
ar
X

iv
:c

s/
06

06
05

7v
1

 [c
s.

C
C

]
13

 J
un

 2
00

6

Approximability of Bounded Occurrence Max Ones

Fredrik Kuivinen⋆

Department of Computer and Information Science, Linköpings Universitet,
S-581 83 Linköping, Sweden,freku@ida.liu.se

Abstract. We study the approximability of MAX ONES when the number of
variable occurrences is bounded by a constant. For conservative constraint lan-
guages (i.e., when the unary relations are included) we givea complete classifi-
cation when the number of occurrences is three or more and a partial classification
when the bound is two.
For the non-conservative case we prove that it is either trivial or equivalent to
the corresponding conservative problem under polynomial-time many-one reduc-
tions.

Keywords: Approximability, Bounded occurrence, Constraint satisfaction prob-
lems, Matching, Max Ones

1 Introduction

Many combinatorial optimisation problems can be formulated as various variants of
constraint satisfaction problems (CSPs). MAX ONES is a boolean CSP where we are
not only interested in finding a solution but also the measureof the solution. In this
paper we study a variant of MAX ONES when the number occurrences of each variable
is bounded by a constant.

We denote the set of alln-tuples with elements from{0, 1} by {0, 1}n. A subset
R ⊆ {0, 1}n is a relation andn is thearity of R. A constraint languageis a finite set
of relations. A constraint language is said to beconservativeif every unary relation is
included in the language. In the boolean case this means thatthe relations{(0)} and
{(1)} are in the language. The constraint satisfaction problem over the constraint lan-
guageΓ , denoted CSP(Γ), is defined to be the decision problem with instance(V,C),
whereV is a set of variables andC is a set of constraints{C1, . . . , Cq}, in which
each constraintCi is a pair (Ri, si) with si a list of variables of lengthni, called
the constraint scope, andRi an ni-ary relation over the set{0, 1}, belonging toΓ ,
called the constraint relation. The question is whether there exists a solution to(V,C)
or not. A solution to(V,C) is a functions : V → {0, 1} such that, for each con-
straint(Ri, (v1, v2, . . . , vni

)) ∈ C, the image of the constraint scope is a member of
the constraint relation, i.e.,(s(v1), s(v2), . . . , s(vni

)) ∈ Ri.
The optimisation problem W-MAX ONES can be defined as follows:

Definition 1 (W-MAX ONES). W-MAX ONES over the constraint languageΓ is de-
fined to be the optimisation problem with

⋆ Supported by theNational Graduate School in Computer Science(CUGS), Sweden.

http://arxiv.org/abs/cs/0606057v1

Instance: Tuple(V,C,w), where(V,C) is an instance ofCSP(Γ) andw : V → N is
a function.

Solution: An assignmentf : V → {0, 1} to the variables which satisfies theCSP(Γ)
instance(V,C).

Measure:
∑

v∈V

w(v) · f(v)

The functionw : V → N is called aweight function. In the corresponding unweighted
problem, denoted MAX ONES(Γ), the weight function is restricted to map every vari-
able to 1. The approximability of (W-)MAX ONES has been completely classified
by Khanna et al. [20]. Several well-known optimisation problems can be rephrased
as (W-)MAX ONES problems, in particular INDEPENDENT SET. We will study W-
MAX ONES(Γ) with a bounded number of variable occurrences, denoted by W-MAX

ONES(Γ)-k for an integerk. In this problem the instances are restricted to contain at
mostk occurrences of each variable. The corresponding bounded occurrence variant of
CSP(Γ) will be denoted by CSP(Γ)-k.

Schaefer [26] classified the complexity of CSP(Γ) for every constraint languageΓ .
Depending onΓ , Schaefer proved that CSP(Γ) is either solvable in polynomial time
or is NP-complete. The conservative bounded occurrence variant ofCSP(Γ) has been
studied by a number of authors [12,14,15,16]. One result of that research is that the dif-
ficult case to classify is when the number of variable occurrences are restricted to two,
in all other cases the bounded occurrence problem is no easier than the unrestricted
problem. Kratochvı́l et al. [21] have studiedk-SAT-l, i.e., satisfiability where every
clause have lengthk and there are at mostl occurrences of each variable.k-SAT-l is a
non-conservativeconstraint satisfaction problem. The complexity classification seems
to be significantly harder for such problems compared to the conservative ones. In par-
ticular, Kratochvı́l et al [21] proves that there is a functionf such thatk-SAT-l is trivial
if l ≤ f(k) (every instance has a solution) andNP-complete ifl ≥ f(k) + 1. Some
bounds off is given in [21], but the exact behaviour off is unknown.

MAX ONES(Γ)-k can represent many well-known problems. Fork ≥ 3, we have
for example, that INDEPENDENTSET in graphs of maximum degreek is precisely MAX

ONES({{(0, 0), (1, 0), (0, 1)}})-k. However, the more interesting case is perhapsk = 2
due to its connection to matching problems. (See [24] for definitions and more infor-
mation about the matching problems mentioned below.) Ordinary weighted maximum
matching in graphs is, for example, straightforward to formulate and we get certain gen-
eralisations “for free” (because they can be rephrased as ordinary matching problems),
such asf -factors and capacitatedb-matchings. The general factor problem can also be
rephrased as a MAX ONES(·)-2 problem. A dichotomy theorem for the existence prob-
lem of general factors has been proved by Cornuéjols [9]. Some research has also been
done on the optimisation problem [8].

In this paper, we start the classification of bounded occurrence MAX ONES. Our
first result is a complete classification of W-MAX ONES(Γ)-k whenk ≥ 3 and{(0)}
and{(1)} are included inΓ . We show that, depending onΓ , this problem is either in
PO, APX-complete orpoly-APX-complete. Our second result is a partial classification
of W-MAX ONES(Γ)-2. We also give hardness results for the non-conservative case.

The outline of the paper is as follows: in Section 2 we define our notation and
present the tools we use. Section 3 and 4 contains our resultsfor three or more occur-

2

rences and two occurrences, respectively. Section 5 contains our results for the general
case, i.e., when the constraint language is not necessarilyconservative. Section 6 con-
tains some concluding remarks. Due to lack of space most of the proofs can be found
in the appendix.

2 Preliminaries

For an integern we will use[n] to denote the set{1, 2, . . . , n}. The Hamming distance
between two vectorsx andy will be denoted bydH(x,y). For a tuple or vectorx the
n:th component will be denoted byx[n].

Unless explicitly stated otherwise we assume that the constraint languages we are
working with areconservative, i.e., every unary relation is a member of the constraint
language (in the boolean domain, which we are working with, this means that{(0)}
and{(1)} are in the constraint language).

We define the following relations

– NANDm = {(x1, . . . , xm) | x1 + . . .+ xm < m},
– EQm = {(x1, . . . , xm) | x1 = x2 = . . . = xm},
– IMPL = {(0, 0), (0, 1), (1, 1)}, c0 = {(0)}, c1 = {(1)}

and the functionhn(x1, x2, . . . , xn+1) =
∨n+1

i=1 (x1 ∧ . . .∧ xi−1 ∧ xi+1 ∧ . . .∧ xn+1).
For a relationR of arity r, we will sometimes use the notationR(x1, . . . , xr) with the
meaning(x1, . . . , xr) ∈ R, i.e.,R(x1, . . . , xr) ⇐⇒ (x1, . . . , xr) ∈ R. If r is the arity
of R andI = {i1, . . . , in} ⊆ [r], i1 < i2 < . . . < in, then we denote the projection of
R to I byR

∣

∣

I
, i.e.,R

∣

∣

I
= {(xi1 , xi2 , . . . , xin) | (x1, x2, . . . , xr) ∈ R}

Representations (sometimes called implementations) havebeen central in the study
of constraint satisfaction problems. We need a notion of representability which is a bit
stronger that the usual one, because we have to be careful with how many occurrences
we use of each variable.

Definition 2 (k-representable).Ann-ary relationR is k-representableby a set of re-
lations F if there is a collection of constraintsC1, . . . , Cl with constraint relations
from F over variablesx = (x1, x2, . . . , xn) (called primary variables) and y =
(y1, y2, . . . , ym) (calledauxiliary variables) such that,

– the primary variables occur at most once in the constraints,
– the auxiliary variables occur at mostk times in the constraints, and
– for every tuplez, z ∈ R if and only if there is an assignment toy such thatx = z

satisfies all of the constraintsC1, C2, . . . , Cl.

The intuition behind the definition is that if every relationin Γ1 is k-representable by
relations inΓ2 then W-MAX ONES(Γ2)-k is no easier than W-MAX ONES(Γ1)-k. This
is formalised in Lemma 6.

3

2.1 Approximability, Reductions, and Completeness

A combinatorial optimisation problemis defined over a set ofinstances(admissible in-
put data)I; each instanceI ∈ I has a finite setSOL(I) of feasible solutionsassociated
with it. The objective is, given an instanceI, to find a feasible solution ofoptimumvalue
with respect to some measure functionm defined for pairs(x, y) such thatx ∈ I and
y ∈ SOL(x). Every such pair is mapped to a non-negative integer bym. The optimal
value is the largest one formaximisationproblems and the smallest one forminimisa-
tion problems. A combinatorial optimisation problem is said to be anNPO problem
if its instances and solutions can be recognised in polynomial time, the solutions are
polynomially-bounded in the input size, and the objective function can be computed in
polynomial time (see, e.g., [1]).

Definition 3 (r-approximate). A solutions ∈ SOL(I) to an instanceI of an NPO

problemΠ is r-approximateif max
{

m(I,s)
OPT(I) ,

OPT(I)
m(I,s)

}

≤ r, whereOPT(I) is the optimal

value for a solution toI.

An approximation algorithm for anNPO problemΠ hasperformance ratioR(n) if,
given any instanceI of Π with |I| = n, it outputs anR(n)-approximate solution.

Definition 4 (PO, APX, poly-APX). PO is the class ofNPO problems that can be
solved (to optimality) in polynomial time. AnNPO problemΠ is in the classAPX if
there is a polynomial-time approximation algorithm forΠ whose performance ratio is
bounded by a constant. Similarly,Π is in the classpoly-APX if there is a polynomial-
time approximation algorithm forΠ whose performance ratio is bounded by a polyno-
mial in the size of the input.

Completeness inAPX andpoly-APX is defined usingAP -reductions [1]. How-
ever, we do not needAP -reductions in this paper, the simplerL- andS-reductions are
sufficient for us.

Definition 5 (L-reduction). AnNPO problemΠ1 is said to beL-reducibleto anNPO
problemΠ2, writtenΠ1 ≤L Π2, if two polynomial-time computable functionsF and
G and positive constantsβ andγ exist such that

– given any instanceI of Π1, algorithmF produces an instanceI ′ = F (I) of Π2,
such thatOPT(I ′) ≤ β · OPT(I).

– givenI ′ = F (I), and any solutions′ to I ′, algorithmG produces a solutions to
I such that|m1(I, s) − OPT(I)| ≤ γ · |m2(I

′, s′) − OPT(I ′)|, wherem1 is the
measure forΠ1 andm2 is the measure forΠ2.

It is well-known (see, e.g., Lemma 8.2 in [1]) that, ifΠ1 is L-reducible toΠ2 and
Π1 ∈ APX then there is anAP -reduction fromΠ1 toΠ2.

S-reductionsare similar toL-reductions but instead of the conditionOPT(I ′) ≤
β · OPT(I) we require thatOPT(I ′) = OPT(I) and instead of|m1(I, s) − OPT(I)| ≤
γ · |m2(I

′, s′) − OPT(I ′)| we require thatm1(I, s) = m2(I
′, s′). If there is anS-

reduction fromΠ1 to Π2 (written asΠ1 ≤S Π2) then there is anAP -reduction from
Π1 to Π2. An NPO problemΠ is APX-hard (poly-APX-hard) if every problem in

4

APX (poly-APX) isAP -reducible to it. If, in addition,Π is in APX (poly-APX), then
Π is calledAPX-complete(poly-APX-complete).

We will do several reductions from INDEPENDENTSET (hereafter denoted by MIS)
which ispoly-APX-complete [19]. We will also use the fact that for anyk ≥ 3, MIS
restricted to graphs of degree at mostk is APX-complete [22]. We will denote the latter
problem by MIS-k.

The following lemma shows the importance ofk-representations in our work.

Lemma 6. For constraint languagesΓ1 andΓ2 if every relation inΓ1 can bek-repre-
sented byΓ2 thenW-MAX ONES(Γ1)-k ≤S W-MAX ONES(Γ2)-k.

Proof. Given an arbitrary instanceI = (V,C,w) of W-MAX ONES(Γ1)-k, we will
construct an instanceI ′ = (V ′, C′, w′) of W-MAX ONES(Γ2)-k, in polynomial time.
For eachc ∈ C, add thek-representation ofc to C′ and also add all variables which
participate in the representation toV ′ in such a way that the auxiliary variables used in
the representation are distinct from all other variables inV ′. Letw′(x) = w(x) for all
x ∈ V andw(x) = 0 if x 6∈ V (i.e., all auxiliary variables will have weight zero).

It is not hard to see that: (a) every variable inI ′ occurs at mostk times (b)OPT(I ′) =
OPT(I), and (c) given a solutions′ to I ′ we can easily construct a solutions to I (let
s(x) = s′(x) for everyx ∈ V) such thatm(I, s) = m(I ′, s′). Hence, there is anS-
reduction from W-MAX ONES(Γ1)-k to W-MAX ONES(Γ2)-k. ⊓⊔

2.2 Co-clones and Polymorphisms

Given an integerk, a functionf : {0, 1}k → {0, 1} can be extended to a func-
tion over tuples as follows: lett1, t2, . . . , tk be k tuples withn elements each then
f(t1, t2, . . . , tk) is defined to be the tuple(f(t1[1], t2[1], . . . , tk[1]), . . . , f(t1[n],
t2[n], . . . , tk[n])). Given an-ary relationR we say thatR is invariant (or, closed) un-
der f if t1, t2, . . . , tk ∈ R ⇒ f(t1, t2, . . . , tn) ∈ R. Conversely, for a functionf
and a relationR, f is apolymorphismof R if R is invariant underf . For a constraint
languageΓ we say thatΓ is invariant underf if every relation inΓ is invariant under
f . We analogously extend the notion of polymorphisms to constraint languages, i.e., a
functionf is a polymorphism ofΓ if Γ is invariant underf . Those concepts has been
very useful in the study of the complexity of various constraint satisfaction problems
(see, e.g., [17]) and play an important role in this work, too.

The set of polymorphisms for a constraint languageΓ will be denoted byPol(Γ),
and for a set of functionsC the set of all relations which are invariant underC will be
denoted byInv(B). The setsPol(Γ) areclonesin the sense of universal algebra. For
a cloneC, Inv(C) is called a relational clone or a co-clone. Over the boolean domain
Emil Post has classified all such co-clones and their inclusion structure in [23].

For a set of relationsΓ we define a closure operator〈Γ 〉 as the set of relations that
can be expressed with relations fromΓ using existential quantification and conjunction
(note that we are only allowed to use the relations inΓ , hence equality is not necessarily
allowed). Intuitively〈Γ ∪{EQ2}〉 is the set of relations which can be simulated byΓ in
CSP(Γ). An alternative classification of this set is〈Γ ∪ {EQ2}〉 = Inv(Pol(Γ)) [25].
These few paragraphs barely scratch the surface of the rich theory of clones and their

5

relation to the computational complexity of various constraint satisfaction problems, for
a more thorough introduction see [5,6,10].

We say that a set of relationsB is aplain basisfor a constraint languageΓ if every
relation inΓ can be expressed with relations fromB using relations fromB ∪ {=} and
conjunction. Note that this differs from the definition of the closure operator〈·〉 as we
do not allow existential quantification. See [11] for more information on plain bases.

We can not only study the co-clones when we try to classify MAX ONES(Γ)-k
because the complexity of the problem do not only depend on the co-clone〈Γ 〉. How-
ever, the co-clone lattice with the corresponding plain bases and invariant functions
will help us in our classification effort. Furthermore, as wemostly study the conserva-
tive constraint languages we can concentrate on the co-clones which containc0 andc1.
Figure 1 contains the conservative part of Post’s lattice and Table 1 contains the plain
bases for the relational clones which will be interesting tous (co-clones at and below
IV2 have been omitted as MAX ONES is in PO there).

Fig. 1: Lattice of idempotent co-clones

Co-cloneBase for clone Plain Basis

IE2 and {Nk | k ∈ N} ∪
{(¬x1∨. . .∨¬xk∨y) |
k ∈ N}

IS10 x ∧ (y ∨ z) {c1, IMPL} ∪
{Nk | k ∈ N}

ISm

10 x ∧ (y ∨ z), hn {c1, IMPL,Nm}‡

IS12 x ∧ (y ∨ ¬z) {EQ2, c1} ∪
{Nk | k ∈ N}

ISm

12 x ∧ (y ∨ ¬z), hn {EQ2, c1, Nm}‡

IL2 x⊕ y ⊕ z {x1 ⊕ . . .⊕ xk = c |
k ∈ N, c ∈ {0, 1}}

ID2 xy ∨ yz ∨ xz {c0, c1, x ∨ y,

IMPL, NAND2}
ID1 xy∨y(¬z)∨y(¬z) {c0, c1, x⊕ y = 0,

x⊕ y = 1}
IM2 and, or {c0, c1, IMPL}
IR2 or, x ∧ (y ⊕ z ⊕ 1) {EQ2, c0, c1}

Table 1: Plain bases for some rela-
tional clones. The list of plain bases are
from [11].‡

3 Three or More Occurrences

In this section we will prove a classification theorem for W-MAX ONES(Γ)-k where
k ≥ 3. The main result of this section is the following theorem.

Theorem 7. LetΓ be a conservative constraint language andk ≥ 3,

‡ In [11] the listed plain basis forISm

12 is {EQ2, c1} ∪ {Nk|k ≤ m} however, if we haveNm

thenNm−1 can be represented without auxiliary variables byNm−1(x1, x2, . . . , xm−1) ⇐⇒
Nm(x1, x1, x2, x3, . . . , xm−1), hence the set of relations listed in Table 1 is a plain basis for
ISm

12. The same modification has been done toISm

10.

6

1. If Γ ⊆ IV2 thenW-MAX ONES(Γ)-k is in PO.
2. Else ifIS2

12 ⊆ 〈Γ 〉 ⊆ IS12 then(W-)MAX ONES(Γ)-k is APX-complete ifEQ2

is notk-representable byΓ andW-MAX ONES(Γ)-k is poly-APX-complete oth-
erwise.

3. Otherwise,W-MAX ONES(Γ) andW-MAX ONES(Γ)-k are equivalent underS-
reductions.

The first part of Theorem 7 follows from Khanna et al.’s results for MAX ONES [20].
Intuitively the second part follows from the fact that W-MAX ONES({NAND2}) is
equivalent to MIS, hence if we have access to the equality relation then the problem
getspoly-APX-complete. On the other hand, if we do not have the equality relation
then we essentially get MIS-k, for somek, which is APX-complete. The third part
follows from Lemmas 8, 9, 10, and 11.

Dalmau and Ford proved the following lemma in [12].

Lemma 8. If there is a relationR in the constraint languageΓ such thatR 6∈ IE2,
then eitherx ∨ y or x 6= y can be3-represented byΓ . By duality, if there is a relation
R ∈ Γ such thatR 6∈ IV2, then eitherNAND2 or x 6= y can be3-represented.

We can use the lemma above to get a3-representation of eitherEQ2 or IMPL.
We will later, in Lemma 11, show that those relations makes the problem as hard as the
unbounded occurrence variant.

Lemma 9. If there is a relationR in the constraint languageΓ such thatR 6∈ IE2 and
R 6∈ IV2, then eitherEQ2 or IMPL can be3-represented byΓ .

Proof. From Lemma 8 we know that eitherx 6= y or bothx ∨ y andNAND2 are3-
representable. In the first case∃z : x 6= z ∧ z 6= y is a3-representation ofEQ2. In the
second case∃z : NAND2(x, z) ∧ (z ∨ y) is a 3-representation ofIMPL(x, y). ⊓⊔

To get the desired hardness results for theIS10 chain we need to prove that we can
representEQ2 or IMPL in that case too. To this end we have the following lemma.

Lemma 10. If there is a relationR in the constraint languageΓ such thatR ∈ IE2

andR 6∈ IS12, then eitherEQ2 or IMPL can be3-represented byΓ .

Proof. Letr be the arity ofR then, asR 6∈ IS12, there exists a set of minimal cardinality
I ⊆ [r], such thatR

∣

∣

I
6∈ IS12.

As g(x, y) = x∧y is a base of the clone which corresponds toIE2, R
∣

∣

I
∈ IE2 im-

plies thatg is a polymorphism ofR
∣

∣

I
. Furthermore, asf(x, y, z) = x ∧ (y ∨ ¬z)

is a base of the clone which corresponds toIS12, R
∣

∣

I
6∈ IS12 implies thatf is

not a polymorphism ofR
∣

∣

I
. Hence, there exists tuplest1, t2, t3 ∈ R

∣

∣

I
such that

f(t1, t2, t3) = t 6∈ R
∣

∣

I
.

There exists a coordinatel1, 1 ≤ l1 ≤ r such that(t1[l1], t2[l1], t3[l1]) = (1, 0, 1),
because otherwisef(t1, t2, t3) = t1. Similarly there exists a coordinatel2, 1 ≤ l2 ≤ r
such that(t1[l2], t2[l2], t3[l2]) is equal to one of(0, 1, 0), (0, 1, 1) or (1, 0, 0). Because
otherwisef(t1, t2, t3) = t2. From now on, the case(t1[l2], t2[l2], t3[l2]) = (1, 0, 0)
will be denoted by (*). Finally, there also exists a coordinate l3, 1 ≤ l3 ≤ r such that

7

(t1[l3], t2[l3], t3[l3]) is equal to one of(0, 0, 1), (0, 1, 1), (1, 0, 0), (1, 0, 1) or (1, 1, 0),
because otherwisef(t1, t2, t3) = t3. The case(t1[l3], t2[l3], t3[l3]) = (1, 0, 0) will
be denoted by (**).

As R
∣

∣

I
is invariant underg we can place additional restrictions onl1, l2 andl3. In

particular, there has to be coordinatesl1, l2 andl3 such that we have at least one of the
cases (*) or (**), because otherwisef(t1, t2, t3) = g(t1, t2), which is inR

∣

∣

I
and we

have assumed thatf(t1, t2, t3) 6∈ R
∣

∣

I
. There is no problem in lettingl2 = l3 since

we will then get both (*) and (**). This will be assumed from now on. We can also
assume, without loss of generality, thatl1 = 1 andl2 = l3 = 2. We can then construct
a 3-representation asRφ(x, y) ⇐⇒ ∃z3 . . . zr : R

∣

∣

I
(x, y, z3, . . . , zr) ∧ ck3

(z3) ∧
ck4

(z4) ∧ . . . ∧ ckr
(zr) whereki = f(t1[i], t2[i], t3[i]) for 3 ≤ i ≤ r. We will now

prove thatRφ is equal to one of the relations we are looking for.
If (0, 1) ∈ Rφ, then we would havet ∈ R

∣

∣

I
, which is a contradiction, so(0, 1) 6∈

Rφ. We will now show that(0, 0) ∈ Rφ. Assume that(0, 0) 6∈ Rφ. Then,R∗ =
R
∣

∣

I\{l2}
is not inIS12 which contradicts the minimality ofI. To see this consider the

following table of possible tuples inR
∣

∣

I
,

1 = l1 2 = l2 = l3 3 4 . . .
t1 1 1 t1[3] t1[4] . . .
t2 0 0 t2[3] t2[4] . . .
t3 1 0 t3[3] t3[4] . . .
a 0 1 f(t1[3], t2[3], t3[3]) f(t1[4], t2[4], t3[4]) . . .
b 0 0 f(t1[3], t2[3], t3[3]) f(t1[4], t2[4], t3[4]) . . .

We know thatt1, t2, t3 ∈ R
∣

∣

I
and we also know thata 6∈ R

∣

∣

I
. Furthermore, ifb 6∈ R

∣

∣

I
,

thenf(t1, t2, t3)
∣

∣

I\{l2}
6∈ R∗ which means thatI is not minimal. The conclusion is

that we must have(0, 0) ∈ Rφ. In the same way it is possible to prove that unless
(1, 1) ∈ Rφ, I is not minimal.

To conclude, we have proved that(0, 0), (1, 1) ∈ Rφ and(0, 1) 6∈ Rφ, hence we
either haveRφ = EQ2 orRφ = {(0, 0), (1, 0), (1, 1)}. ⊓⊔

It is now time to use our implementations ofEQ2 or IMPL to prove hardness
results. To this end we have the following lemma.

Lemma 11. If EQ2 or IMPL is 3-representable by the constraint languageΓ then
W-MAX ONES(Γ) ≤S W-MAX ONES(Γ)-3.

The proof can be found in the appendix. As eitherEQ2 or IMPL is available we can
construct a cycle of constraints among variables and such a cycle force every variable
in the cycle to obtain the same value. Furthermore, each variable occurs only twice in
such a cycle so we have one occurrence left for each variable.

4 Two Occurrences

In this section, we study W-MAX ONES(Γ)-2. We are not able to present a complete
classification but a partial classification is achieved. We completely classify the co-

8

clonesIL2 andID2. ForΓ such thatΓ 6⊆ IL2, ID2 we show that if there is a rela-
tion which is not a∆-matroid relation (those are defined below) inΓ then W-MAX

ONES(Γ)-2 is APX-hard if W-MAX ONES(Γ) is not tractable.

4.1 Definitions and Results

Most of the research done on CSP(Γ)-k (e.g., in [14,12,15]) has used the theory of∆-
matroids. Those objects are a generalisation of matroids and has been widely studied,
cf. [4,3]. It turns out that the complexity of W-MAX ONES(Γ)-2 depend to a large de-
gree on if there is a relation which is not a∆-matroid relation in the constraint language.
∆-matroid relations are defined as follows.

Definition 12 (∆-matroid relation [12]). Let R ⊆ {0, 1}r be a relation. Ifx,x′ ∈
{0, 1}r, thenx′ is a step fromx to y if dH(x,x′) = 1 anddH(x,x′) + dH(x′,y) =
dH(x,y).R is a∆-matroid relationif it satisfies the following two-step axiom:∀x,y ∈
R and∀x′ a step fromx to y, eitherx′ ∈ R or ∃x′′ ∈ R which is a step fromx′ to y.

As an example of a∆-matroid relation considerNAND3. It is not hard to see that
NAND3 satisfies the two-step axiom for every pair of tuples as thereis only one tuple
which is absent from the relation.EQ3 is the simplest example of a relation which
is not a∆-matroid relation. The main theorem of this section is the following partial
classification result for W-MAX ONES(Γ)-2. We say that a constraint languageΓ is
∆-matroid if every relation inΓ is a∆-matroid relation.

Theorem 13. LetΓ be a conservative constraint language,

1. If Γ ⊆ IV2 or Γ ⊆ ID1 thenW-MAX ONES(Γ)-2 is in PO.
2. Else ifΓ ⊆ IL2 and,

– Γ is not∆-matroid then,W-MAX ONES(Γ)-2 is APX-complete.
– otherwise,W-MAX ONES(Γ)-2 is in PO.

3. Else ifΓ ⊆ ID2 and,
– Γ is not∆-matroid then,W-MAX ONES(Γ)-2 is poly-APX-complete.
– otherwise,W-MAX ONES(Γ)-2 is in PO.

4. Else ifΓ ⊆ IE2 andΓ is not∆-matroid thenW-MAX ONES(Γ)-2 is APX-hard.
5. Else ifΓ is not∆-matroid then it isNP-hard to find feasible solutions toW-MAX

ONES(Γ)-2.

Part 1 of the theorem follows from the known results for W-MAX ONES [1]. Part 4
follows from results for CSP(Γ)-2 [14, Theorem 4]. The other parts follows from the
results in Sections 4.3 and 4.4 below.

4.2 Tractability Results for W-MAX ONES(Γ)-2

Edmonds and Johnson [13] has shown that the following integer linear programming
problem is solvable in polynomial time: maximisewx subject to the constraints0 ≤
x ≤ 1, b1 ≤ Ax ≤ b2 andx is an integer vector. HereA is a matrix with integer
entries such that the sum of the absolute values of each column is at most2. b1, b2 and
w are arbitrary real vectors of appropriate dimensions. We will denote this problem by
ILP-2. With the polynomial solvability of ILP-2 it is possible to prove the tractability
of a number of W-MAX ONES(Γ)-2 problems.

9

4.3 Classification ofID2 and IL2

WhenPol(Γ) = Pol(ID2) or Pol(Γ) = Pol(IL2) we prove a complete classifica-
tion result. We start with the hardness results forID2, which consists of the following
lemma.

Lemma 14. Let Γ be a constraint language such thatPol(Γ) = Pol(ID2). If there
is a relationR ∈ Γ which is not a∆-matroid relation, thenW-MAX ONES(Γ)-2 is
poly-APX-complete.

The main observations used to prove the lemma is that sincePol(Γ) = Pol(ID2) we
can 2-represent every two-literal clause. This has been proved by Feder in [14]. Fur-
thermore, if we have access to every two-literal clause and also have a non-∆-matroid
relation then it is possible to make variables participate in three clauses, which was also
proved in [14]. The hardness result then follows with a reduction from MIS.

We will use some additional notation in the following proofs. For a tuplex =
(x1, x2, . . . , xk) and a set of coordinatesA ⊆ [k], x ⊕ A is defined to be the tuple
(y1, y2, . . . , yk) whereyi = xi if i 6∈ A andyi = 1 − xi otherwise. We extend this
notation to relations: ifR ⊆ {0, 1}n andA ⊆ [n] thenR⊕A = {t⊕A | t ∈ R}.

We will now define a constraint language denoted byQ. We will later prove that
W-MAX ONES(Q)-2 is in PO. Q is the smallest constraint language such that:

– ∅, c0, c1, EQ2 and{(0, 1), (1, 0)} are inQ.
– Every relation definable as{t | dH(0, t) ≤ 1} is inQ.
– If R,R′ ∈ Q then their cartesian product{(t, t′) | t ∈ R, t′ ∈ R′} is also inQ.
– If R ∈ Q andn is the arity ofR thenR ⊕A ∈ Q for everyA ⊆ [n].
– If R ∈ Q, n is the arity ofR andf : [n] → [n] is a permutation on[n] then
{(tf(1), tf(2), . . . , tf(n)) | t ∈ R} is inQ.

The relation betweenQ and the∆-matroid relations inID2 is given by the follow-
ing lemma.

Lemma 15. If R ∈ ID2 is a∆-matroid relation, thenR ∈ Q.

As for the tractability part we have the following lemma.

Lemma 16. Let Γ be a constraint language such thatΓ ⊆ ID2, if all relations inΓ
are∆-matroid relations thenW-MAX ONES(Γ)-2 is in PO.

The idea behind the proof is that W-MAX ONES(Q)-2 can be seen as an ILP-2 problem
and is therefore solvable in polynomial time.

As for IL2 the result is the same, non∆-matroids give rise toAPX-complete prob-
lems and absence of such relations makes the problem tractable. Also in this case the
tractability follows from a reduction to ILP-2.

4.4 IE2, IS12 and IS10

The structure of the∆-matroids do not seem to be as simple inIS12 and IS10 as
they are inID2 andIL2. There exists relations inIS12 which are∆-matroid relations

10

but for which we do not know of any polynomial time algorithm.One such relation is
R(x, y, z, w) ⇐⇒ NAND3(y, z, w)∧NAND3(x, z, w)∧NAND2(x, y). However,
we get tractability results for some relations with the algorithm for ILP-2. In particular
if the constraint language is a subset of{NANDm | m ∈ N}∪{IMPL} then W-MAX

ONES(·)-2 is in PO.
We manage to prove hardness results for every non-∆-matroid relation contained in

those co-clones. The main part of our hardness results for the non-∆-matroid relations
is the following lemma.

Lemma 17. Let R(x1, x2, x3) ⇐⇒ NAND2(x1, x2) ∧ NAND2(x2, x3), then
W-MAX ONES({c0, c1, R})-2 is APX-complete.

Note thatR is not a∆-matroid relation. With Lemma 17 and a careful enumeration
of the types of non-∆-matroid relations that exists inIE2, we can deduce the desired
result: if there is a non-∆-matroid relation in the constraint language, then W-MAX

ONES(·)-2 is APX-hard. The proof builds upon the work in [14,18,2].

5 Non-conservative Constraint Languages

In this section we will take a look at the non-conservative case, i.e., we will look at
constraint languages which do not necessarily containc0 andc1. A relationR is said
to be1-valid if it contains the all ones tuple, i.e.,R is 1-valid if (1, 1, . . . , 1) ∈ R. A
constraint language is said to be 1-valid if every relation in the language is 1-valid.

Theorem 18. For any constraint languageΓ which is not 1-valid, ifW-MAX ONES(Γ∪
{c0, c1})-k is NP-hard for some integerk then so isW-MAX ONES(Γ)-k.

Note that for constraint languagesΓ which are 1-valid W-MAX ONES(Γ) is trivial: the
all-ones solution is optimal. The idea in the proof is that wecan simulatec1 constraints
by giving the variable a large weight. Furthermore, if thereare relations which are not
1-valid then we can representc0 constraints when we have access toc1 constraints. It
fairly easy to see why this fails to give us any inapproximability results: due to the large
weight used to simulatec1 any feasible solution is a good approximate solution.

6 Conclusions

We have started the study of the approximability propertiesof bounded occurrence
MAX ONES. We have presented a complete classification for the weighted conserva-
tive case when three or more variable occurrences are allowed. Furthermore, a partial
classification of the two occurrence case has been presented. In the latter case we have
proved that non-∆-matroid relations give rise to problems which areAPX-hard if the
unbounded occurrence variant is not tractable. We have alsogiven complete classifica-
tions for theIL2 andID2 co-clones.

There are still lots of open questions in this area. For example, what happens with
the complexity if the weights are removed? Many constraint satisfaction problems such
as MAX ONES and MAX CSP do not get any harder when weights are added. Such

11

results are usually proved by scaling and replicating variables and constraints a suitable
number of times. However, such techniques do not work in the bounded occurrence
setting and we do not know of any substitute which is equally general.

Except for theIS12 andIS10 chains the open questions in the two occurrence case
are certain constraint languagesΓ such thatΓ only contains∆-matroid relations and
Pol(Γ) = Pol(BR). It would be very interesting to find out the complexity of W-MAX

ONES(·)-2 for some of the classes of∆-matroid relations which have been proved
to be tractable for CSP(·)-2 in [14,12,16,15]. Instead of trying to classify the entire
IS12 or IS10 chain one could start withIS3

12 or IS3
10. The approximability of the non-

conservative case is also mostly open. In light of [21] the computational structure of
those problems seems to be quite complex.

12

Appendix

Proofs for Results in Section 3

Proof (Of Lemma 11).Let I = (V,C,w) be an instance of W-MAX ONES(Γ). We will
start with the case whenIMPL is 3-representable.

If IMPL is 3-representable we can reduceI to an instanceI ′ = (V ′, C′, w′) of W-
MAX ONES(Γ)-2 as follows: for each variablevi ∈ V , let oi be the number of occur-
rences ofvi in I, we introduce the variablesv1i , . . . , v

oi
i in V ′. We letw′(v1i) = w(vi)

andw′(vji) = 0 for j 6= 1. We also introduce the constraintsIMPL(vki , v
k+1
i) for

k, 1 ≤ k ≤ oi − 1 andIMPL(voii , v1i) into C′. For everyi, 1 ≤ i ≤ |V | those con-
straints makes the variablesv1i , . . . , v

oi
i have the same value in every feasible solution

of I ′.
For every constraintc = (R, s) ∈ C the constraint scopes = (vl1 , . . . , vlm) is

replaced bys′ = (vk1

l1
, . . . , vkm

lm
) and(R, s′) is added toC′. The numbersk1, . . . , km

are chosen in such a way that every variable inV ′ occur exactly three times inI ′. This
is possible since there areoi variables inV ′ for everyvi ∈ V .

It is clear that the procedure described above is anS-reduction from W-MAX

ONES(Γ) to W-MAX ONES(Γ)-3.
I can easily beS-reduced to an instanceI ′ of W-MAX ONES(Γ ∪ {EQ2})-3. And

asEQ2 is 3-representable byΓ we are done, as every constraint involvingEQ2 can
be replaced by the3-representation ofEQ2 and any auxiliary variables used in the
representation can be assigned the weight zero. ⊓⊔

We need a couple of lemmas before we can state the proof of the classification
theorem (Theorem 7). The following lemma will be used in several places to prove
hardness results.

Lemma 19. LetΓ be a constraint language such thatPol(Γ) = Pol(ISm
1α) for some

integerm andα ∈ {0, 2}, thenNANDm can be2-represented byΓ .

Proof. AsPol(Γ) = Pol(ISm
1α),Γ is invariant underhm and not invariant underhm−1.

Let r be the arity ofR and letX ⊆ [r] be a set of minimal cardinality such that
there exist tuplesx1,x2, . . . ,xm ∈ R

∣

∣

X
which satisfieshm−1(x1,x2, . . . ,xm) =

z 6∈ R
∣

∣

X
. If there is a coordinatei ∈ X such thatx1[i] = x2[i] = . . . = xm[i]

thenz[i] = x1[i] and asX is minimal we must havez ⊕ i ∈ R
∣

∣

X
. However, this

means thathm(x1,x2, . . . ,xm, z ⊕ i) = z 6∈ R
∣

∣

X
which is a contradiction with the

assumption thatR is invariant underhm. We conclude that no coordinate is constant in
everyx1,x2, . . . ,xm.

Now assume that there is a coordinatej ∈ X such thatz[j] = 0, then forX to be
minimal we must havez⊕j ∈ R

∣

∣

X
. However,hm(x1,x2, . . . ,xm, z⊕j) = z 6∈ R

∣

∣

X
,

a contradiction, hence there is noj ∈ X such thatz[j] = 0.
We can assume that|X | ≥ m because every relation of arity less thanm which is

invariant underhm is also invariant underhm−1 [7, Proposition 3.6].
We do now know three things, no coordinate inX is constant in everyx1,x2, . . . ,xm,

z = (1, 1, . . . , 1) and|X | ≥ m. Asz = (1, 1, . . . , 1) there is at most one zero for every
given coordinatei ∈ X amongx1[i],x2[i], . . . ,xm[i], however as there is no constant

13

coordinate and|X | ≥ m we must have at least one zero in everyx1,x2, . . . ,xm. We
can in fact assume that there is exactly one zero entry, because if it is two distinct coor-
dinatesi, j ∈ X such thatx1[i] = x1[j] = 0 then asz = (1, 1, . . . , 1) no other tuple
can havexk[i] = 0 orxk[j] = 0. The conclusion is thatR

∣

∣

X\{j}
is not invariant under

hm−1 either.
This implies thatxi = (1, 1, . . . , 1) ⊕ i. It is not hard to see that by using the

fact thatR is invariant underandwe can get any tupley = (y1, y2, . . . , ym) such that
y1 + y2 + . . . + ym < m by applyingand to thexis an appropriate number of times.
Hence, we must haveR

∣

∣

X
= NANDm. ⊓⊔

Lemma 20. If Pol({R}) = Pol(ISm
12) for somem ≥ 2 andR cannot representEQ2,

then〈{R, c0, c1}〉 = 〈{NANDm, c1}〉.

Proof. We will denoteNANDm byN . Letr be the arity ofR thenB = {N,EQ2, c1}
is a plain basis forISm

12 (see Table 1). AsB is a plain basis forR there is an implemen-
tation of R on the following form,

R(x1, . . . , xr) ⇐⇒ N(xk1

1
, xk2

1
, . . . , xkm

1
) ∧ . . . ∧N(xk1

n
, . . . , xkm

n
)∧

EQ2(xl1
1

, xl2
1

) ∧ . . . ∧EQ2(xl1
c
, xl2

c
)

c1(xc1) ∧ . . . ∧ c1(xcw)

for somen, c andw such thatkji ∈ [r], lji ∈ [r] andci ∈ [r].
Assume that the representation above is minimal in the sensethat it contains a min-

imal number of constraints. Hence, the only equalities thatare possible are of the form
EQ2(xi, xj) for i 6= j. If there is such an equality there are a number of cases to
consider,

1. R
∣

∣

{i,j}
= {(0, 0), (1, 1)},

2. R
∣

∣

{i,j}
= {(1, 1)}, and

3. R
∣

∣

{i,j}
= {(0, 0)}.

We cannot have equalities of type 1 because thenEQ2 would be representable byR.
Furthermore, equalities of type 2 and 3 can be replaced by constraints of the form
c1(xi) ∧ c1(xj) andN(xi, . . . , xi) ∧N(xj , . . . , xj), respectively.

The conclusion is thatR can be represented withoutEQ2 and hence it is represent-
able by{N, c1} alone. We have thus proved that〈{R, c0, c1}〉 ⊆ 〈{N, c1}〉. The other
inclusion,〈{N, c1}〉 ⊆ 〈{R, c0, c1}〉, is given by Lemma 19. ⊓⊔

As for the containment we have the following lemma.

Lemma 21. Let Γ be a constraint language ifΓ ⊆ ISm
12 for somem andΓ cannot

representEQ2 thenW-MAX ONES(Γ)-k is in APX.

Proof. Lemma 20 tells us that〈Γ 〉 = 〈{NANDm, c1}〉, hence an instanceJ of W-
MAX ONES(Γ)-k can be reduced to an instanceJ ′ of W-MAX ONES({NANDm, c1})-
k′ for some constantk′. To prove the lemma it is therefore sufficient show that W-MAX

ONES({NANDm, c1})-l is in APX for every fixedl.

14

Let I = (V,C,w) be an arbitrary instance of W-MAX ONES({NANDm, c1})-l,
for somel, and assume thatV = {x1, . . . , xn}. By Schaefer’s result [26] we can decide
in polynomial time whetherI have a solution or not. Hence, we can safely assume that
I has a solution. If a variable occurs in a constant constraint, sayc1(x), thenx must
have the same value in every model ofI. Thus, we can eliminate all such variables and
assume thatI only contains constraints of the typeNANDm(x1, . . . , xm).

We will give a polynomial-time algorithm that creates a satisfying assignments to I
with measure at least1

l+1 OPT(I). Hence we have a1
l+1 -approximate algorithm proving

that W-MAX ONES(IS12)-l is in APX.
The algorithm is as follows: Repeatedly delete fromI any variablexi having max-

imum weight and all variables that appear together withxi in a clause of size two. In
s we assign1 to xi and0 to all variables appearing together withxi in a clause of size
two.

For simplicity, assume that the algorithm chooses variablesx1, x2, . . . , xt before it
stops. If the algorithm at some stage choose a variablex with weightw(x), then, in
the worst case, it is forced to setl (remember that no variable occurs more thanl times
in I) variables to0 and each of these variables have weightw(x). This implies that
(l + 1) ·

∑t

i=1 w(xi) ≥
∑n

i=1 w(xi) and

m(I, s) =

t
∑

i=1

w(xi) ≥
1

l + 1

n
∑

i=1

w(xi) ≥
OPT(I)

l+ 1
.

⊓⊔

Lemma 22. Let Γ be a constraint language such thatIS2
12 ⊆ 〈Γ 〉 ⊆ IS12 thenW-

MAX ONES(Γ)-k is APX-hard fork ≥ 3.

Proof. Note that MIS-3 is exactly the same as MAX ONES({NAND2})-3. The lemma
then follows from the fact that MIS-3 isAPX-hard, Lemma 19, and Lemma 6. ⊓⊔

We are now ready to give the proof of the classification theorem for three or more
occurrences.

Proof (Of Theorem 7, part 1).Follows directly from Khanna et al’s results for MAX

ONES [20]. ⊓⊔

Proof (Of Theorem 7, part 2).TheAPX-hardness follows from Lemma 22. Contain-
ment inAPX follows from Lemma 21. IfEQ2 is k-representable byΓ then the result
follows from Lemma 11 and Khanna et al’s results for MAX ONES [20]. ⊓⊔

Proof (Of Theorem 7, part 3).There are two possibilities, the first one is thatΓ 6⊆ IE2

andΓ 6⊆ IV2, the second case is thatΓ ⊆ IE2 andΓ 6⊆ IS12.
In the first case we can use the3-representation ofEQ2 or IMPL from Lemma 9.

The result then follows from Lemma 11. In the second case the result follows from
Lemma 10 and Lemma 11. ⊓⊔

15

Proofs for Results in Section 4

We will start with the case whenPol(Γ) = Pol(ID2). We need the following lemma
before we can give the proof of Lemma 14.

Lemma 23. LetΓ be a constraint language such thatPol(Γ) = Pol(ID2) thenx∨ y,
IMPL andNAND2 are2-representable byΓ .

Proof. A part of the proof of Theorem 3 in [14] is the following: letF be a constraint
language such that there are relationsR1, R2, R3 ∈ F with the following properties:

– R1 is not closed underf(x, y) = x ∨ y.
– R2 is not closed underg(x, y) = x ∧ y.
– R3 is not closed underh(x, y, z) = x+ y + z (mod2).

thenF can2-represent every two-literal clause. As we have assumed that Pol(Γ) =
Pol(ID2) there are relations inΓ which full fills the conditions above. The lemma
follows. ⊓⊔

Proof (Of Lemma 14).We will do anS-reduction from thepoly-APX-complete prob-
lem MIS, which is precisely MAX ONES({NAND2}). Let I = (V,C) be an arbitrary
instance of MAX ONES({NAND2}). We will construct an instanceI ′ = (V ′, C′, w)
of W-MAX ONES(Γ)-2. From Lemma 23 we know that we can2-represent every two-
literal clause. It is easy to modifyI so that each variable occur at most three times. For a
variablex ∈ V which occurk times, introducek fresh variablesy1, y2, . . . , yk and add
the constraintsIMPL(y1, y2), IMPL(y2, y3), . . . , IMPL(yk, y1). Each occurrence
of x is then replaced with one of theyi variables. In every solution each of theyi vari-
ables will obtain the same value, furthermore they occur three times each. Hence, if we
can create a construction which allows us to let a variable participate in three clauses
we are done with our reduction.

In Theorem 4 in [14] it is shown that given a relation which is not a∆-matroid we
can make variables participate in three clauses if we have access to all clauses.

If we assign appropriate weights to the variables inV ′ it is clear thatOPT(I) =
OPT(I ′) and each solution toI ′ corresponds to a solution ofI with the same measure.
Hence, we get anS-reduction. ⊓⊔

We will now give the proof of Lemma 15 which describes the structure of the∆-
matroid relations inID2.

For a relationR ∈ Q if R can be decomposed (possibly after a permutation of the
coordinates ofR) into a cartesian product of other relations,P1, P2, . . . , Pn ∈ Q then
P1, P2, . . . , Pn will be called thefactorsof R.

Proof (Of Lemma 15).In this proof we will denote the majority function bym, i.e.,
m(x, y, z) = (x ∧ y) ∨ (y ∧ z) ∨ (x ∧ z). Note that every relation inID2 is invariant
underm. Let R be a relation which contradicts the lemma, i.e.,R ∈ ID2, R is a∆-
matroid andR 6∈ Q. Letn be the arity ofR. We can assume without loss of generality
thatR consists of one factor, i.e., it is not possible to decomposeR into a cartesian
product of other relations. In particular,R do not contain any coordinate which has the
same value in all tuples.

16

As every relation of arity less than or equal to two is inQ we can assume thatn ≥ 3.
If for every pair of tuplest, t′ ∈ R we havedH(t, t′) ≤ 2 thenR ∈ Q which is a
contradiction. To see this lett1, t2, t3 be three distinct tuples inR (if there are less than
three tuples inR then eitherR is not a∆-matroid relation or there is some coordinate
which is constant in all tuples). Thent2 = t1 ⊕ A, t3 = t1 ⊕ B for someA,B ⊆ [n]
such that|A|, |B| ≤ 2 and|A∩B| ≤ 1. If |A∪B| ≤ 2 for all such sets thenR is either of
arity 2 or there is a coordinate inR which is constant. Hence, assume that|A∪B| = 3,
which implies|A| = |B| = 2. Let t = m(t1, t2, t3). We will prove that for every tuple
t′ ∈ R we havedH(t′, t) ≤ 1. To this end, lett′ = t ⊕ C, with |C| = 2 (|C| ≤ 1
impliesdH(t′, t) ≤ 1), be an arbitrary tuple inR. If |A ∩ C| = 0 (or, |B ∩ C| = 0)
thendH(t2, t

′) ≥ 3 (dH(t3, t
′) ≥ 3). Hence, we must have|A ∩ C|, |B ∩ C| ≥ 1 but

this impliesdH(t, t′) ≤ 1 or dH(t, t′) ≥ 3, but the latter is not possible. We conclude
that for every tuplet′ ∈ R we havedH(t, t′) ≤ 1, henceR ∈ Q which contradicts our
assumption thatR 6∈ Q.

Hence, there exists tuplest, t′ ∈ R such thatdH(t, t′) ≥ 3. If for every pair of
such tuples it is the case that every step,s, from t to t′ we haves ∈ R, then as no
coordinate is constant, we must have(0, 0, . . . , 0) ∈ R and(1, 1, . . . , 1) ∈ R. However,
if (0, 0, . . . , 0), (1, 1, . . . , 1) ∈ R and every step from the former to the latter is inR
then every tuple with one coordinate set to1 is inR, too. We can continue this way and
get every tuple with two coordinates set to one and then everytuple withk coordinates
set to1 for k ∈ [n]. Hence, we must haveR = {0, 1}n ∈ Q.

We can therefore assume that there exists an coordinatel such that the steps =
t ⊕ l from t to t′ is not inR. Then, asR is a∆-matroid relation, there exist another
coordinateK such thats ⊕ {K} ∈ R is a step froms to t′. Let X denote the set of
coordinatesi such thatt⊕ i 6∈ R butt⊕{K, i} ∈ R, furthermore chooset andK such
that|X | is maximised and letX ′ = X ∪ {K}.

Our goal in the rest of the proof is to show that ifX ′ = [n] thenR ∈ Q and
otherwise it is possible to decomposeR into a cartesian product withR

∣

∣

X′
in one factor

andR
∣

∣

[n]\X′
in the other factor. As we have assumed thatR cannot be decomposed into

a cartesian product we get a contradiction and hence the relationR cannot exist.

Case 1:|X′| = 2

We will start with the case when|X ′| = 2. Assume, without loss of generality, that
X ′ = {x,K} thent, t ⊕ {x,K} ∈ R andt ⊕ x 6∈ R. We will now prove that we
cannot have any tuplesv in R such thatv

∣

∣

X′
= (t⊕ x)

∣

∣

X′
. If we had such a tuple then

m(v, t, t⊕ {x,K}) = w ∈ R due to the fact thatR ∈ ID2 andm is a polymorphism
of ID2. Furthermore,w must have the same value ast on every coordinate except for
possiblyx andK, this follows from the fact thatt has the same value ast ⊕ {x,K}
on every coordinate except forx andK. Hence, the only coordinates for which we do
not know the value ofw arex andK. However,v[K] = t[K] (due do the construction
of v and the fact thatK ∈ X ′). Hence we must getw[K] = t[K]. Forw[x] note that
v[x] = (t⊕ {x,K})[x], hencew[x] = (t⊕ x)[x]. We can finally concludew = t⊕ x
which is a contradiction with the construction ofX ′.

Similar arguments as the above will be used repeatedly in this proof. However, the
presentation will not be as detailed as the one above.

17

We split the remaining part of case 1 into two subcases, whent⊕K 6∈ R (subcase
1a) andt⊕K ∈ R (subcase 1b).

Subcase 1a:t⊕K 6∈ R Assume thatt⊕K 6∈ R, then(t⊕K)
∣

∣

X′
6∈ R

∣

∣

X′
, because

given a tuplev such thatv
∣

∣

X′
= (t⊕K)

∣

∣

X′
thenm(t, t⊕{x,K},v) = t⊕K, which

is not inR by the assumption we made.
Furthermore, for any tuplev ∈ R, v ⊕ x is a step fromv to eithert or t⊕ {x,K},

but v ⊕ x 6∈ R (because eitherv
∣

∣

X′
= t

∣

∣

X′
which would implyv ⊕ x 6∈ R, or

v
∣

∣

X′
= (t⊕ {x,K})

∣

∣

X′
which implies(v ⊕ x)

∣

∣

X′
= (t⊕K)

∣

∣

X′
6∈ R

∣

∣

X′
).

The only way to get fromv⊕x to something which is inR is by flipping coordinate
K, hencev ⊕ {x,K} ∈ R. This is the end of the case whent⊕K 6∈ R, because what
we have proved above is thatR can be decomposed into a cartesian product with the
coordinatesX ′ in one factor and[n] \X ′ in the other factor.

Subcase 1b:t⊕K ∈ R We know that(t⊕x)
∣

∣

X′
6∈ R

∣

∣

X′
. We will now show that for

anyv ∈ R such that,v
∣

∣

X′
is eithert

∣

∣

X′
or (t⊕{x,K})

∣

∣

X′
, we havev⊕{x,K} ∈ R.

To this end, letv be an arbitrary tuple inR satisfying one of the conditions above.
We will consider the two possible cases separately.

– If v
∣

∣

X′
= t

∣

∣

X′
thenv ⊕ x is a step fromv to t ⊕ {x,K} andv ⊕ x 6∈ R.

Furthermore, the only way to get intoR is by flippingK hencev ⊕ {x,K} ∈ R.
– If v

∣

∣

X′
= (t ⊕ {x,K})

∣

∣

X′
thenv ⊕ K is a step fromv to t andv ⊕ K 6∈ R.

Furthermore, the only way to get intoR is by flippingx hencev ⊕ {x,K} ∈ R.

Now, letv be an arbitrary tuple inR such thatv
∣

∣

X′
= (t ⊕K)

∣

∣

X′
thenv ⊕K is

a step fromv to t. If v ⊕ K ∈ R or v ⊕ x ∈ R then we are done with this step, so
assume thatv⊕K,v⊕x 6∈ R. However, asR is a∆-matroid relation there has to exist
a coordinatel such thatv ⊕ {K, l} ∈ R. Then we get,(v ⊕ {K, l})

∣

∣

X′
= t

∣

∣

X′
which

impliesv ⊕ {x, l} ∈ R by the argument above. However, this means that|X | is not
maximal we could have chosenv, l andX ′ instead oft, K andX . We conclude that
v ⊕K ∈ R.

Finally, letv be an arbitrary tuple inR such thatv
∣

∣

X′
= t

∣

∣

X′
thenv ⊕K ∈ R. To

see this note thatm(t⊕K,v,v ⊕ {x,K}) = v ⊕K.
We have now proved thatR can be decomposed into a cartesian product with the

coordinatesX ′ in one factor and[n] \X ′ in the other factor for this case too.
As we have assumed that the arity ofR is strictly greater than two we haveX ′ 6= [n].

Hence,[n] \X ′ 6= ∅.

Case 2:|X′| > 2

The rest of the proof will deal with the case when|X ′| > 2. We will begin with estab-
lishing a number of claims ofR. Assuming thatX ′ 6= [n], our main goal is still to show
thatR can be decomposed into a cartesian product withX ′ in one factor and[n] \X ′

in one factor. IfX ′ = [n] we will show thatR ∈ Q.
Claim 1: if dH(x

∣

∣

X
, t
∣

∣

X
) = 1 andx[K] = t[K] thenx 6∈ R

18

Let x be a tuple which satisfies the precondition in the claim, assume thatx ∈ R,
and leti ∈ X be a coordinate wherex differs from t. By the construction ofX we
have thatt⊕ {K, i} ∈ R, hence we getm(t, t⊕ {K, i},x) = t⊕ {i} ∈ R, which is a
contradiction.

Claim 2: if dH(x
∣

∣

X
, t
∣

∣

X
) = m, for any m such that2 ≤ m ≤ |X |, thenx 6∈ R

We will prove this claim by induction onm. For the base case, letm = 2. Let
x ∈ X be some coordinate such thatx[x] 6= t[x], if x ∈ R andx[K] = t[K] then
m(t,x, t⊕ {x,K}) = t⊕ x 6∈ R. Hencex[K] = t[K] is not possible.

On the other hand ifx[K] 6= t[K] thenx ⊕ K is a step fromx to t. By the
argument in the preceding paragraph we getx ⊕K 6∈ R (note thatK 6∈ X hence we
havedH((x ⊕ K)

∣

∣

X
, t
∣

∣

X
) = m). Furthermore asR is a∆-matroid we can flip some

coordinatel ∈ X such thatt[l] 6= x[l] to get a tuple which is inR (l 6∈ X will not
work as the argument in the preceding paragraph still applies in that case). However,
dH((x⊕ {K, l})

∣

∣

X
, t
∣

∣

X
) = 1 hence by claim 1 we get a contradiction.

Now, assume that claim 2 holds form = m′. We will prove that it also holds for
m = m′ + 1 such that2 < m ≤ |X |. Note that we can use exactly the same argument
as above except for the very last sentence in which we appeal to claim 2 withm = m′

instead of using claim 1. As we have assumed that claim 2 holdsfor m = m′ we are
done.

Claim 3: there is a tuple z ∈ R
∣

∣

X′
such that for any tuple x ∈ R

∣

∣

X′
we have

dH(z,x) ≤ 1

If |X ′| > 2, then there are tuplest⊕{i,K} andt⊕{j,K} for distincti, j,K ∈ X ′

in R. Hence, the tuplez′ = m(t, t⊕{i,K}, t⊕{j,K}) = t⊕K ∈ R. Letz = z′

∣

∣

X′
.

We will now show thatdH(z,x
∣

∣

X′
) ≤ 1 for every tuplex in R. To this end, letx

be an arbitrary tuple inR. By claim 2 we must havedH(x
∣

∣

X
, t
∣

∣

X
) ≤ 1, furthermore

if x[K] = z′[K] 6= t[K] then we are done asdH(x
∣

∣

X′
, z′

∣

∣

X′
) = 1 in this case. On

the other hand, ifx[K] = t[K] then claim 1 and claim 2 tells us that we must have
dH(x

∣

∣

X
, t
∣

∣

X
) = 0 in which case claim 3 follows.

Claim 4: if x ∈ R and x
∣

∣

X′
= z ⊕ {i} for somei ∈ X ′, thenx⊕ {i, j} ∈ R for

everyj ∈ X ′.
Given j ∈ X ′, j 6= i, there is at least one tuplev ∈ R such thatv[j] 6= x[j]

since otherwise the coordinatej would be constant andR could be decomposed into a
cartesian product. Hence,x′ = x ⊕ j is a step fromx to v, but claim 3 tells us that
x′ 6∈ R and the only way to full fill the two-step axiom is ifx ⊕ {i, j} ∈ R (due to
claim 3 we cannot havedH(x,v) = 1).

We will now prove thatR can be decomposed into cartesian product where the
coordinatesX ′ make up one factor and[n]\X ′ make up the other factor. LetP = R

∣

∣

X′
.

Our goal is to show that for anyp ∈ P andv ∈ R
∣

∣

[n]\X′
we have(p,v) ∈ R (we have

assumed thatX ′ = {1, 2, 3, . . . , |X ′|} here).
To this end, letv andv′ be arbitrary tuples inR. By claim 3 there either is a coor-

dinatei ∈ X ′ such that(v ⊕ i)
∣

∣

X′
= z or v

∣

∣

X′
= z. The same is true forv′; either

there is an coordinatei′ ∈ X ′ such that(v′ ⊕ i′)
∣

∣

X′
= z or v′

∣

∣

X′
= z,

If v′

∣

∣

X′
= v

∣

∣

X′
or v′

∣

∣

[n]\X′
= v′

∣

∣

[n]\X′
then we are done, so assume that neither

holds.

19

If v′
∣

∣

X′
6= z andv

∣

∣

X′
6= z thens = v ⊕ i′ is a step fromv to v′ but by claim 3

s 6∈ R and the only way to go a step froms to v′ and get intoR is s′ = s ⊕ i, hence
s′ ∈ R.

For the other case, whenv′
∣

∣

X′
= z andv

∣

∣

X′
6= z, if there is a coordinatej ∈ X ′

such thatv′ ⊕ j ∈ R then we are back to the previous case, so assume that such a
j do not exist. AsR is a ∆-matroid there must be a coordinatex 6∈ X ′ such that
s = v′ ⊕ {i, x} ∈ R, because for some appropriatex, s is a step fromv′ ⊕ i to v.
Due to claim 4 we will then havev′ ⊕ {x, y} ∈ R for everyy ∈ X ′. However, this
contradicts the maximality ofX since we could have chosenv′, x, andX ′ instead of
t, K, andX . The conclusion is that ifX ′ 6= [n], thenR can be decomposed into a
cartesian product. On the other hand, ifX ′ = [n], then we can easily deduce from
claim 3 thatR ∈ Q. ⊓⊔

Proof (Of Lemma 16).Let I be an arbitrary instance of W-MAX ONES(Γ)-2. We will
show that the problem is inPO by reducing it to an instanceI ′ of ILP-2. For any
relationR ∈ Γ of arity n we know, from Lemma 15, thatR ∈ Q. We can assume that
R is not the cartesian product of any other two relations, because if it is then every use
of R can be substituted by the factors in the cartesian product. If R is unary we can
replaceR(x) by x = 0 or x = 1. If R = EQ2 then we can replaceR(x, y) by x = y
and ifR(x, y) ⇐⇒ x 6= y then we replaceR(x, y) by x = y − 1.

Now, assume that none of the cases above occur. We will show that

R(t1, t2, . . . , tn) ⇐⇒
n
∑

i=1

aiti ≤ b (1)

for someai ∈ {−1, 1} and integerb. LetN be set of negated coordinates ofR, i.e., let
N ⊆ [n] such that

R = {(f(t1, 1), f(t2, 2), . . . , f(tn, n)) | dH(0, t) ≤ 1}

wheref : {0, 1} × [n] → {0, 1} andf(x, i) = ¬x if i ∈ N andf(x, i) = x otherwise.
According to the definition ofQ, R can be written on this form. Letai = −1 if i ∈ N
andai = 1 otherwise. Furthermore, letb = 1 − |N |. It is now easy to verify that (1)
holds.

As every variable occur at most twice inI every variable occur at most twice inI ′

too. Furthermore, the coefficient in front of any variable inI ′ is either−1, 0 or 1, hence
the sum of the absolute values in any column inI ′ is bounded by2. I ′ is therefore an
instance of ILP-2. If we let the weight function ofI ′ be the same as the weight function
in I it easily seen that any solutions to I ′ is also a solution toI with the same measure.

⊓⊔

As we are done withID2 we will continue withIL2. A linear system of equations
over GF(2) withn equations andm variables can be represented by a matrixA, a
constant column vectorb and a column vectorx = (x1, . . . , xm) of variables. The
system of equations is then given byAx = b. Assuming that the rows ofA are linearly
independent the set of solutions toAx = b are

{

(x′,x′′) | x′′ ∈ Zn−m
2 andx′ = A′x′′ + b′

}

.

20

wherex′ = (x1, . . . , xm), x′′ = (xm+1, . . . , xn) andA′ andb′ are suitably chosen.
If there is a column inA′ with more than one entry which is equal to1 (or, equiv-

alently more than one non-zero entry), then we say that the system of equations is
coupled.

Lemma 24. LetΓ be a conservative constraint language such thatΓ ⊆ IL2. If there
is a relationR ∈ Γ such thatR is the set of solutions to a coupled linear system of
equations overGF (2) then W-MAX ONES(Γ) ≤L W-MAX ONES(Γ)-2, otherwise
W-MAX ONES(Γ)-2 is in PO.

Proof. First note that every relationR ∈ IL2 is the set of solutions to a linear system
of equations over GF(2) [11].

We will start with the hardness proof. To this end we will construct a2-representation
of EQ3. LetR ∈ Γ be defined by

R =
{

(x′,x′′) | x′′ ∈ Zn−m
2 andx′ = A′x′′ + b′

}

.

for somen, m, A′ andb′. Furthermore, we can assume that there is one column (sayj)
in A′ with more than one entry equal to1 (sayi andi′). Hence,A′

ij andA′
i′j are equal

to 1. Our first implementation consists ofR and a number ofc0 constraints,

Q(xj+m, xi, xi′) ⇐⇒ R(x1, . . . , xn)
∧

k: m+1≤k≤n

k 6∈{j+m,i,i′}

c0(xk).

This implementation leaves us with three cases, the first oneisQ = EQ3, in which case
we are done. The other two cases areQ = {(0, 0, 1), (1, 1, 0)}andQ = {(0, 1, 0), (1, 0, 1)}.
We will give an implementation ofEQ3 with the first case, the other one is similar. Note
that

EQ3(y1, y2, y3) ⇐⇒ ∃z, z′ : Q(y1, y2, z) ∧Q(y3, z
′, z).

For the containment proof note that every relation inΓ is the set of solutions to
some non-coupled linear system of equations over GF(2). Theset of feasible solutions
to an instance of W-MAX ONES(Γ)-2 is therefore the set of solutions to a linear system
of equations over GF(2) with the property that every variable occurs at most twice. This
problem is solvable by Edmonds and Johnson’s method [13]. ⊓⊔

Corollary 25. LetΓ be a conservative constraint language such thatPol(Γ) = Pol(IL2)
if there is a relationR ∈ Γ such thatR is not a∆-matroid relation thenW-MAX

ONES(Γ)-2 is APX-complete, otherwiseW-MAX ONES(Γ)-2 is in PO.

Proof. Given a constraint languageΓ such thatPol(Γ) = Pol(IL2) then W-MAX

ONES(Γ) is APX-complete [20].
It is not hard to see that for a relationR ∈ Γ , R is not a∆-matroid relation if and

only if R is the set of solutions to a coupled system of equations. (The“if”-part follows
directly from the representation of relationQ in Lemma 24.)

Hence, if there is a relationR ∈ Γ such thatR is not a∆-matroid relation then we
getAPX-completeness for W-MAX ONES(Γ)-2 from Lemma 24. On the other hand,
if there is no non-∆-matroid relation inΓ then no relation is the set of solutions to a
coupled system of equations and hence we get tractability from Lemma 24. ⊓⊔

21

The final sub-case isΓ ⊆ IE2.

Proof (Of Lemma 17).For the containment note that the algorithm in Lemma 21 can
be used, as an instance of W-MAX ONES({c0, c1, R})-2 can easily be reduced to an
instance of W-MAX ONES({c0, c1, NAND2})-4.

We will do a reduction from MAX 2SAT-3 (i.e., MAX 2SAT where every variable
occurs at most three times), which isAPX-complete [1, Chap. 8]. The reduction is
based on Theorem 1 in [2], which in turn is based on some of Viggo Kann’s work on
3-dimensional matching [18].

We will do the reduction in two steps, we will first reduce MAX 2SAT-3, to a
restricted variant of MIS-3. More precisely the graphs produced by the reduction will
have maximum degree three and it will be possible to “cover” the graphs withR (we
will come back to this soon).

Let I = (V,C) be an arbitrary instance of MAX 2SAT-3. We will construct an
instanceI ′ = (G,w), whereG = (V ′, E′) andw : V ′ → Q, of weighted maximum
independent set. We can assume, without loss of generality,that each variable inI
occurs at least once unnegated and at least once negated. Fora nodev ∈ V construct
four paths with three nodes each. Sequentially label the nodes in path numberx by
px1, px2, px3. Construct three complete binary trees with four leaves each and label the
roots of the trees withv1,¬v1, v2 (or v1,¬v1,¬v2 if v occurs once unnegated and twice
negated). Finally, identify the leaves of each of the trees with the nodes in the paths with
similar labels, where two labelspxy andpuv are similar ify = v. Figure 2 contains this
gadget for our example variable,v.

p41
p42

p43

p32p31

p33

p21
p22

p23

p11
p12

p13

¬v1v1

v2

x21 x22x12x11

x31 x32

Fig. 2: The graph gadget for the variablev which occurs three times, two times un-
negated and one time negated.

Let thew be defined as follows,w(p12) = w(p22) = w(p32) = w(p42) = 2.25,
w(x21) = w(x22) = 2 andw(·) = 1 otherwise.

Denote the disjoint union of those paths and trees for all variables byX . A solution
S for the independent set problem forX will be calledconsistentif for each variable,v,
(which occurs twice unnegated and once negated) we havev1, v2 ∈ S and¬v1 6∈ S or

22

vice versa (i.e.,v1, v2 6∈ S and¬v1 ∈ S). It is not hard to verify (e.g., with a computer
assisted search) that the optimal solutions toX are consistent. Furthermore, for each
consistent solution there is a solution which is optimal andincludes or excludes thevi’s
and¬vi’s in the same way.

For each clausec ∈ C, containing the literalsl1 andl2, add two fresh nodesl1 and
l2 toG′. Connectl1 andl2 with an edge and connectl1 with the node which is labelled
with this literal (one of the roots of the trees). Do the same thing for l2.

We deduce that given a solution toI ′ it is possible to construct a consistent solution
with a measure which is greater than or equal to the measure ofthe original solution.
The only case we have to be careful about is when we are given a solution S where
v1, v2,¬v1 6∈ S. In this case the measure of the gadget is strictly less than the locally
optimal solution. Hence, we can add¬v1 which, in the worst case, will force us to
remove one node which was attached to¬v1 due to the clause which¬v1 is in. However,
this loss will be made up for as we can assign an optimal solution to the gadget.

We haveOPT(I ′) ≤ |V |K + OPT(I) whereK = 14 is the optimum value for our
gadget. AsOPT(I) ≥ |C|/2 and|V | ≤ 3|C| we getOPT(I ′) ≤ 3K|C| + OPT(I) ≤
(6K + 1)OPT(I), henceβ = 6K + 1 is an appropriate parameter for anL-reduction.

For any consistent solutionS′ to I ′ we can construct a solutions to I as follows, for
each variablev ∈ V let s(v) = TRUE if vi 6∈ S′ ands(v) = FALSE otherwise. We will
then have|OPT(I)−m(I, s)| = |OPT(I ′)−m(I ′, S′)|. Hence,γ = 1 is an appropriate
parameter for theL-reduction.

Using c0 andR it is possible to 2-representNAND2(x, y). To reduceI ′ to an
instance of W-MAX ONES({R})-2 note that we can “cover” each variable gadget with
R andNAND2, see Figure 3 how this is done. Furthermore, in the covering we have
only usedv1, ¬v1 andv2 once so it wont be any problems with connecting the gadgets
to each other withNAND2 constraints. ⊓⊔

We need the following result which has been proved by Feder [14, Theorem 3,
fact 1].

Lemma 26. Given a relationR which is not closed underf(x, y) = x∨ y, thenR can
2-represent eitherNAND2 or x 6= y.

Corollary 27. Given a relationR ∈ IE2 which is not closed underf(x, y) = x ∨ y,
thenR can2-representNAND2.

Proof. From Lemma 26 we deduce thatR can2-represent eitherNAND2 or x 6= y,
but the latter is not contained inIE2, hence we must have the former. ⊓⊔

Lemma 28. Let Γ be a conservative constraint language, ifIS2
12 ⊆ 〈Γ 〉 ⊆ IE2,

and there is a relationR ∈ Γ such thatR is not a∆-matroid relation, thenW-MAX

ONES(Γ)-2 is APX-hard.

Some parts of the following proof is similar to Feder’s proofin [14] that non-∆-
matroids causes CSP(·)-2 to be no easier than CSP(·).

Proof. AsR is not a∆-matroid relation there exists tuplest, t′ ∈ R such thatdH(t, t′) ≥
3 and a steps 6∈ R from t to t′ such that no step froms to t′ is contained inR.

23

p41
p42

p43

p32p31

p33

p21
p22

p23

p11
p12

p13

¬v1v1

v2

x21 x22x11 x12

x31 x32

Part of graphConstraints
Paths R(p11, p12, p13), R(p21, p22, p23)

R(p31, p32, p33), R(p41, p42, p43)
Tree forv1 R(p11, x11, p21), R(p31, x12, p41), R(x11, v1, x12)
Tree for¬v1 R(p12, x21, p22), R(p32, x22, p42), R(x21,¬v1, x22)
Tree forv2 R(p13, x31, p23), R(p33, x32, p43), R(x31, v2, x32)

Fig. 3: The gadget for the variablev covered by the relationR. Note that each variable
occurs at most twice and thatv1, v2 and¬v1 occurs once. Constraints with overlapping
nodes are represented by two different line styles in the graph: solid and dotted.

Let n be the arity ofR and letX ⊆ [n] be the set of coordinates wheret differs
from t′, i.e., t = t′ ⊕ X . Furthermore, letk ∈ [n] be the coordinate wheres differs
from t.

By using projections and thec0 and c1 constraints together withR we can2-
represent a new relation,P , which is not a∆-matroid relation and has arity3. To do
this, choose a subsetX ′ ⊂ X of minimal cardinality such thatk ∈ X ′ andt⊕X ′ ∈ R.
Note that|X ′| ≥ 3. Leta andb be two distinct coordinates inX ′ which differs fromk.
ConstructP as follows:

P (xk, xa, xb) ⇐⇒ R(x1, x2, . . . , xn)
∧

l∈[n]\X′

t[l]=1

c1(xl)
∧

l∈[n]\X′

t[l]=0

c0(xl).

Furthermore, letv = t
∣

∣

{k,a,b}
andv′ = t′

∣

∣

{k,a,b}
we then havev,v′ ∈ P andv⊕1,v⊕

{1, 2},v⊕{1, 3} 6∈ P . Hence, depending onv and which other tuples that are inP we
get a number of possibilities. We will use the following notation:a = v⊕ 2, b = v⊕ 3
andc = v ⊕ {2, 3}. Zero or more ofa, b andc may be contained inP . Tables 4–7
list the possible relations we can get, up to permutations ofthe coordinates. Note that
a ∈ P, b, c 6∈ P andb ∈ P,a, c 6∈ P are equivalent if we disregard permutations of
the coordinates. Similarlya, c ∈ P, b 6∈ P andb, c ∈ P,a 6∈ P are equivalent.

Some of the relations are not inIE2 and can therefore be omitted from further
consideration (it is clear that ifP is not inIE2 thenR is not inIE2 either, which is a
contradiction with the assumptions in the lemma). Others can 2-representEQ3, or can

24

do so together withNAND2. As an example considerA5, then

∃y1, y2, y3, z1, z2, z3 :A5(y1, x1, z1) ∧NAND2(z1, y2)∧

A5(y2, x2, z2) ∧NAND2(z2, y3)∧

A5(y3, x3, z3) ∧NAND2(z3, y1)

is a2-representation ofEQ3(x1, x2, x3). Similar constructions works for some of the
other relations. If we can2-representEQ3 then we getpoly-APX-hardness due to the
construction in Lemma 19, Lemma 6 and a simple reduction fromMIS. Information
about which relations this applies to is contained in Table 2.

Furthermore, some of the relations can2-represent other relations in the table, see
Table 3 for those. This implies that the only relation that isleft to proveAPX-hardness
for is ABC1. We will do this with a reduction from MIS-3. LetG = (V,E) be
an instance of MIS-3, we will construct an instanceI ′ = (V ′, C′, w′) of W-MAX

ONES(Γ)-2 with the assumption thatABC1 ∈ Γ . Furthermore, due to Lemma 19 and
Corollary 27 we are free to assume thatNAND2 ∈ Γ . For every variablev ∈ V , if
there are three occurrences ofv in I add one fresh variable for each occurrence ofv in I
to V ′, name those fresh variablesv1, v2 andv3. If there are less than three occurrences
addv to V ′. Furthermore, for each edge(v, x) for somex ∈ V add aNAND2(vi, xj)
constraint toC′. So farI ′ is an instance where each variable occurs at most twice and
the variables which corresponds to nodes inG with degree three occurs once inI ′.

For each nodev ∈ V with degree three add the constraintABC1(v1, v2, v3) to C′.
Finally, letw(x) = 1 for everyx ∈ V with degree less than three andw(v1) = 1 and
w(v2) = w(v3) = 0 for everyv ∈ V with degree three. For every solutions to I ′ we
can construct a solutionS to I such thatm(I ′, s) = m(I, S) to see this note that if
s(x) = 1 for some variablex then due to theABC1 constraints the other occurrences
of x also have the value1. On the other hand, ifs(x) = 0 then we can set the other
occurrences ofx to0 without changing the measure of the solution and without conflicts
with any constraints. This implies that there is anS-reduction from MIS-3 to W-MAX

ONES(Γ)-2. ⊓⊔

The results obtained in Lemma 28 is not optimal for all non-∆-matroids. It is noted in
the proof that we getpoly-APX-hardness results for some of the relations, but we do
not get this for all of them. In particular we do not get this for A3, AB1, BC4, ABC1,
ABC3, ABC5 andABC6. However,ABC5 is contained inAPX by Lemma 17.

We are now finally ready to state the proof of the classification theorem for two
variable occurrences.

Proof (Of Theorem 13, part 1).Follows from Khanna et al’s results on W-MAX ONES[20].
⊓⊔

Proof (Of Theorem 13, part 2).Follows from Corollary 25, Lemma 14 and Lemma 16.
⊓⊔

Proof (Of Theorem 13, part 3).Follows from Lemma 28. ⊓⊔

Proof (Of Theorem 13, part 3).Follows from [14, Theorem 4]. ⊓⊔

25

Relation Implementation orRelation Implementation or
comment comment

1 EQ2 BC2 Not inIE2

2 Not in IE2 BC3 Not inIE2

A1 EQ2 BC4 See Table 3
A2 Not in IE2 AB1 See Table 3
A3 See Table 3 AB2 Not in IE2

A4 Not in IE2 AB3 Not in IE2

A5 NAND2 AB4 Not in IE2

A6 EQ2 AB5 Not in IE2

C1 EQ2 AB6 Not in IE2

C2 NAND2 ABC1 See Lemma 28
C3 Not inIE2 ABC2 Not in IE2

C4 Not inIE2 ABC3 See Table 3
C5 Not inIE2 ABC4 Not in IE2

C6 EQ2 ABC5 See Lemma 17
BC1 EQ2 ABC6 See Table 3
Table 2: Non-∆-matroid relations in Lemma 28. If there is a relation in the “Implemen-
tation or comment” column then this relation can2-representEQ3 together with the
noted relation. If this second relation isEQ2 then the relation can in fact2-represent
EQ3 on its own,EQ2 is not needed.

Relation Implements Implementation
A3 ABC5 ∃x′ : A3(x1, x

′, x3) ∧NAND2(x′, x2)
AB1 ABC5 ∃x′, x′′ : AB1(x1, x

′, x′′) ∧NAND2(x′, x2) ∧NAND2(x′′, x3)
BC4 ABC5 ∃x′ : BC4(x1, x

′, x2) ∧NAND2(x′, x3)
ABC3 ABC5 ∃x′ : ABC3(x1, x

′, x3) ∧NAND2(x′, x2)
ABC6 ABC1 ∃x′ : ABC6(x′, x2, x3) ∧NAND2(x′, x1)

Table 3: Implementations in Lemma 28

111
000
1

110
001
2

000
111
010
A1

100
011
110
A2

010
101
000
A3

110
001
100
A4

101
010
111
A5

111
000
101
A6

Table 4: Non-∆-matroid relations wherea, b, c 6∈ P followed by the relations where
a ∈ P andb, c 6∈ P .

000
111
011
C1

100
011
111
C2

010
101
001
C3

110
001
101
C4

011
100
011
C5

111
000
100
C6

Table 5: Non-∆-matroid relations where onlyc ∈ P .

26

000
111
001
011
BC1

100
011
101
111
BC2

010
101
011
001
BC3

001
110
000
010
BC4

000
111
010
001
AB1

100
011
110
101
AB2

010
101
000
011
AB3

110
001
100
111
AB4

011
100
001
010
AB5

111
000
101
110
AB6

Table 6: Non-∆-matroid relations whereb, c ∈ P anda 6∈ P followed by relations
wherea, b ∈ P andc 6∈ P .

000
111
010
001
011

ABC1

100
011
110
101
111

ABC2

010
101
000
011
001

ABC3

110
001
100
111
101

ABC4

011
100
001
010
000

ABC5

111
000
101
110
100

ABC6
Table 7: Non-∆-matroid relations wherea, b, c ∈ P .

Proofs for Results in Section 5

Proof (Of Theorem 18).Let Γ be a non-1-valid constraint language andk an integer
such that W-MAX ONES(Γ ∪ {c0, c1})-k (this problem will hereafter be denoted by
Π01) is NP-hard. We will prove the theorem with a reduction fromΠ01 to W-MAX

ONES(Γ)-k (hereafter denoted byΠ).
As Γ is not 1-valid there exists a relationR ∈ Γ such that(1, . . . , 1) 6∈ R. Let r be

the arity ofR and lett be the tuple inR with the maximum number of ones. Assume,
without loss of generality, thatt = (0, 1, . . . , 1).

The assumption in the theorem implies that it isNP-hard to decide the following
question: given an instanceI = (V,C,w) of Π01 and an integerK is OPT(I) ≥ K?

LetI = (V,C,w),K be an arbitrary instance of the decision variant ofΠ01. We will
transformI into an instanceI ′ = (V ′, C′, w′),K ′ of the decision variant ofΠ by first
removing constraint applications usingc0 and then removing constraint applications
usingc1.

At the start of the reduction letV ′ = V andC′ = C. For each constraint(c0, (v)) ∈
C′ replace this constraint with(R, (v, v1, . . . , vr−1)) wherev1, . . . , vr−1 are fresh vari-
ables, furthermore add the constraint(c1, (vk)) for k = 1, . . . , r − 1 toC′.

Let c be the number of variables which are involved inc1 constraints. For each
constraint usingc1, (c1, (v)) ∈ C′, remove this constraint and setw′(v) = L + w(v),
whereL is a sufficiently large integer (L = 1 +

∑

v∈V w(v) is enough). For every
variablev which is not involved in ac1 constraint letw′(v) = w(v).

Finally let K ′ = K + cK. Given a solutions′ to I ′ such thatm(I ′, s′) ≥ K ′ it
is clear that this solution also is a solution toI such thatm(I, s′) ≥ K. Furthermore,
if there is a solutions to I such thatm(I, s) ≥ K thens is a solutionI ′ such that
m(I ′, s) ≥ K ′. ⊓⊔

27

References

1. G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and M. Protasi.
Complexity and approximation: Combinatorial optimization problems and their approxima-
bility properties. Springer, 1999.

2. P. Berman and T. Fujito. On the approximation properties of independent set problem in
degree 3 graphs. InWADS ’95, pages 449–460, 1995.

3. A. Bouchet. Matchings and∆-matroids.Discrete Appl. Math., 24(1-3):55–62, 1989.
4. A. Bouchet and W. H. Cunningham. Delta-matroids, jump systems, and bisubmodular poly-

hedra.SIAM J. Discret. Math., 8(1):17–32, 1995.
5. E. Böhler, N. Creignou, S. Reith, and H. Vollmer. Playingwith boolean blocks, part I: Post’s

lattice with applications to complexity theory.SIGACT News, 34(4):38–52, 2003.
6. E. Böhler, N. Creignou, S. Reith, and H. Vollmer. Playingwith boolean blocks, part II:

Constraint satisfaction problems.SIGACT News, 35(1):22–35, 2004.
7. E. Böhler, S. Reith, H. Schnoor, and H. Vollmer. Simple bases for boolean co-clones. Tech-

nical report, Theoretische Informatik, Universität Würzburg, 2005.
8. R. Carr and O. Parekh. A 1/2-integral relaxation for the a-matching problem.Operations

Research Letters. In Press, Available online 22 September 2005.
9. G. Cornuéjols. General factors of graphs.J. Comb. Theory Ser. B, 45(2):185–198, 1988.

10. N. Creignou, S. Khanna, and M. Sudan.Complexity classifications of boolean constraint
satisfaction problems. Society for Industrial and Applied Mathematics, 2001.

11. N. Creignou, P. Kolaitis, and B. Zanuttini. Preferred representations of boolean relations.
Technical Report TR05-119, ECCC, 2005.

12. V. Dalmau and D. Ford. Generalized satisfability with limited occurrences per variable: A
study through delta-matroid parity. InMFCS ’03, pages 358–367, 2003.

13. J. Edmonds and E. L. Johnson. Matching: A well-solved class of integer linear programs. In
Combinatorial Optimization – Eureka, You Shrink!, pages 27–30, 2001.

14. T. Feder. Fanout limitations on constraint systems.Theor. Comput. Sci., 255(1-2):281–293,
2001.

15. T. Feder and D. Ford. Classification of bipartite booleanconstraint satisfaction through
delta-matroid intersection. Technical Report TR05-016, ECCC, 2005.

16. G. Istrate. Looking for a version of schaefer’s dichotomy theorem when each variable oc-
curs at most twice. Technical Report TR652, University of Rochester Computer Science
Department, 1997.

17. P. Jeavons, D. Cohen, and M. Gyssens. Closure propertiesof constraints. Journal of the
ACM, 44:527–548, 1997.

18. V. Kann. Maximum bounded 3-dimensional matching in max snp-complete.Inf. Process.
Lett., 37(1):27–35, 1991.

19. S. Khanna, R. Motwani, M. Sudan, and U. V. Vazirani. On syntactic versus computational
views of approximability.SIAM J. Comput., 28(1):164–191, 1998.

20. S. Khanna, M. Sudan, L. Trevisan, and D. P. Williamson. The approximability of constraint
satisfaction problems.SIAM J. Comput., 30(6):1863–1920, 2000.

21. J. Kratochvı́l, P. Savický, and Z. Tuza. One more occurrence of variables makes satisfiability
jump from trivial to np-complete.SIAM J. Comput., 22(1):203–210, 1993.

22. C. Papadimitriou and M. Yannakakis. Optimization, approximation, and complexity classes.
In STOC ’88, pages 229–234. ACM Press, 1988.

23. E. Post. The two-valued iterative systems of mathematical logic. Annals of Mathematical
Studies, 5:1–122, 1941.

24. W. R. Pulleyblank. Matchings and extensions. InHandbook of combinatorics (vol. 1), pages
179–232. MIT Press, 1995.

28

25. R. Pöschel and L. Kaluznin.Funktionen- und Relationenalgebren. DVW, Berlin, 1979.
26. T. J. Schaefer. The complexity of satisfiability problems. InSTOC ’78, pages 216–226. ACM

Press, 1978.

29

	Approximability of Bounded Occurrence Max Ones

