ts[l ]) (1,0,0) will
be denoted by (**).

As R\I is invariant undery we can place additional restrictions nls andls. In
particular, there has to be coordinatgd> andis such that we have at least one of the
cases (*) or (**), because otherwigét,, t2,t3) = g(t1,t=2), which is inR\I and we
have assumed thgt(t,,t2,t3) ¢ R\I. There is no problem in lettingp = I3 since
we will then get both (*) and (**). This will be assumed fromwamn. We can also
assume, without loss of generality, that= 1 andlg = [3 = 2. We can then construct
a 3-representation aRs(z,y) <= Jz3...z : R|,(2,y,23,...,2) A Ciy(23) A
ck,(z4) A oo A g, (2r) Wherek; = f(t1]d], tz[] ts[i]) for 3 < i < r. We will now
prove thatR¢ is equal to one of the relations we are looking for.

If (0,1) € R4, then we would have € R\I, which is a contradiction, s(0,1) ¢
R4. We will now show that(0,0) € Rg4. Assume thaf0,0) ¢ R,;. Then,R* =

R‘I\{lg} is not in 1,512 which contradicts the minimality of. To see this consider the
following table of possible tuples iR|I,
1=UL2=1ly=1; 4

] 1 1 & [3] & 4]

ta| 0 0 t2[3] ta[4]

ts| 1 0 t3[3] t3[4]

al 0 1 f(t1[3], t2[3],¢3[3]) f(t1[4], t=2[4] t3[4])

b| 0 0 f(t1[3], t2[3],¢3[3]) f(t1[4],t=2[4] t3[4])

We know that , t2, t3 € R|, and we also knowthat ¢ R| . Furthermore,ib ¢ R/,
thenf(tl,tz,tg)\l\{l2} ¢ R* which means thaf is not minimal. The conclusion is

that we must have¢0,0) € R,. In the same way it is possible to prove that unless
(1,1) € Ry, I is not minimal.

To conclude, we have proved th@, 0), (1,1) € R; and(0,1) ¢ R4, hence we
either haveR, = FQ? or R, = {(0,0),(1,0), (1,1)}. O

It is now time to use our implementations 6iQ2 or IM PL to prove hardness
results. To this end we have the following lemma.

Lemma 11. If EQ? or IM PL is 3-representable by the constraint languafethen
W-Max ONES(I") <g W-MAX ONES(I")-3.

The proof can be found in the appendix. As eit#&p? or IM PL is available we can
construct a cycle of constraints among variables and sugficla force every variable
in the cycle to obtain the same value. Furthermore, eachligroccurs only twice in
such a cycle so we have one occurrence left for each variable.

4 Two Occurrences

In this section, we study W-kXx ONES(I")-2. We are not able to present a complete
classification but a partial classification is achieved. Wenpletely classify the co-



clonesl L, andiD,. ForI" such thatl” ¢ 1L, 1D, we show that if there is a rela-
tion which is not aA-matroid relation (those are defined below)/inthen W-Max
ONES(I)-2 is APX-hard if W-MAX ONES(I") is not tractable.

4.1 Definitions and Results

Most of the research done ors€1")-k (e.g., in [T4.112.15]) has used the theory/bf
matroids. Those objects are a generalisation of matroidias been widely studied,
cf. [A[3]. It turns out that the complexity of W-M< ONES(I")-2 depend to a large de-
gree onifthere is a relation which is notamatroid relation in the constraint language.
A-matroid relations are defined as follows.

Definition 12 (A-matroid relation [L2]). Let R C {0,1}" be a relation. Ifx, x’ €
{0,1}", thenz’ is astep fromz to y if dy (z, ') = 1 anddy (z, ") + dy(z’,y) =
dy(x,y). Ris a A-matroid relationif it satisfies the following two-step axioviz, y €
R andVz’ a step frome to y, eitherz’ € R or 3z’ € R which is a step fromx’ to y.

As an example of aA-matroid relation consideN AN D3, It is not hard to see that
N AN D? satisfies the two-step axiom for every pair of tuples as tisepaly one tuple
which is absent from the relatio®Q? is the simplest example of a relation which
is not aA-matroid relation. The main theorem of this section is thoWeing partial
classification result for W-Mx ONES(I')-2. We say that a constraint languafjés
A-matroidif every relation inl” is a A-matroid relation.

Theorem 13. LetI" be a conservative constraint language,

1. If " C IVyor I' C IDy thenW-MAX ONES(I)-2 is in PO.
2. ElseifI’ C IL, and,
— I' is notA-matroid thenW-MAX ONES(I)-2 is APX-complete.
— otherwise W-MAx ONES(I")-2 is in PO.
3. Elseifl’ C ID, and,
— I'is notA-matroid then W-MAX ONES(I)-2 is poly-APX-complete.
— otherwise W-MAx ONES(I")-2is in PO.
4. Elseif’ C IE> and I is not A-matroid thenW-MAax ONES(I")-2 is APX-hard.
5. Else ifI" is not A-matroid then it iSNP-hard to find feasible solutions #/-MAXx
ONES(I)-2.

Part 1 of the theorem follows from the known results for Wk ONESs []. Part 4
follows from results for GP(I")-2 [L4, Theorem 4]. The other parts follows from the
results in Sectiorfs4.3 aid¥.4 below.

4.2 Tractability Results for W-MAx ONES(I")-2

Edmonds and Johnson]13] has shown that the following imtégear programming
problem is solvable in polynomial time: maximiser subject to the constraints <
xz < 1,b; < Az < by andx is an integer vector. Herd is a matrix with integer
entries such that the sum of the absolute values of each ocdluat moset. b4, b, and
w are arbitrary real vectors of appropriate dimensions. Wedenote this problem by
ILP-2. With the polynomial solvability of ILP-2 it is posdibto prove the tractability
of a number of W-M\x ONES(I")-2 problems.



4.3 Classification ofl D, and I L,

WhenPol(I") = Pol(IDs) or Pol(I") = Pol(ILs) we prove a complete classifica-
tion result. We start with the hardness resultsKbx,, which consists of the following
lemma.

Lemma 14. Let I" be a constraint language such thBbl(I") = Pol(ID-). If there
is a relation R € I' which is not aA-matroid relation, thenW-Max ONES(I7)-2 is
poly-APX-complete.

The main observations used to prove the lemma is that $iniid”) = Pol(1Ds) we
can 2-represent every two-literal clause. This has beeveprby Feder in[[14]. Fur-
thermore, if we have access to every two-literal clause #salteave a nonA-matroid
relation then it is possible to make variables participatidiee clauses, which was also
proved in [14]. The hardness result then follows with a reéidndrom MIS.

We will use some additional notation in the following prooFor a tuplex =
(x1,22,...,2;) and a set of coordinate$ C [k], ¢ & A is defined to be the tuple
(y1,Yy2,-..,yk) Wherey, = z; if i & A andy; = 1 — z; otherwise. We extend this
notation to relations: iR C {0,1}" andA C [n]thenR® A= {t® A |t € R}.

We will now define a constraint language denoteddhy\ e will later prove that
W-MAx ONES(Q)-2is in PO. Q is the smallest constraint language such that:

- 0, co, c1, EQ? and{(0,1),(1,0)} are inQ.

— Every relation definable &g | dy;(0,t) < 1}isin Q.

— If R, R’ € Q then their cartesian produftt,t’) | t € R,t' € R’} is also inQ.

— If R € Q andn is the arity of R thenR & A € Q for everyA C [n].

—If R € Q,nisthe arity of R and f : [n] — [n] is a permutation orjn] then
{(tj'(l),tf(2)7 e ,tf(n)) |te R}isinQ.

The relation betwee@ and theA-matroid relations i D- is given by the follow-
ing lemma.

Lemma 15. If R € I D, is a A-matroid relation, thenR € O.
As for the tractability part we have the following lemma.

Lemma 16. Let I" be a constraint language such thBtC D, if all relations in I
are A-matroid relations theW-Max ONES(I")-2 is in PO.

The idea behind the proof is that WA ONES(Q)-2 can be seen as an ILP-2 problem
and is therefore solvable in polynomial time.

As for I L, the result is the same, naftrmatroids give rise té&\PX-complete prob-
lems and absence of such relations makes the problem tiacgdbo in this case the
tractability follows from a reduction to ILP-2.

4.4 IE5, 152 and IS0

The structure of theA-matroids do not seem to be as simplelifi,» and 1.5, as
they are inl D, andI L. There exists relations ihS12 which areA-matroid relations
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but for which we do not know of any polynomial time algorith@®ne such relation is
R(x,y,2,w) <= NAND3(y,z,w)ANAND?3(x,z,w)ANAN D?(x,y). However,
we get tractability results for some relations with the aitipon for ILP-2. In particular
if the constraintlanguage is a subse{8f AN D™ | m € N}U{IM PL} then W-Max
ONES(+)-2isin PO.

We manage to prove hardness results for every Aematroid relation contained in
those co-clones. The main part of our hardness results éandh-A-matroid relations
is the following lemma.

Lemma 17. Let R(.”L‘l,l'g,xg) < NANDQ(:vl,:vg) A\ NANDQ(,TQ,,TP,), then
W-MAX ONES({co, c1, R})-2 is APX-complete.

Note thatR is not aA-matroid relation. With LemmB_17 and a careful enumeration
of the types of nonA-matroid relations that exists ihF,, we can deduce the desired
result: if there is a norA-matroid relation in the constraint language, then WM
ONES(+)-2 is APX-hard. The proof builds upon the work in_IL4}18,2].

5 Non-conservative Constraint Languages

In this section we will take a look at the non-conservativeeca.e., we will look at
constraint languages which do not necessarily confaiandc;. A relation R is said
to bel-valid if it contains the all ones tuple, i.eR is 1-valid if (1,1,...,1) € R. A

constraint language is said to be 1-valid if every relatiothie language is 1-valid.

Theorem 18. For any constraint languagg which is not 1-valid, ifW-MAx ONES(I"U
{co, c1})-k is NP-hard for some integek then so isW-MaAx ONES(I")-k.

Note that for constraint languag&swhich are 1-valid W-M\x ONES(I") is trivial: the
all-ones solution is optimal. The idea in the proof is thatoaa simulate:; constraints
by giving the variable a large weight. Furthermore, if thare relations which are not
1-valid then we can represea constraints when we have accesstaonstraints. It
fairly easy to see why this fails to give us any inapproxinfighiesults: due to the large
weight used to simulate any feasible solution is a good approximate solution.

6 Conclusions

We have started the study of the approximability propemiebounded occurrence
MAX ONES. We have presented a complete classification for the wealdgtdaserva-
tive case when three or more variable occurrences are alldaathermore, a partial
classification of the two occurrence case has been preséntine latter case we have
proved that nonA-matroid relations give rise to problems which @&eX-hard if the
unbounded occurrence variant is not tractable. We havegalea complete classifica-
tions for thel L, andI D, co-clones.

There are still lots of open questions in this area. For exanmyhat happens with
the complexity if the weights are removed? Many constraitisgaction problems such
as Max ONEs and Max Cspdo not get any harder when weights are added. Such
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results are usually proved by scaling and replicating tdemand constraints a suitable
number of times. However, such techniques do not work in thended occurrence
setting and we do not know of any substitute which is equadiyagal.

Except for thel S12 and .51y chains the open questions in the two occurrence case
are certain constraint languagEssuch thatl” only containsA-matroid relations and
Pol(I") = Pol(BR). It would be very interesting to find out the complexity of WAM
ONES(-)-2 for some of the classes af-matroid relations which have been proved
to be tractable for 6p(-)-2 in [14[12[1€.15]. Instead of trying to classify the entire
1512 or IS5 chain one could start withS?, or 1.53,. The approximability of the non-
conservative case is also mostly open. In lightlof [21] thenpotational structure of
those problems seems to be quite complex.
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Appendix

Proofs for Results in SectiorfB

Proof (Of Lemm&dl1)etl = (V,C,w) be an instance of W-Mx ONES(I"). We will
start with the case wheh\/ PL is 3-representable.

If IM PL is 3-representable we can redut® an instancé’ = (V’,C’, w') of W-
MAx ONES(I)-2 as follows: for each variable; € V, let o; be the number of occur-
rences ofy; in I, we introduce the variables, ..., v in V'. We letw’ (v}) = w(v;)
andw'(v!) = 0 for j # 1. We also introduce the constraintd/ PL (v}, v¥+) for
k,1 <k <o, —1andIMPL(v{,v}) into C'. For everyi,1 < i < |V| those con-
straints makes the variable$, . . ., v{* have the same value in every feasible solution
of I'.

For every constraint = (R,s) € C the constraint scope = (vj,,...,v,,) IS
replaced by’ = (v)*,...,v/™) and(R, s') is added taC’. The numbers, ..., kn,
are chosen in such a way that every variabl& iroccur exactly three times iff. This
is possible since there ang variables inV’’ for everyv; € V.

It is clear that the procedure described above isSareduction from W-NAX
ONES(I") to W-MAX ONES(I)-3.

I can easily bes-reduced to an instandé of W-MAx ONES(I" U { EQ?})-3. And
as EQ? is 3-representable by’ we are done, as every constraint involviag)? can
be replaced by thé-representation offQ? and any auxiliary variables used in the
representation can be assigned the weight zero. a

We need a couple of lemmas before we can state the proof ofldksification
theorem (Theorerfll 7). The following lemma will be used in savplaces to prove
hardness results.

Lemma 19. Let I" be a constraint language such thawl(I") = Pol(157") for some
integerm anda € {0, 2}, thenN AN D™ can be2-represented by

Proof. AsPol(I") = Pol(1S7%,), I'is invariantundeh,,, and not invariantundet,,, 1.
Let » be the arity ofR and letX C [r] be a set of minimal cardinality such that
there exist tuplesy, s, ..., ¢y € R\X which satisfiesh,,—1(x1, z2,...,Tm) =
z & R|x' If there is a coordinaté € X such thate1[i] = z2[i] = ... = &[]
thenz[i] = x1[i] and asX is minimal we must have ® i € R|X. However, this
means thab,,,(z1,z2,...,Tm,2Di) = 2 & R\X which is a contradiction with the
assumption thakR is invariant under.,,,. We conclude that no coordinate is constant in
everyry,xa,...,Tm.

Now assume that there is a coordingte X such thatz[j] = 0, then forX to be
minimal we musthave®; € R| . Howeverji,, (@1, @2, ..., &m, 20)) = 2 € R| .,
a contradiction, hence there is i@ X such thatz[j] = 0.

We can assume thaX | > m because every relation of arity less thanwhich is
invariant unden,,, is also invariant undef,, _; [[Z, Proposition 3.6].

We do now know three things, no coordinatelins constantin every,, xs, . .., Tm,
z=(1,1,...,1)and|X| > m.Asz = (1,1,...,1) there is at most one zero for every
given coordinateé € X amongz1[i], z2[i], . . ., m[i], however as there is no constant
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coordinate andlX | > m we must have at least one zero in every x2, . . ., T,,. We
can in fact assume that there is exactly one zero entry, bedhitis two distinct coor-
dinatesi, j € X such thateq[i] = z1[j] = 0then asz = (1,1,...,1) no other tuple
can haverg[i] = 0 or zx[j] = 0. The conclusion is tha‘tz]X\{j} is not invariant under
h,.—1 either.

This implies thate; = (1,1,...,1) @ i. It is not hard to see that by using the

fact thatR is invariant undeand we can get any tuplg = (y1,y2, - - ., ym) Such that
Y1+ Y2 + ...+ ym < m by applyingandto thex;s an appropriate number of times.
Hence, we must havg|, = NAND™. O

Lemma 20. If Pol({R}) = Pol(157%) for somem > 2 and R cannot representQ?,
then({R,co,c1}) = ({NAND™, 1 }).

Proof. We will denoteN AN D™ by N. Letr be the arity ofR thenB = {N, EQ?, ¢ }
is a plain basis fof S73 (see Tabl&ll). A® is a plain basis folk there is an implemen-
tation of R on the following form,

R(z1,...,2,) <= N(xk%,xk%,...,:vkin) Ao e AN (T oo T )A
EQ*(xy,ap) A NEQ* (1, xp2)
c(xe) N ANer(e,)

for somen, ¢ andw such that? € [r], I € [r] ande; € [r].

Assume that the representation above is minimal in the gbasé contains a min-
imal number of constraints. Hence, the only equalities éhafpossible are of the form
EQ?*(x;,x;) for i # j. If there is such an equality there are a number of cases to
consider,

We cannot have equalities of type 1 because th&J¥ would be representable by.
Furthermore, equalities of type 2 and 3 can be replaced bgt@ints of the form
c1(z;) ANer(xy) andN(zg, ..., @) AN(xj,...,x;), respectively.

The conclusion is thak can be represented withoBt)? and hence it is represent-
able by{ N, ¢, } alone. We have thus proved thdtR, ¢, c1}) C ({N, ¢1}). The other
inclusion,({N, c1}) C ({R, co,c1}), is given by Lemm&Z9. O

As for the containment we have the following lemma.

Lemma 21. Let I" be a constraint language if' C 1573 for somem andI" cannot
representtQ? thenW-Max ONES(I")-k is in APX.

Proof. Lemmal2D tells us thatl”) = ({NAND™, ¢;}), hence an instancé of W-
MAX ONES(I")-k can be reduced to an instanfeof W-MAX ONES({NAN D™, ¢; })-
k' for some constarit’. To prove the lemma it is therefore sufficient show that Wsiv
ONES({NAND™ ¢1})-lis in APX for every fixed!.
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LetI = (V,C,w) be an arbitrary instance of W-Mk ONES({ NAND™, ¢;})-1,
for somel, and assume th&t = {z1, ..., z,}. By Schaefer's result[26] we can decide
in polynomial time whethef have a solution or not. Hence, we can safely assume that
I has a solution. If a variable occurs in a constant constraaytc, (z), thenz must
have the same value in every modellofThus, we can eliminate all such variables and
assume thak only contains constraints of the typeAN D™ (x1, ..., Zm).

We will give a polynomial-time algorithm that creates asiging assignmentto I
with measure at Iea§g1_—10PT(I). Hence we have gi—l—approximate algorithm proving
that W-Max ONES(I512)-1is in APX.

The algorithm is as follows: Repeatedly delete frémny variabler; having max-
imum weight and all variables that appear together witlin a clause of size two. In
s we assignl to z; and0 to all variables appearing together within a clause of size
two.

For simplicity, assume that the algorithm chooses vargablex,, . . . , z, before it
stops. If the algorithm at some stage choose a variabléth weight w(z), then, in
the worst case, it is forced to defremember that no variable occurs more théimes
in T) variables to0 and each of these variables have weigfit:). This implies that

(I4+1)-30 w(x) > X", wz;) and

1 — oPT(I
;wxz Z—lg (i) > l+(1)'

O

Lemma 22. Let I" be a constraint language such thasz, C (I") C IS5 thenW-
MAX ONES(I")-k is APX-hard fork > 3.

Proof. Note that MIS-3 is exactly the same as\M ONES({ N AN D?})-3. The lemma
then follows from the fact that MIS-3 iaPX-hard, Lemm&19, and Lemrih 6. O

We are now ready to give the proof of the classification thexi@r three or more
occurrences.

Proof (Of Theorerl]7, part 1)-ollows directly from Khanna et al’s results for Avt
ONESs[20]. a

Proof (Of Theorerll7, part 2)flhe APX-hardness follows from Lemnfal22. Contain-
ment inAPX follows from Lemmd2l. IfEQ? is k-representable by then the result
follows from Lemmdll and Khanna et al's results foanMONES [20]. O

Proof (Of Theorerll7, part 3Y.here are two possibilities, the first one is thiafZ 1 Fs
andI’ € I'V,, the second case is thAtC I E, andI” € 1Ss.

In the first case we can use theepresentation obQ? or IM PL from Lemmd®.
The result then follows from Lemn{alll. In the second case ehaltr follows from
LemmdID and Lemnialll. O
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Proofs for Results in Sectiof i

We will start with the case wheRol(I") = Pol(ID3). We need the following lemma
before we can give the proof of Lemina 14.

Lemma 23. LetI" be a constraint language such tHasl(I") = Pol(ID3) thenz Vv y,
IMPL and N AN D? are 2-representable by".

Proof. A part of the proof of Theorem 3 in_[14] is the following: I&t be a constraint
language such that there are relatidtis R-, R3 € F' with the following properties:

— R; is not closed undef(z,y) =z V y.
— Ry is not closed undej(z,y) =z A y.
— Rgis not closed undefi(x,y,z) = x + y + z (mod?2).

then F' can2-represent every two-literal clause. As we have assumedPibial’) =
Pol(ID-) there are relations id” which full fills the conditions above. The lemma
follows. O

Proof (Of Lemm&l4)We will do anS-reduction from thepoly-APX-complete prob-
lem MIS, which is precisely Mx ONES({NAN D?}). LetI = (V,C) be an arbitrary
instance of M\x ONES({ N AN D?}). We will construct an instancE = (V/,C’, w)
of W-MAx ONES(I")-2. From Lemm&23 we know that we cafrepresent every two-
literal clause. It is easy to modiffyso that each variable occur at most three times. For a
variablex € V which occurk times, introduce: fresh variableg, yo, . . . , yx and add
the constraint§ M PL(y1,y2), IMPL(y2,y3), ..., IMPL(yx, y1). Each occurrence
of z is then replaced with one of thg variables. In every solution each of thevari-
ables will obtain the same value, furthermore they occugdtimes each. Hence, if we
can create a construction which allows us to let a variabtéqigate in three clauses
we are done with our reduction.

In Theorem 4 in[[14] it is shown that given a relation which @& a A-matroid we
can make variables participate in three clauses if we hasesado all clauses.

If we assign appropriate weights to the variabled/ihit is clear thatopT(I) =
oPT(I") and each solution té’ corresponds to a solution dfwith the same measure.
Hence, we get a§-reduction. O

We will now give the proof of LemmBZ15 which describes the fite of theA-
matroid relations il Ds.

For a relationR € Q if R can be decomposed (possibly after a permutation of the
coordinates oR?) into a cartesian product of other relatiody, P, ..., P, € Q then
Py, P, ..., P, will be called thefactorsof R.

Proof (Of Lemmdd5)ln this proof we will denote the majority function by, i.e.,
m(z,y,2z) = (x Ay) V (y A z)V (z A z). Note that every relation i D, is invariant
underm. Let R be a relation which contradicts the lemma, iR.c 1D, R is a A-
matroid andR ¢ Q. Letn be the arity ofR. We can assume without loss of generality
that R consists of one factor, i.e., it is not possible to decomp®seto a cartesian
product of other relations. In particula®, do not contain any coordinate which has the
same value in all tuples.
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As every relation of arity less than or equal to two iglrwe can assume that> 3.

If for every pair of tuplest,t’ € R we havedy (t,t') < 2thenR € Q which is a
contradiction. To see this ¢t , t5, t3 be three distinct tuples iR (if there are less than
three tuples inR then eitherR is not aA-matroid relation or there is some coordinate
which is constant in all tuples). Then = t1 © A, t3 = t1 ¢ B for someA, B C [n]
suchthatAl, |B| < 2and|ANB| < 1.If JAUB| < 2 forall such sets theR is either of
arity 2 or there is a coordinate iR which is constant. Hence, assume that B| = 3,
which implies|A| = | B| = 2. Lett = m(t1, t2, t3). We will prove that for every tuple
t' € Rwe havedy(t/,t) < 1. To thisend, let’ = t & C, with |C| = 2 (|]C] < 1
impliesdg (t',t) < 1), be an arbitrary tuple ilR. If |[ANC| =0 (or,|BNC| = 0)
thendy (t2,t') > 3 (du(ts,t’) > 3). Hence, we must havel N C|,| BN C| > 1 but
this impliesdg (t,t') < 1 ordg(t,t’) > 3, but the latter is not possible. We conclude
that for every tuple’ € R we havedy (t,t') < 1, henceR € Q which contradicts our
assumption thak ¢ Q.

Hence, there exists tuplest’ € R such thatdy(¢,t’) > 3. If for every pair of
such tuples it is the case that every stepfrom ¢ to t’ we haves € R, then as no
coordinate is constant, we must hgoe0, ...,0) € Rand(1,1,...,1) € R. However,
if (0,0,...,0),(1,1,...,1) € R and every step from the former to the latter isfin
then every tuple with one coordinate setts in R, too. We can continue this way and
get every tuple with two coordinates set to one and then eupig withk coordinates
set tol for k € [n]. Hence, we must havB = {0,1}" € Q.

We can therefore assume that there exists an coordirsteh that the step =
t ¢l fromttot’ is notinR. Then, ask is a A-matroid relation, there exist another
coordinateK such thats @ {K} € R is a step froms to ¢’. Let X denote the set of
coordinatesg suchthat @i ¢ R butt® {K,i} € R, furthermore chooseandK such
that| X | is maximised and leX’ = X U {K}.

Our goal in the rest of the proof is to show thatif = [n] thenR € Q and
otherwise it is possible to decompagénto a cartesian product witR\X, in one factor
andR\ ]\ X7 in the other factor. As we have assumed tRaiannot be decomposed into

a cartesian product we get a contradiction and hence thitorela cannot exist.

Case 1:|X'| =2

We will start with the case whejiX’| = 2. Assume, without loss of generality, that
X' = {z,K}thent,t & {z, K} € Randt ® z ¢ R. We will now prove that we
cannot have any tuplasin R such thah;|X, =(t® a:)|X,. If we had such a tuple then
m(v,t,t® {z, K}) = w € R due to the fact thak € I D, andm is a polymorphism
of I D,. Furthermorew must have the same value#sn every coordinate except for
possiblyz and K, this follows from the fact that has the same value &sp {z, K'}
on every coordinate except farand K. Hence, the only coordinates for which we do
not know the value ofv arexz andK. Howeverw[K| = t[K] (due do the construction
of v and the fact thalk{ € X’). Hence we must gab[K] = t[K]. Forw[z] note that
v(z] = (t ® {z, K})[z], hencew[z] = (t ® z)[z]. We can finally concludev =t & «
which is a contradiction with the construction &f.

Similar arguments as the above will be used repeatedly snptfuof. However, the
presentation will not be as detailed as the one above.
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We split the remaining part of case 1 into two subcases, whetd ¢ R (subcase
la) andt @ K € R (subcase 1b).

Subcase lat & K ¢ R Assumethat® K ¢ R, then(t @ K
given a tuplev such thaw| ,, = (t® K)|,,
is not in R by the assumption we made.
Furthermore, for any tuple € R, v ® x is a step fromv to eithert ort @ {z, K},
butv & = ¢ R (because eithev|,, = t|,, which would implyv & = ¢ R, or
v|,, = (t & {z,K})|,, whichimplies(v & z)|,,, = (t & K)|, & R| ).
The only way to get fromy @ x to something which is iR is by flipping coordinate
K, hencev @ {z, K} € R. This is the end of the case whem K ¢ R, because what
we have proved above is th& can be decomposed into a cartesian product with the
coordinatesY’ in one factor andn| \ X’ in the other factor.

)|y, € R|, because
thenm(t, t & {z, K},v) = t® K, which

Subcase 1bt@® K € R We know thatt & z)| ., € R|,. We will now show that for
anyv € Rsuchthatp| ,, is eithert| ., or (t& {z, K'})| ,,, we havev & {z, K} € R.

To this end, lety be an arbitrary tuple iR satisfying one of the conditions above.
We will consider the two possible cases separately.

- If v|,, = t|,, thenv & zis a step fromw to t & {x, K} andv & = ¢ R.
Furthermore, the only way to get inf®is by flipping K hencev @ {z, K} € R.

- Ifv|,, = (t® {z,K})|,, thenv & K is a step fromw to t andv & K ¢ R.
Furthermore, the only way to get inf®is by flippingz hencev @ {z, K} € R.

Now, letv be an arbitrary tuple itk such that|,, = (t ® K)| ,, thenv @ K is
astepfromwtot. If v K € Rorv® z € Rthen we are done with this step, so
assume that & K, v®x ¢ R. However, ask is aA-matroid relation there has to exist
a coordinaté such that & {K, 1} € R. Then we get(v & {K,1})|,, = t|,, which
impliesv @& {z,l} € R by the argument above. However, this means tigtis not
maximal we could have chosen ! and X’ instead oft, K and X. We conclude that
v®d K € R.

Finally, letv be an arbitrary tuple i such thaw| ., =t , thenv ® K € R.To
see this note thati(t & K,v,v® {z,K}) =v® K.

We have now proved that can be decomposed into a cartesian product with the
coordinatesY’ in one factor andrn| \ X"’ in the other factor for this case too.

As we have assumed that the arityRfs strictly greater than two we havée’ # [n].
Hence[n] \ X’ # 0.

Case 2:|X'| > 2

The rest of the proof will deal with the case whigfi'| > 2. We will begin with estab-
lishing a number of claims aR. Assuming thatX’ # [n], our main goal is still to show
that R can be decomposed into a cartesian product Withn one factor andn] \ X’
in one factor. IfX’ = [n] we will show thatR € Q.

Claim 1:if dg (x|, t|,) = 1andz[K] = t[K|thenz ¢ R
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Let « be a tuple which satisfies the precondition in the claim, m&sthatr € R,
and leti € X be a coordinate where differs fromt. By the construction ofX we
have that @ {K,i} € R, hence we getn(t,t ® {K,i},x) =t @ {i} € R, whichis a
contradiction.

Claim 2:if dp (x|, t|,,) = m, forany m such that2 < m < |X|, thenz ¢ R

We will prove this claim by induction om:. For the base case, let = 2. Let
xz € X be some coordinate such thafz] # t[z], if * € R andx[K] = t[K] then
m(t,x,t®{z,K}) =t dx ¢ R. Hencex|[K] = t[K] is not possible.

On the other hand ife[K] # t[K] thenz @© K is a step fromx to ¢. By the
argument in the preceding paragraph weget K ¢ R (note thatk' ¢ X hence we
havedy ((x ® K)|,t|) = m). Furthermore ag is a A-matroid we can flip some
coordinatel € X such thatt[l] # «[l] to get a tuple which is iR (I ¢ X will not
work as the argument in the preceding paragraph still apjliehat case). However,
du((x ® {K,1})|t|,) = 1 hence by claim 1 we get a contradiction.

Now, assume that claim 2 holds for = m'. We will prove that it also holds for
m = m’ + 1 such tha < m < | X|. Note that we can use exactly the same argument
as above except for the very last sentence in which we appetdim 2 withm = m’
instead of using claim 1. As we have assumed that claim 2 Holds. = m' we are
done.

Claim 3: there is a tuple z € R]X, such that for any tuple = € R\X, we have
duy(z,xz) <1

If | X’| > 2, thenthere are tupldsp {i, K} andt @ {j, K } for distincti, j, K € X’
in R. Hence, the tuple’ = m(t, t&{i, K}, t&{j,K}) =t®K € R.Letz = 2/| .
We will now show thath(z,cc\X,) < 1 for every tuplex in R. To this end, letr
be an arbitrary tuple itR. By claim 2 we must havdH(cc}X, t}X) < 1, furthermore
if z[K] = 2/[K] # t[K] then we are done ak; (x| ,,,2’|,,) = 1in this case. On
the other hand, ifc[K] = ¢t[K] then claim 1 and claim 2 tells us that we must have
du (x|, t|,) = 0in which case claim 3 follows.

Claim 4:if x € R and m}X, =z @ {i} forsomei € X', thenx @ {i,j} € R for
everyj € X'.

Givenj € X' j # i, there is at least one tuple € R such thatv[j] # x[j]
since otherwise the coordinatevould be constant an® could be decomposed into a
cartesian product. Hence! = x @ j is a step fromz to v, but claim 3 tells us that
z’ ¢ R and the only way to full fill the two-step axiom is# & {i,j} € R (due to
claim 3 we cannot havéy (z, v) = 1).

We will now prove thatR can be decomposed into cartesian product where the
coordinatesy’ make up one factor arjd]\ X’ make up the other factor. L&t = R\X,.
Our goal is to show that for any € P andv € R][n] we have(p,v) € R (we have
assumed thaX’ = {1,2,3,...,|X’|} here).

To this end, letv andv’ be arbitrary tuples iR. By claim 3 there either is a coor-
dinatei € X’ such thatfv @ i)| ., = z orv| ., = z. The same is true fos’; either
there is an coordinaté € X’ such tha{v’ @ i')

\ X/

P =z0rv"X/ =z,
’ . ’ . ’ H

If o], = |, orv’| ., = v’ x then we are done, so assume that neither

holds.
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If v'| ., # zandv|,, # z thens = v & i’ is a step fromv to v’ but by claim 3
s ¢ R and the only way to go a step frostto v’ and get intoR is s’ = s @ 4, hence
s’ € R.

For the other case, wheri|, , = z andv|,, # z, if there is a coordinatg € X’
such thatv” @ j € R then we are back to the previous case, so assume that such a
j do not exist. AsR is a A-matroid there must be a coordinate¢ X' such that
s = v’ @ {i,z} € R, because for some appropriates is a step fromv’ @ i to v.
Due to claim 4 we will then have’ @ {z,y} € R for everyy € X'. However, this
contradicts the maximality ok since we could have chosen, z, and X’ instead of
t, K, and X. The conclusion is that i’ # [n], then R can be decomposed into a
cartesian product. On the other handXif = [n], then we can easily deduce from
claim 3 thatR € Q. a

Proof (Of Lemm&dl6)et I be an arbitrary instance of W-M ONES(I")-2. We will
show that the problem is iRO by reducing it to an instanc€ of ILP-2. For any
relationR € I of arity n we know, from Lemm&5, that € Q. We can assume that
R is not the cartesian product of any other two relations, beed it is then every use
of R can be substituted by the factors in the cartesian produét.is unary we can
replaceR(z) by x = 0 orz = 1. If R = EQ? then we can replacB(z,y) by x = y
and if R(xz,y) < z= # ythen we replac&(z,y) byx =y — 1.

Now, assume that none of the cases above occur. We will shedw th

R(tl,tg, .. .,tn) e Zaiti <b (1)
i=1

for somea; € {—1,1} and integeb. Let N be set of negated coordinatesifi.e., let
N C [n] such that

R= {(f(tlal)vf(t%z)v'"7f(tn7n)) | dH(Ovt) < 1}

wheref : {0,1} x [n] = {0,1} andf(x,i) = —z if i € N and f(z,i) = x otherwise.
According to the definition o, R can be written on this form. Let; = —1if i € N
anda; = 1 otherwise. Furthermore, lét= 1 — |N|. It is now easy to verify thaf{{1)
holds.

As every variable occur at most twice Inevery variable occur at most twice i
too. Furthermore, the coefficient in front of any variabld'iis either—1, 0 or 1, hence
the sum of the absolute values in any columd'iis bounded by2. I’ is therefore an
instance of ILP-2. If we let the weight function &fbe the same as the weight function
in I it easily seen that any solutieito I’ is also a solution td with the same measure.

O

As we are done witl D, we will continue withI Ls. A linear system of equations
over GF(2) withn equations andn variables can be represented by a mattixa
constant column vectds and a column vectox = (x1,...,x,,) of variables. The
system of equations is then given Hg = b. Assuming that the rows of are linearly
independent the set of solutionsAa: = b are

{(:c’, z') | x” € Zy ™ andx’ = A'z” +b'} .
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wherez’ = (z1,...,2m), " = (m41,-..,2n) andA’ andb’ are suitably chosen.

If there is a column ind” with more than one entry which is equal tdor, equiv-
alently more than one non-zero entry), then we say that teeesy of equations is
coupled

Lemma 24. Let I" be a conservative constraint language such that L. If there

is a relation R € I' such thatR is the set of solutions to a coupled linear system of
equations ovelGF(2) thenW-Max ONES(I") <; W-MAX ONES(I")-2, otherwise
W-MAX ONES(I)-2is in PO.

Proof. First note that every relatioR € 1L, is the set of solutions to a linear system
of equations over GF(2)[11].

We will start with the hardness proof. To this end we will coust a2-representation
of EQ3. Let R € I be defined by

R = {(w’, ") | x” € Zy ™ andx’ = A'z" + b’} )

for somen, m, A’ andb’. Furthermore, we can assume that there is one columrjfsay
in A" with more than one entry equal to(sayi andi’). Hence,A;; and A}, ; are equal
to 1. Our first implementation consists &f and a number of, constraints,

Q($j+m,$i,$i/) < R(xl,...wn) /\ Co(xk).
k: m+1<k<n
k€{j+m,i,i/}

This implementation leaves us with three cases, the firsisae= EQ?3, in which case
we are done. The other two cases@re- {(0,0,1),(1,1,0)}and@ = {(0,1,0),(1,0,1)}.
We will give an implementation aEQ? with the first case, the other one is similar. Note
that

EQ3(KJ17 Y2, y3) — 321 ZI : Q(yh Y2, Z) A Q(y37 Z/a Z)

For the containment proof note that every relation/ins the set of solutions to
some non-coupled linear system of equations over GF(2) s&hef feasible solutions
to an instance of W-Mx ONES(I")-2 is therefore the set of solutions to a linear system
of equations over GF(2) with the property that every vagaiulcurs at most twice. This
problem is solvable by Edmonds and Johnson’s methdd [13]. a

Corollary 25. LetI" be a conservative constraint language such tha{ ") = Pol(ILs)
if there is a relationR € I" such thatR is not a A-matroid relation thenW-MAXx
ONES(I")-2 is APX-complete, otherwis#/-MAx ONES(I")-2 is in PO.

Proof. Given a constraint language such thatPol(I") = Pol(/Ls) then W-Max
ONES(I") is APX-complete([2D].

It is not hard to see that for a relatidh € I", R is not aA-matroid relation if and
only if R is the set of solutions to a coupled system of equations. (iThpart follows
directly from the representation of relatiGhin LemmdZ#.)

Hence, if there is a relatioR € I" such thatR is not aA-matroid relation then we
getAPX-completeness for W-kx ONES(I")-2 from Lemma 2. On the other hand,
if there is no nonA-matroid relation inl” then no relation is the set of solutions to a
coupled system of equations and hence we get tractabitity fremmd2H. a
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The final sub-case if' C [ Es.

Proof (Of Lemm&l7)For the containment note that the algorithm in Lenimia 21 can
be used, as an instance of WaM ONES({co, ¢1, R})-2 can easily be reduced to an
instance of W-M\x ONES({co, c1, NAN D?})-4.

We will do a reduction from Mx 2SAT-3 (i.e., MAX 2SAT where every variable
occurs at most three times), which A$X-complete [[L, Chap. 8]. The reduction is
based on Theorem 1 idl[2], which in turn is based on some of &/iggnn’s work on
3-dimensional matchin@[18].

We will do the reduction in two steps, we will first reduceal 2SAT-3, to a
restricted variant of MIS-3. More precisely the graphs picet by the reduction will
have maximum degree three and it will be possible to “coviee”graphs withR (we
will come back to this soon).

Let I = (V,C) be an arbitrary instance of Mk 2SAT-3. We will construct an
instancel’ = (G,w), whereG = (V’, E’) andw : V' — Q, of weighted maximum
independent set. We can assume, without loss of genertiléy,each variable id
occurs at least once unnegated and at least once negatelnbdev € V' construct
four paths with three nodes each. Sequentially label thesdad path numbez by
Pz1, P2, P23- CONstruct three complete binary trees with four leaveb aad label the
roots of the trees with; , vy, vy (Orvy, w1, —ws if v 0Cccurs once unnegated and twice
negated). Finally, identify the leaves of each of the treiés the nodes in the paths with
similar labels, where two labels.,, andp,,,, are similar ify = v. Figure[2 contains this
gadget for our example variable,

Fig.2: The graph gadget for the variahlewhich occurs three times, two times un-
negated and one time negated.

Let thew be defined as followsy(pia) = w(p2) = w(ps2) = w(pss) = 2.25,
w(x21) = w(zez) = 2 andw(-) = 1 otherwise.

Denote the disjoint union of those paths and trees for alabées byX . A solution
S for the independent set problem f&rwill be calledconsistentf for each variabley,
(which occurs twice unnegated and once negated) wedhavg € S and—w; ¢ S or
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vice versa (i.e.y1,v2 ¢ S and—w; € 5). Itis not hard to verify (e.g., with a computer
assisted search) that the optimal solutionsXt@re consistent. Furthermore, for each
consistent solution there is a solution which is optimal Eetlides or excludes thg’s
and-w;’s in the same way.

For each clause € C, containing the literal$; andi,, add two fresh nodes and
l> to G'. Connect; andi, with an edge and connelztwith the node which is labelled
with this literal (one of the roots of the trees). Do the sahirg for ;.

We deduce that given a solutionfbit is possible to construct a consistent solution
with a measure which is greater than or equal to the measute afriginal solution.
The only case we have to be careful about is when we are givelutiom S where
v1,v9, w1 € S. In this case the measure of the gadget is strictly less tmatotally
optimal solution. Hence, we can add; which, in the worst case, will force us to
remove one node which was attacheehtg due to the clause whichv; is in. However,
this loss will be made up for as we can assign an optimal swiut the gadget.

We haveoprT(I’) < |V|K + oPT(I) where K = 14 is the optimum value for our
gadget. A<OPT(I) > |C|/2 and|V| < 3|C| we getoPT(I’) < 3K|C| 4+ oPT(I) <
(6K + 1)oPT(]), hences = 6K + 1 is an appropriate parameter for Arreduction.

For any consistent solutio$f to I’ we can construct a solutiorto I as follows, for
each variable € V let s(v) = TRUEIf v; ¢ S’ ands(v) = FALSE otherwise. We will
then haveoprT(I) —m(I,s)| = |oPT(I") —m(I’,S")|. Hence;y = 1 is an appropriate
parameter for thé-reduction.

Using cop and R it is possible to 2-represedf AN D?(x,y). To reducel’ to an
instance of W-M\x ONES({ R})-2 note that we can “cover” each variable gadget with
R and N AN D?, see Figur&l3 how this is done. Furthermore, in the coveriadave
only usedv;, —v; andvy once so it wont be any problems with connecting the gadgets
to each other withV AN D? constraints. O

We need the following result which has been proved by Feddr Theorem 3,
fact 1].

Lemma 26. Given a relationR which is not closed undef(z,y) = = V y, thenR can
2-represent eitheW AN D? or = # y.

Corollary 27. Given a relationR € IFE> which is not closed undef(z,y) = z V y,
thenR can2-representN AN D2,

Proof. From Lemmd 26 we deduce thBRtcan2-represent eitheN AN D? or z # y,
but the latter is not contained iE», hence we must have the former. O

Lemma 28. Let I" be a conservative constraint language /7, C (I") C IE»,
and there is a relatiom? € I" such thatR is not aA-matroid relation, thenV-MAx
ONES(I")-2 is APX-hard.

Some parts of the following proof is similar to Feder's praof[il4] that nonA-
matroids causes$-)-2 to be no easier thans®(-).

Proof. As R is notaA-matroid relation there exists tupleg’ € R such thatiy (¢,t') >
3and a step ¢ Rfromt to ¢’ such that no step fromto ¢’ is contained inR.
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21
P11 pr2 P21 p22 Pb31 D32 2251 P42
D13 P23 'p_33 ) Das
31 T30
V2
Part of grapl|'Constraints
Paths R(p11,p12,p13), R(p21, pa2, p23

( )

(pa1,pa2, pa3)

(pa1, 12, pa1), R(x11,v1,212)
(ps2, x22,p42), R(x21, w1, T22)
(p33, 32, p43), R(x31,v2, T32)

), R
R(ps1,p32,p33), R
Tree forv1  |R(p11,711,p21), R
Tree for—w1 |R(p12, T21, p22), R
Tree fOI"UQ R(p13, a?31,p23), R

Fig. 3: The gadget for the variablecovered by the relatioR. Note that each variable
occurs at most twice and that, v and—wv; occurs once. Constraints with overlapping
nodes are represented by two different line styles in thptgrsolid and dotted.

Let n be the arity ofR and letX C [n] be the set of coordinates whetraliffers
fromt’,i.e.,t = t' @ X. Furthermore, let € [n] be the coordinate where differs
fromt¢.

By using projections and they and c¢; constraints together wittlR we can2-
represent a new relatio®®, which is not aA-matroid relation and has ariy. To do
this, choose a subs&t’ ¢ X of minimal cardinality such that € X’ andt® X’ € R.
Note that X'| > 3. Leta andb be two distinct coordinates ik’ which differs fromk.
ConstructP as follows:

P(zg,xq,zp) <= R(z1,29,...,2,) /\ c1(x) /\ co(xy).

len]\ X’ len]\ X’
tll]=1 t[1]=0
Furthermore, let = t\{k o) NGV = t’\{k o) Wethenhave, v € Pandvel, vé

{1,2},v®{1,3} & P. Hence, depending amand which other tuples that are fiwe
get a number of possibilities. We will use the following ntwa:a = v &2, b=v® 3
ande = v @ {2,3}. Zero or more ofa, b andc may be contained i®. Table{#H7
list the possible relations we can get, up to permutatiorte@icoordinates. Note that
a € Pbc¢g Pandb € P a,c ¢ P are equivalent if we disregard permutations of
the coordinates. Similarlg, c € P,b ¢ P andb, c € P,a ¢ P are equivalent.

Some of the relations are not iE; and can therefore be omitted from further
consideration (it is clear that i is not inI E» thenR is not in I E» either, which is a
contradiction with the assumptions in the lemma). Othens2egepresentzQ?, or can
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do so together withiV AN D2. As an example considet5, then

1, Y2, y3, 21, 22, 23 A5 (Y1, 1, 21) A NAND? (21, 2) A
A5(y2, To, 2’2) A\ NAND2(ZQ, y3)/\
A5(y3, xs, 23) N NAND2(2’3,y1)

is a2-representation oF Q3 (1, z2, x3). Similar constructions works for some of the
other relations. If we caB-represen@? then we gepoly-APX-hardness due to the
construction in LemmBZ19, Lemniih 6 and a simple reduction fkk8. Information
about which relations this applies to is contained in Thble 2

Furthermore, some of the relations cznepresent other relations in the table, see
Table[3 for those. This implies that the only relation thdefsto proveAPX-hardness
for is ABC1. We will do this with a reduction from MIS-3. Le& = (V, E) be
an instance of MIS-3, we will construct an instanEe= (V',C’,w’") of W-MAX
ONES(I")-2 with the assumption that BC'1 € I". Furthermore, due to Lemrial19 and
Corollary[ZT we are free to assume thai N D? € I'. For every variable ¢ V, if
there are three occurrencesdh I add one fresh variable for each occurrence iof
to V', name those fresh variables, vo andws. If there are less than three occurrences
addv to V’. Furthermore, for each edge, z) for somez € V add aN AN D?(v;, x;)
constraint taC”. So farI’ is an instance where each variable occurs at most twice and
the variables which corresponds to node&iwith degree three occurs oncelih

For each node € V with degree three add the constratBC'1(vy, v2, v3) to C”.
Finally, letw(x) = 1 for everyz € V with degree less than three andv;) = 1 and
w(ve) = w(vz) = 0 for everyv € V with degree three. For every solutierto I’ we
can construct a solutiof to I such thatm(I’,s) = m(I, S) to see this note that if
s(z) = 1 for some variable: then due to thed BC'1 constraints the other occurrences
of = also have the valué. On the other hand, if(z) = 0 then we can set the other
occurrences of to 0 without changing the measure of the solution and withouflods
with any constraints. This implies that there is$meduction from MIS-3 to W-MX
ONES(I)-2. O

The results obtained in Lemrial28 is not optimal for all nésmatroids. It is noted in
the proof that we gepoly-APX-hardness results for some of the relations, but we do
not get this for all of them. In particular we do not get this #8, AB1, BC4, ABC1,
ABC3, ABC5 andABC6. However,ABC5 is contained ilrAPX by Lemmé V.

We are now finally ready to state the proof of the classificatteeorem for two
variable occurrences.

Proof (Of Theorerfd3, part 1ollows from Khanna et al's results on WA ONES[20].
O

Proof (Of Theorerfd3, part 2ollows from Corollary2b, Lemmial4 and Lemind 16.

0
Proof (Of Theorerid3, part 3rollows from Lemm&28. O
Proof (Of TheorerfiZ3, part 3follows from [14, Theorem 4]. O
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Relation Implementation gRelation Implementation or
comment comment

1 EQ? BC2 Not inIE>

2 NotinIFE> BC3 NotinIE,

Al EQ* BC4  See TablEl3

A2 Not in I E AB1 See Tabl&l3

A3 See Tabl€3 AB2 Notin I E>

A4 Notin I E- AB3 Notin I E-

A5 NAND? AB4  NotinIE,

A6 EQ? AB5  NotinIFE;

C1 EQ* ABG6 Notin I E-

c2 NAND? ABC1 SeelLemmBZ8

C3 NotinIE5 ABC2 NotinIFE>

Cc4 Not inIE, ABC3 See TablEl3

C5 Not inI E> ABC4 NotinIE-

C6 EQ? ABC5 See LemmB17

BC1 EQ? ABC6 See TablEl3

Table 2: NonA-matroid relations in Lemnia®8. If there is a relation in thaplemen-
tation or comment” column then this relation camepresentZ Q3 together with the
noted relation. If this second relation i5Q? then the relation can in fa@represent
EQ?3 on its own,EQ? is not needed.

Relation Implements Implementation
A3 ABC5 3z’ : A3(z1,2",23) A NAND?* (2, x2)
ABl  ABC5  3z',2”: ABl(x1,2',2") ANAND?*(2',x2) ANAND? (2", x3)
BC4 ABC5 3’ : BC4(z1,z',22) A NAND? (', x3)
ABC3 ABC5 3z’ : ABC3(x1,2',23) ANAND? (', z2)
ABC6 ABC1 3z’ : ABC6(2',x2,23) N NAND?*(z', 1)
Table 3: Implementations in Lemrhal28

000 100 010 110 101 111
111 110 111 011 101 001 010 000
000 001 010 110 000 100 111 101
1 T2 Al A2 ‘A3 A4 ‘A5 A6
Table 4: NonA-matroid relations whera, b, ¢ ¢ P followed by the relations where
a € Pandb,c ¢ P.

000 100 010 110 011 111
111 011 101 001 100 000
011 111 001 101 011 100
C1 Cc2 €3 ¢c4 ¢c5 Cc6
Table 5: NonA-matroid relations where only € P.
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000 100 010 001 000 100 010 110 011 111

111 011 101 110 111 011 101 001 100 000

001 101 011 000 010 110 000 100 001 101

011 111 001 010 001 101 011 111 010 110

BC1 BC2 BC3 BC4 AB1 AB2 AB3 AB4 AB5 AB6
Table 6: NonA-matroid relations wheré, ¢ € P anda ¢ P followed by relations
wherea,b € P andc ¢ P.

000 100 010 110 011 111
111 011 101 001 100 000
010 110 000 100 001 101
001 101 011 111 010 110
011 111 001 101 000 100
ABC1 ABC2 ABC3 ABC4 ABC5 ABC6
Table 7: NonA-matroid relations where, b, ¢ € P.

Proofs for Results in Sectiorl b

Proof (Of Theorenid8).et I' be a non-1-valid constraint language andn integer
such that W-M\x ONES(I" U {cg, ¢1 })-k (this problem will hereafter be denoted by
1Iy1) is NP-hard. We will prove the theorem with a reduction frdify; to W-MAX
ONES(I')-k (hereafter denoted hif).

As I' is not 1-valid there exists a relatidd € I" such tha(1,...,1) € R. Letr be
the arity of R and lett be the tuple inR with the maximum number of ones. Assume,
without loss of generality, that= (0,1,...,1).

The assumption in the theorem implies that iNiB-hard to decide the following
question: given an instande= (V, C,w) of I1y; and an integek is opPT(I) > K?

Let] = (V,C,w), K be an arbitrary instance of the decision varianffgf . We will
transform! into an instancé’ = (V’,C’,w’), K’ of the decision variant ofI by first
removing constraint applications usiag and then removing constraint applications
usingc;.

At the start of the reduction 18’ = V andC’ = C. For each constrairtty, (v)) €
C' replace this constraint wittR, (v, v1, ..., v.—1)) wherevy, ..., v,_; are fresh vari-
ables, furthermore add the constraiat, (v;)) fork =1,...,r —1to C".

Let ¢ be the number of variables which are involvedcinconstraints. For each
constraint using, (c1, (v)) € C’, remove this constraint and set(v) = L + w(v),
where L is a sufficiently large integer’( = 1 + > ., w(v) is enough). For every
variablev which is not involved in a; constraint lety’ (v) = w(v).

Finally let K’ = K + cK. Given a solutions’ to I’ such thatn(I’,s’) > K’ it
is clear that this solution also is a solutionksuch thatn(I,s’) > K. Furthermore,
if there is a solutiors to I such thatm(I,s) > K thens is a solution’ such that
m(I',s) > K'. 0
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