
The Data Complexity of MDatalog
in Basic Modal Logics

Linh Anh Nguyen

Institute of Informatics, University of Warsaw
ul. Banacha 2, 02-097 Warsaw, Poland

nguyen@mimuw.edu.pl

Abstract. We study the data complexity of the modal query language
MDatalog and its extension eMDatalog in basic modal logics. MDatalog
is a modal extension of Datalog, while eMDatalog is the general modal
Horn fragment with the allowedness condition. As the main results, we
prove that the data complexity of MDatalog and eMDatalog in K4, KD4,
and S4 is PSPACE-complete, in K is coNP-complete, and in KD , T , KB ,
KDB , and B is PTIME-complete.

1 Introduction

Modal logics can be used to reason about knowledge and belief. It is desirable to
study modal extensions of deductive databases. First tries in this direction were
done in our previous works [9,10] (modal Datalog defined in [5, Definition 23]
is completely different, as it is formulated in classical logic and uses only unary
or binary predicates). In [9], we extended Datalog for monomodal logics, giving
two languages: MDatalog and eMDatalog. The first one is a natural extension of
Datalog, while the second one is the general modal Horn fragment with a refined
condition of allowedness. It was shown in [9] that MDatalog and eMDatalog have
the same expressiveness in normal monomodal logics. In [10], we studied an
extension of MDatalog for multimodal logics of belief and presented bottom-up
computational methods for (multi)modal deductive databases.

It is well known that the data complexity of Datalog is complete in PTIME
(see, e.g., [6]). In [10], we proved that the data complexity of MDatalog in some
multimodal logics of belief which are extensions of KD45 is in PTIME. In [9], we
gave sufficient conditions for MDatalog in 13 basic monomodal logics (except K
and K4) to obtain PTIME complexity for computing queries. The complexity
results of [9, Theorem 7.3] are not formulated in the way of the data complexity
and the relation between them is not close.

In this paper, we study the data complexity of MDatalog and eMDatalog in all
of the 15 basic monomodal logics, which are extensions of the logic K using any
combination of axioms D, T , B, 4, and 5. The data complexity of MDatalog
and eMDatalog is related to the complexity of the propositional modal Horn
fragment. In [3], Fariñas del Cerro and Penttonen showed that the satisfiability
problem of sets of modal Horn clauses in S5 is decidable in PTIME. In [1], Chen

R. Královic and P. Urzyczyn (Eds.): MFCS 2006, LNCS 4162, pp. 729–740, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

730 L.A. Nguyen

and Lin showed that the similar problem for a normal monomodal logic L being
an extension of K5 (write K5 ≤ L) is also decidable in PTIME. Chen and Lin also
proved that for a normal modal logic L such that K ≤ L ≤ S4 or K ≤ L ≤ B, in
particular, for L ∈ {K,KD,KB,KDB,B,K4,KD4,S4}, the problem is PSPACE-
hard. They also made a comment that the problem is still PSPACE-hard for
S4 even when the modal depth is restricted to 2. In [8], we showed that the
complexity of the satisfiability problem of sets of modal Horn clauses with finitely
bounded modal depth in KD , T , KB , KDB , and B is decidable in PTIME.
These PTIME results can further be categorized as PTIME-complete. In [11],
we showed that the satisfiability problem of sets of modal Horn clauses with
modal depth bounded by k ≥ 2 in the modal logics K4 and KD4 is PSPACE-
complete, and in K is NP-complete.

In this paper we prove that, for L being any one of the 15 basic monomodal
logics, the data complexity of MDatalog and eMDatalog in L is the same as the
complexity of the unsatisfiability problem in L of the propositional modal Horn
fragment with modal depth bounded by k ≥ 2. This means that the data com-
plexity of MDatalog and eMDatalog in K4, KD4, and S4 is PSPACE-complete,
in K is coNP-complete, and in the remaining logics is PTIME-complete.

2 Preliminaries

2.1 Definitions for Modal Logics

The language for propositional modal logics extends the language of classical
propositional logic with two modal operators � and �.

A Kripke frame is a triple 〈W, τ, R〉, where W is a nonempty set of possible
worlds, τ ∈ W is the actual world, and R is a binary relation on W , called
the accessibility relation. A propositional Kripke model, sometimes briefly called
a model, is a tuple 〈W, τ, R, h〉, where 〈W, τ, R〉 is a Kripke frame and h is a
function that maps each world of W to a set of primitive propositions. A model
graph is a tuple 〈W, τ, R, H〉, where 〈W, τ, R〉 is a Kripke frame and H is a
function that maps each world of W to a formula set.

Given a Kripke model M = 〈W, τ, R, h〉 and a world w ∈ W , the satisfaction
relation |= is defined as usual for the classical connectives with two extra clauses
for the modal operators as below:

M, w |= �ϕ iff ∀v ∈ W. R(w, v) implies M, v |= ϕ
M, w |= �ϕ iff ∃v ∈ W. R(w, v) and M, v |= ϕ.

We say that ϕ is satisfied at w in M if M, w |= ϕ. We say that ϕ is satisfied
in M and call M a model of ϕ if M, τ |= ϕ.

If we consider all Kripke models, with no restrictions on R, we obtain a nor-
mal propositional modal logic with a standard Hilbert-style axiomatization K .
Other normal propositional modal logics are obtained by adding to K certain
axioms. The most popular axioms used for extending K are D, T , B, 4, and
5, which respectively correspond to seriality (∀x∃y.R(x, y)), reflexiveness, sym-
metry, transitiveness, and euclideaness (∀x∀y ∀z.R(x, y) ∧ R(x, z) → R(y, z)) of

The Data Complexity of MDatalog in Basic Modal Logics 731

the accessibility relation. The names of normal propositional modal logics often
consist of K and the names of the added axioms, e.g. KDB is the logic which
extends K with the axioms D and B. The special cases are T , B, S4, and S5,
which stand for KT , KTB, KT 4, and KT 5, respectively.

We refer to the properties of the accessibility relation of a modal logic L as
the L-frame restrictions. A Kripke model M is an L-model if the accessibility
relation of M satisfies all L-frame restrictions. We say that ϕ is L-satisfiable if
there exists an L-model of ϕ. We write Γ |=L ϕ to denote that ϕ is satisfied in
every L-model of Γ .

The modal depth of a formula ϕ is the maximal nesting depth of modal oper-
ators occurring in ϕ; e.g., the modal depth of p ∧ �(�q ∨ �r), where p, q, r are
primitive propositions, is 2.

The length of a formula ϕ is the total number of symbols occurring in ϕ. The
size of a formula set is the sum of the lengths of its formulas.

The size of a propositional Kripke model M = 〈W, τ, R, h〉 is the sum of the
number of its worlds, the size of its accessibility relation, and the total number
of primitive propositions from its worlds, i.e. |W | + |R| + Σw∈W |h(w)|.

In this work, we consider also first-order modal logics. We restrict to first-order
modal logics with fixed-domain (i.e. all possible worlds in a first-order Kripke
model have the same domain) and rigid terms (i.e. the semantics of terms does
not depend on possible worlds). As usual for database models, we assume that
the signature contains predicate symbols and constant symbols, but no function
symbols. The definitions given for propositional modal logics can be shifted in a
natural way for first-order modal logics.

We refer to [2,4] for further reading on modal logics.

2.2 The Modal Query Languages MDatalog and eMDatalog

An MDatalog program clause is a formula of the form

∀x1 . . . ∀xk �h(B1 ∧ . . . ∧ Bl → A)

where �h is a sequence of h operators �, h ≥ 0, l ≥ 0, and

– A, B1, . . . , Bl are of the form �E, �E, or E, with E being a classical atom
(recall that a classical atom is a formula of the form p(t1, . . . , tn)),

– x1, . . . , xk are all variables occurring in (B1 ∧ . . . ∧ Bl → A),
– all variables of A occur also in B1 ∧ . . . ∧ Bl.

The last condition in the above definition is usually called allowedness (or
range-restrictedness). It implies that if l = 0 then k = 0 and A is a ground for-
mula. We will write the above program clause in the form �h(A ← B1, . . . , Bl).
We will also write ϕ ← ψ for ψ → ϕ.

An MDatalog program is a set of MDatalog program clauses.
We now define an extension of MDatalog called eMDatalog, which allows more

sophisticated program clauses.
A formula is positive if it does not contain ¬ and ←. A formula ϕ is called a

non-negative modal Horn formula iff one of the following conditions holds:

732 L.A. Nguyen

– ϕ is a classical atom;
– ϕ is of the form ψ ← ζ, where ψ is a non-negative modal Horn formula and

ζ a positive formula without quantifiers such that if ζ1 ∨ ζ2 is a subformula
of ζ then ζ1 and ζ2 have the same variables1;

– ϕ = �ψ, or ϕ = �ψ, or ϕ = ψ ∧ ζ, where ψ and ζ are non-negative modal
Horn formulas.

In the following, E denotes a classical atom and V ar(ϕ) denotes the set of
variables of ϕ. Define the constraint allowed(ϕ, V) for a non-negative modal
Horn formula ϕ and a set of variables V recursively as follows:

allowed(E, V) ≡ (V ar(E) ⊆ V)
allowed((ψ ← ζ), V) ≡ allowed(ψ, V ar(ζ) ∪ V)

allowed(ψ ∧ ζ, V) ≡ allowed(ψ, V) ∧ allowed(ζ, V)
allowed(�ψ, V) ≡ allowed(ψ, V)
allowed(�ψ, V) ≡ allowed(ψ, V)

An eMDatalog program clause is a formula of the form ∀x1 . . .∀xk ϕ, where ϕ
is a non-negative modal Horn formula, x1, . . . , xk are all variables of ϕ, and the
constraint allowed(ϕ, ∅) is true. Observe that an eMDatalog program clause not
containing ← is a ground formula.

An eMDatalog program is a finite set of eMDatalog program clauses.
For x being a tuple of variables (x1, . . . , xk), we write ∃x ϕ(x) to denote the

formula ∃x1 . . .∃xk ϕ and assume that x1, . . . , xk are variables occurring in ϕ. In
that case, for c being a tuple of constant symbols (c1, . . . , ck), we write ϕ(c) to
denote the formula obtained from ϕ by substituting each xi by ci, for 1 ≤ i ≤ k.

A query to an MDatalog/eMDatalog program is a formula of the form ∃x ϕ(x),
where x is a tuple of all variables of ϕ (which can be empty) and ϕ is a positive
formula without quantifiers such that if ζ1 ∨ ζ2 is a subformula of ϕ then ζ1 and
ζ2 have the same variables2.

Fix a first-order modal logic L. Given an MDatalog/eMDatalog program P
and a query ∃x ϕ(x), the goal is to check whether P |=L ∃x ϕ(x), and to find
tuples c of constant symbols such that P |=L ϕ(c).

The following proposition states that MDatalog has the same expressiveness
as eMDatalog. It was proved in [9] for the case without ∨ in non-negative modal
Horn formulas. The proof for the extension with ∨ is straightforward.

Proposition 1. For any eMDatalog program P , there exists an MDatalog pro-
gram P ′ such that for any query ∃x ϕ(x) in the language of P , the answers
w.r.t. P ′ are exactly the answers w.r.t. P . Moreover, P ′ can be computed from
P in polynomial time and the modal depth of P ′ is equal to the modal depth of P .

For example, the eMDatalog program {�(p(a) ∧ q(a))} can be transformed to
the MDatalog program {�r, �(p(a) ← r), �(q(a) ← r)}.
1 This extends the corresponding definition given in [9] with ∨.
2 This condition was not considered in [9].

The Data Complexity of MDatalog in Basic Modal Logics 733

2.3 Modal Deductive Databases and Data Complexity

An MDatalog/eMDatalog program clause is either a rule or a fact. A rule is a
program clause containing ←, while a fact does not contain ←. Note that an
MDatalog fact is a ground formula of the form �hA, where h ≥ 0 and A is a
formula of the form �E, �E, or E with E being a classical atom. Observe also
that an eMDatalog fact is a positive ground formula not containing ∨.

A predicate p is defined by an MDatalog/eMDatalog program clause ϕ if p
appears in ϕ in the left hand side of all the occurrences of ←.

A modal deductive database can be specified by an MDatalog/eMDatalog
program. It can be divided into two parts: an extensional part and an inten-
sional part. The extensional part consists of facts defining so called extensional
predicates. The intensional part consists of rules and facts defining so called
intensional predicates, which are not extensional predicates.

When measuring the “data complexity” of a query language for deductive
databases, the query to the program specifying the database is grouped with
the intensional part of the database and treated as a fixed query, while the ex-
tensional part of the database is treated as input. Suppose that we are given an
MDatalog (resp. eMDatalog) program P representing a modal deductive data-
base and a query ∃xϕ(x). Denote the extensional part of the database by D and
the intensional part by P ′. We call the pair (P ′, ∃xϕ(x)) an MDatalog (resp.
eMDatalog) query and D an extensional MDatalog (resp. eMDatalog) database
instance (edb instance for short).

We say that the data complexity of MDatalog (resp. eMDatalog) in a modal
logic L is in a complexity class C if the recognition problem of checking whether
P ′ ∪ D |=L ϕ(c) with D taken as input is in the complexity class C for every
MDatalog (resp. eMDatalog) query (P ′, ∃x ϕ(x)) and every tuple c of constant
symbols.

We say that the data complexity of MDatalog (resp. eMDatalog) is complete
in a complexity class C, or C-complete, if it is in C and there exist an MDatalog
(resp. eMDatalog) query (P ′, ∃x ϕ(x)) and a tuple c of constant symbols such
that the problem of checking whether P ′ ∪ D |=L ϕ(c) with D taken as input is
C-complete.

It is not clear whether the data complexity of eMDatalog is the same as the
data complexity of MDatalog in every modal logic. The problem is that when
transforming an eMDatalog program to an MDatalog program, we introduce new
rules, which causes that the resulting “query” depends on the input. For this
reason, we will study the data complexity of both MDatalog and eMDatalog.

3 Simple Cases

In this section, we show that the data complexity of MDatalog and eMDatalog
in K5, KD5, K45, KD45, KB5, and S5 is PTIME-complete, and in K4, KD4,
and S4 is in PSPACE.

Let (P, ∃x ϕ(x)) be a fixed MDatalog/eMDatalog query, c be a fixed tuple of
constant symbols for substituting x, and D be an input edb instance with size n.

734 L.A. Nguyen

Let P ′ be the set of all ground instances of program clauses of P using the
constant symbols occurring in P , c, and D. It is easily seen that the size of P ′ is
bounded by a polynomial of n. Observe that P ∪ D |=L ϕ(c) iff P ′ ∪ D |=L ϕ(c)
iff P ′ ∪ D ∪ {¬ϕ(c)} is L-unsatisfiable. The latter set can be treated as a set
of propositional formulas. It consists of so called Horn formulas. By the results
of [3,1], checking whether P ′ ∪ D ∪ {¬ϕ(c)} is L-unsatisfiable is decidable in
PTIME (w.r.t. n) for L ∈ {K5, KD5, K45, KD45, KB5, S5}.3 By Ladner [7],
for L ∈ {K4, KD4, S4}, checking whether P ′ ∪ D ∪ {¬ϕ(c)} is L-unsatisfiable is
decidable in PSPACE (the Horn property is not important here). We arrive at:

Theorem 1. The data complexity of MDatalog and eMDatalog in K5, KD5,
K45, KD45, KB5, and S5 is PTIME-complete.

The lower bound follows from that the data complexity of Datalog is complete
in PTIME (see, e.g., [6]).

Lemma 1. The data complexity of MDatalog and eMDatalog in K4, KD4, and
S4 is in PSPACE.

4 The Data Complexity of MDatalog in K , K4, KD4, S4

In this section, we show that the data complexity of MDatalog and eMDatalog
in K4, KD4, and S4 is PSPACE-complete, and in K is coNP-complete.

Lemma 2. Every finite set X of propositional modal Horn clauses can be trans-
formed in PTIME to a set Y of propositional modal Horn clauses such that:

– Y contains at most one negative clause, which is of the form ← p;
– each non-negative clause of Y contains no more than 3 literals;
– the modal depth of Y is the same as the modal depth of X;
– Y is L-satisfiable iff X is L-satisfiable, for any normal modal logic L.

Proof. Let p be a fresh primitive proposition. Replace each negative clause ϕi =
�s(← B1, . . . , Bk) of X by the following clauses:

�s(pi,s ← B1, . . . , Bk), �s−1(pi,s−1 ← �pi,s), . . . , p ← �pi,1

where pi,s, . . . , pi,1 are fresh primitive propositions. (If s = 0 then ϕi is replaced
by p ← B1, . . . , Bk.) Then add to the obtained set the clause ← p. Denote the
resulting set by X ′.

Next, replace each non-negative clause ϕi = �s(A ← B1, . . . , Bk) of X ′, where
k > 2, by the following clauses:

�s(pi,2 ← B1, B2)
�s(pi,3 ← pi,2, B3)
. . .
�s(pi,k ← pi,k−1, Bk)
�s(A ← pi,k)

3 The definitions of Horn clauses in [3,1] are more restrictive than our definition of Horn
formulas [8]. However, every set of Horn formulas can be transformed in polynomial
time to a set of Horn clauses that preserves satisfiability.

The Data Complexity of MDatalog in Basic Modal Logics 735

where pi,2, . . . , pi,k are fresh primitive propositions. Let Y be the resulting set.
It is easy to verify that Y satisfies the assertions of the lemma.

Corollary 1. Let X be a set of propositional modal Horn clauses such that:
the modal depth of X is not greater than 2, X contains at most one negative
clause, which is of the form ← p, and each non-negative clause of X contains
no more than 3 literals. Then the problem of checking whether X is L-satisfiable
is NP-complete for L = K and PSPACE-complete for L ∈ {K4,KD4,S4}.

Proof. This corollary immediately follows from Lemma 2 and the results of [11,1]
that the satisfiability problem of sets of propositional modal Horn clauses with
modal depth bounded by k ≥ 2 in K is NP-complete, in K4, KD4, and S4 is
PSPACE-complete.

Lemma 3. Let X be as in Corollary 1 with ψ = ← q being the only negative
clause. Then there exist an MDatalog query (P, ϕ), where P does not depend on
X and ϕ is a positive ground formula depending only on ψ, and an edb instance
D with size in polynomial order in the size of X such that X is L-satisfiable iff
P ∪ D �L ϕ, where L is any normal modal logic.

Proof. Each non-negative clause of X is of the form �s(A ← B1, . . . , Bk), where
0 ≤ s ≤ 2, 0 ≤ k ≤ 2, and A, B1, . . . , Bk are of the form p, �p, or �p. Let K be
the number of such possible forms (i.e. K = 3 × 3 × (1 + 3 + 3 × 3)).

Suppose that primitive propositions occurring in X are numbered from 1 to
n and denoted by p1, . . . , pn. We represent each non-negative clause ξ of X by
a first-order program clause representing the form of ξ plus a ground first-order
atom indicating ξ. For simplicity, we illustrate this using a clause ξ = ��(pi ←
�pj , �pk). Let 1 ≤ t ≤ K be the number indicating the form of this clause. The
clause ξ is then represented by ��(p(x) ← �p(y), �p(z), clause(t, x, y, z)) and
��clause(t, i, j, k). Note that the program clause depends only on the form of
ξ, while the atom indicates ξ. In this way, the set of non-negative clauses of X is
represented by an MDatalog program P and a set D of ground first-order atoms.
Furthermore, we can assume that P does not depend on X , as we can include
in P an appropriate program clause for every 1 ≤ t ≤ K.

If ψ = ← pi then let ϕ = p(i). It is clear that X is L-satisfiable iff P ∪D∪{¬ϕ}
is L-satisfiable, and iff P ∪ D �L ϕ, where L is any normal modal logic.

Theorem 2. The data complexity of MDatalog and eMDatalog in K4, KD4,
and S4 is PSPACE-complete.

Proof. By Lemma 1, the data complexity of MDatalog and eMDatalog in K4,
KD4, and S4 is in PSPACE. Let X be a set of propositional modal Horn clauses
as in Lemma 3. By Corollary 1, the problem of checking L-satisfiability of X for
L ∈ {K4,KD4,S4} is PSPACE-complete. By Lemma 3, this problem is reducible
in polynomial time to a problem of answering a fixed MDatalog query (P, ϕ)
w.r.t. an edb instance D depending on X (here, without loss of generality, assume
that ϕ is fixed). Hence, the data complexity of MDatalog and eMDatalog in K4,
KD4, and S4 is complete in PSPACE.

736 L.A. Nguyen

Theorem 3. The data complexity of MDatalog and eMDatalog in K is coNP-
complete.

Proof. We first show that the data complexity of eMDatalog in K is in coNP.
Let (P, ϕ) be a fixed eMDatalog query, where ϕ is a positive ground formula, and
D be an eMDatalog edb instance. To answer the query w.r.t. the input D in the
logic K is to check whether P ∪D |=K ϕ, or equivalently, whether P ∪D ∪{¬ϕ}
is K -unsatisfiable.

Let n be the size of D and c be the modal depth of P ∪{¬ϕ}. Let P ′ be the set
of all ground instances of clauses of P using the constant symbols occurring in P ,
ϕ, D. The size of P ′ is bounded by a polynomial of n. Observe that P ∪D∪{¬ϕ}
is K -satisfiable iff P ′ ∪ D ∪ {¬ϕ} is K -satisfiable.

Consider the process of constructing a K -model graph for P ′∪D∪{¬ϕ}. At the
beginning, the model graph contains only the actual world τ with P ′∪D∪{¬ϕ}
in the negative normal form as the content. Then for every world w and every
formula ψ from the content of w, we realize ψ at w as follows. If ψ = ζ1 ∨ . . .∨ζk

then nondeterministically choose some ζi and add ζi to the content of w. If
ψ = �ζ then create a new empty world u, connect w to u via the accessibility
relation, and add ζ to the content of u. If ψ = �ζ then add ζ to the content of
every world accessible from w. If at the end we obtain a model graph which is
saturated (in the sense that, for every w, every formula ψ in the content of w has
been realized at w) and is consistent (in the sense that no world contains both
p and ¬p for some primitive proposition p), then P ′ ∪D ∪{¬ϕ} is K -satisfiable.
Observe that if a world w in the constructed model graph is inconsistent (i.e.
w contains both p and ¬p for some p), then the path from τ to w via the
accessibility relation is not longer than c, since D contains only positive formulas.
This means that when checking consistency of the constructed model graph, we
need to pay attention only to worlds not far away from τ than c edges. The
total size of that fragment of the constructed model graph is bounded by a
polynomial of n. Hence, checking whether P ′ ∪ D ∪ {¬ϕ} is K -satisfiable can
be nondeterministically done in polynomial time. Consequently, the problem of
answering the query (P, ϕ) w.r.t. the input D in the logic K is in the coNP class.

Analogously as in the proof of Theorem 2, using Corollary 1 and Lemma 3 we
conclude that the data complexity of MDatalog and eMDatalog in K is complete
in coNP.

5 The Data Complexity of eMDatalog in KD, T , KB ,
KDB , and B

In this section, we show that the data complexity of MDatalog and eMDatalog in
KD , T , KB , KDB , and B is complete in PTIME. For this aim, we first present
an algorithm of constructing a “least” L-model for a given eMDatalog program,
where L ∈ {KD,T,KDB,B}.

We say that a propositional Kripke model M is less than or equal to M ′ if
for every positive propositional formula ϕ, if M |= ϕ then M ′ |= ϕ. M is called

The Data Complexity of MDatalog in Basic Modal Logics 737

a least L-model of an eMDatalog program P if M is an L-model of P and M is
less than or equal to every L-model of P . Observe that if M is a least L-model
of P and ϕ is a positive propositional formula then P |=L ϕ iff M |=L ϕ.

In the algorithm given below, as a data structure we have a model graph
M = 〈W, τ, R, H〉 and a binary relation R′ being the skeleton of R. We sometimes
refer to M as the propositional model 〈W, τ, R, h〉, with h(x) = {E | E is a ground
classical atom belonging to H(x)}. We write M, u |= ϕ to denote that ϕ is true
at u in the model M .

We will use a procedure CreateEmptyTailL(x0) defined as: Add an infinite
chain of new empty worlds x1, x2, . . . to W , set R′ = R′ ∪ {(xi, xi+1) | i ≥ 0},
and set R to the least extension of R′ that satisfies all L-frame restrictions.
(Note that the chain can be coded as a finite chain, which will be dynamically
expanded when necessary).

Algorithm 1
Input: A ground eMDatalog program P in L ∈ {KD,T,KDB,B}

treated as a set of propositional formulas.
Output: A least L-model M = 〈W, τ, R, h〉 of P .

1. Set W = {τ}, H(τ) = P , R′ = ∅.
CreateEmptyTailL(τ).

2. For every u ∈ W and for every ϕ ∈ H(u):
(a) If ϕ = (ψ ← ζ) and M, u |= ζ then set H(u) = H(u) ∪ {ψ}.
(b) If ϕ = ψ ∧ ζ then set H(u) = H(u) ∪ {ψ, ζ}.
(c) If ϕ = �ψ then for every v ∈ W s.t. R(u, v) set H(v) = H(v) ∪ {ψ}.
(d) If ϕ = �ψ and ¬(∃x R′(u, x) ∧ ψ ∈ H(x)) then:

Let uψ be a new world.
Set W = W ∪ {uψ}, H(uψ) = {ψ}, R′ = R′ ∪ {(u, uψ)}.
CreateEmptyTailL(uψ).

3. While some change occurred, repeat step 2.

This algorithm is very similar to Algorithm 5.1 in [8], which constructs a least
L-model for a given positive propositional modal logic program. The following
lemma can be proved as done for Algorithm 5.1 in [8].

Lemma 4. The above algorithm always terminates and the constructed model
M is a least L-model of P .

Let M = 〈W, τ, R, h〉 be a Kripke model. Define the distance from τ to a world
w ∈ W via R to be the length of a shortest path from τ to w via R (undefined
if there does not exist such a path). For k ≥ 0, we define M|k to be the model
obtained from M by restricting it to the worlds with the distance from τ via R
not greater then k. The following lemma can be proved easily.

Lemma 5. Let M = 〈W, τ, R, h〉 be a Kripke model and ϕ a formula with modal
depth not greater than k. Then M |= ϕ iff M|k |= ϕ.

738 L.A. Nguyen

If we are given an eMDatalog program P representing a modal deductive data-
base and a positive ground formula ϕ to check whether P |=L ϕ, then instead of
constructing a least L-model M of P to check whether M |= ϕ we can construct
only M|k and check whether M|k |= ϕ where k is a number not less than the
modal depth of ϕ. In the following we show that such a restricted model M|k
can be constructed without having the whole model M .

Let ϕ be a positive ground formula and ψ be a subformula of ϕ with a fixed
position. We define the modal context of ψ in ϕ to be the sequence of modal
operators occurring in ϕ such that ψ is under the scope of them. For example,
the modal context of �(r ∧s) in �(�p∧�(�q ∧�(r ∧s))) is ��, which consists
of the first and the second �. We call a sequence of modal operators a modality
and denote the empty modality by ε.

For L ∈ {T,KDB,B}, let the set of rules for shrinking modalities in L consist
of: � → ε if L ∈ {T,B}, �� → ε and �� → ε if L ∈ {KDB,B}. Note that
the first rule corresponds to axiom T , while the two latter rules correspond to
axiom B. A modality � is reducible to ε in L ∈ {T,KDB,B} if ε is derivable
from � using the rules for shrinking modalities in L.

Lemma 6. Consider Algorithm 1 and a moment when a formula ψ is added to
H(x). Suppose that the distance from τ to x via R′ is greater than the modal
depth of every rule of P . Then:

– there exists �ψ ∈ H(y) s.t. R′(y, x) holds; or
– there exists �ψ ∈ H(y) s.t. x = yψ (i.e. x is created from y using �ψ); or
– before adding ψ to H(x) there exists already ψ′ ∈ H(x) such that ψ is a

subformula of ψ′ under a modal context which is reducible to ε in L.

Proof. We prove this lemma by induction on the number of steps needed to add
ψ to H(x). The only non-trivial case is when ψ is added to H(x) at Step 2c
with x = v, L ∈ {KDB,B} and R′(v, u) holds. Consider that case. Applying
the induction hypothesis for the moment when ϕ = �ψ is added to H(u), we
obtain that �ϕ ∈ H(v) or �ϕ ∈ H(v) or before adding ϕ to H(u) there exists
already ϕ′ ∈ H(u) such that ϕ is a subformula of ϕ′ under a modal context
which is reducible to ε in L. By repeatedly applying the induction hypothesis
for the moment when ϕ′ is added to H(u), we derive that there exists a formula
ξ ∈ H(u) such that ϕ is a subformula of ξ under a modal context which is
reducible to ε and ξ was added to H(u) because �ξ ∈ H(v) or �ξ ∈ H(v). It is
easily seen that the inductive assertion immediately follows.

Lemma 7. Consider Algorithm 1. Suppose that ϕ ∈ H(u) and the distance
from τ to u via R′ is greater than the modal depth of every rule of P . Then
every subformula ψ of ϕ under a modal context which is reducible to ε will be
added to H(u).

Proof. By induction on the structure of ϕ.

We now present a modified version of Algorithm 1. The modifications are high-
lighted by another font.

The Data Complexity of MDatalog in Basic Modal Logics 739

Algorithm 2
Input: A ground eMDatalog program P in L ∈ {KD,T,KDB,B}

treated as a set of propositional formulas.
A number k greater than the modal depth of every rule of P .

Output: A model M = 〈W, τ, R, h〉.

1. Set W = {τ}, H(τ) = P , R′ = ∅.
CreateEmptyTailL(τ).

2. For every u ∈ W with H(u) not empty and for every ϕ ∈ H(u):
(a) If ϕ = (ψ ← ζ) and M, u |= ζ then set H(u) = H(u) ∪ {ψ}.
(b) If ϕ = ψ ∧ ζ then set H(u) = H(u) ∪ {ψ, ζ}.
(c) If ϕ = �ψ then for every v ∈ W s.t. R(u, v) set H(v) = H(v) ∪ {ψ}.
(d) If ϕ = �ψ and ¬(∃x R′(u, x) ∧ ψ ∈ H(x)) and the path from τ to u via

R′ is shorter than k then:
Let v be a new world.
Set W = W ∪ {v}, H(v) = {ψ}, R′ = R′ ∪ {(u, v)}.
CreateEmptyTailL(v).

(e) If L ∈ {T, KDB, B} and the path from τ to u via R′ has length k then, for
every subformula ψ of ϕ under a modal context which is reducible to ε in
L, set H(u) = H(u) ∪ {ψ}.

3. While some change occurred, repeat step 2.

Lemma 8. Let P be a ground eMDatalog program s.t. the modal depths of the
rules of P are not greater than k. Let M and M ′ be respectively the outputs
of Algorithm 1 and Algorithm 2 for P in L ∈ {KD,T,KDB,B}. Then M|k is
isomorphic with M ′.

This lemma immediately follows from Lemmas 6 and 7.

Theorem 4. The data complexity of MDatalog and eMDatalog in L ∈ {KD, T,
KDB, B} is PTIME-complete.

Proof. Since the data complexity of Datalog is complete in PTIME (see, e.g.,
[6]), it suffices to show that the data complexity of eMDatalog in L is in PTIME.

Let (P ′, ϕ) be a fixed eMDatalog query, where ϕ is a positive ground formula,
and D be an eMDatalog edb instance. To answer the query w.r.t. the input D
in L is to check whether P ′ ∪D |=L ϕ. Let P ′′ be the set of all ground instances
of clauses of P ′ using the constant symbols occurring in P ′, ϕ, D. Observe that
P ′ ∪ D |=L ϕ iff P ′′ ∪ D |=L ϕ.

Let P = P ′′ ∪ D and let k be the maximum of the modal depths of P ′ and ϕ
plus 1. Note that k is fixed. Let M be the result of the execution of Algorithm
2 for P and k. By Lemmas 4, 5, and 8, we have that P ′′ ∪ D |=L ϕ iff M |= ϕ.

Let n be the size of D. As the query (P ′, ϕ) is fixed, the size of P ′′ is bounded
by a polynomial of n. The size of M and the number of steps needed to construct
M are bounded by a polynomial in the size of P ′′. Checking whether M |= ϕ can
be done in polynomial time in the sizes of M and ϕ. Totally, checking whether
P ′ ∪ D |=L ϕ can be done in polynomial time in the size of the input D, and
hence the data complexity of eMDatalog in L is in PTIME.

740 L.A. Nguyen

The remaining logic KB is an almost serial (see [9]) modal logic corresponding
to B. Using the techniques of [8,9], we can derive the following result.

Corollary 2. The data complexity of MDatalog and eMDatalog in KB is
PTIME-complete.

6 Conclusions

We have proved that, for L being any one of the 15 basic monomodal logics, the
data complexity of MDatalog and eMDatalog in L is the same as the complexity
of the unsatisfiability problem in L of the propositional modal Horn fragment
with modal depth bounded by k ≥ 2. This result is a bit surprising, as MDatalog
and eMDatalog are fragments of first-order modal logics and can contain data
with unbounded modal depth. The eMDatalog language is an interesting frag-
ment of modal logic that has low complexity in KD , T , KB , KDB , and B . On the
other hand, the PSPACE-complete data complexity of MDatalog in K4, KD4,
and S4 shows that these latter modal logics (and their multimodal extensions)
are hard in the view of deductive databases (unless PSPACE = PTIME).

Acknowledgements. I would like to thank the reviewers for useful comments.

References

1. C.C. Chen and I.P. Lin. The computational complexity of the satisfiability of modal
Horn clauses for modal propositional logics. Theor. Comp. Sci., 129:95–121, 1994.

2. M.J. Cresswell and G.E. Hughes. A New Introduction to Modal Logic. Routledge,
1996.

3. L. Fariñas del Cerro and M. Penttonen. A note on the complexity of the satisfia-
bility of modal Horn clauses. Logic Programming, 4:1–10, 1987.

4. M. Fitting and R.L. Mendelsohn. First-Order Modal Logic. Springer, 1998.
5. G. Gottlob, E. Grädel, and H. Veith. Linear time datalog and branching time logic.

In Logic-Based Artif. Int., pages 443–467. Kluwer Academic Publishers, 2000.
6. Ch. Koch and S. Scherzinger. Lecture notes on database theory. http://www-db.

cs.unisb.de/teaching/dbth0506/slides/dbthdatalog2.pdf.
7. R. Ladner. The computational complexity of provability in systems of modal propo-

sitional logic. SIAM Journal of Computing, 6:467–480, 1977.
8. L.A. Nguyen. Constructing the least models for positive modal logic programs.

Fundamenta Informaticae, 42(1):29–60, 2000.
9. L.A. Nguyen. The modal query language MDatalog. Fundamenta Informaticae,

46(4):315–342, 2001.
10. L.A. Nguyen. On modal deductive databases. In J. Eder, H.-M. Haav, A. Kalja,

and J. Penjam, editors, Proc. of ADBIS 2005, LNCS 3631, pages 43–57. Springer,
2005.

11. L.A. Nguyen. On the complexity of fragments of modal logics. In R. Schmidt,
I. Pratt-Hartmann, M. Reynolds, and H. Wansing, editors, Advances in Modal
Logic - Volume 5, pages 249–268. King’s College Publications, 2005.

http://wwwdiscretionary {-}{}{}db.cs.unidiscretionary {-}{}{}sb.de/teaching/dbth0506/slides/dbthdiscretionary {-}{}{}datalog2.pdf
http://wwwdiscretionary {-}{}{}db.cs.unidiscretionary {-}{}{}sb.de/teaching/dbth0506/slides/dbthdiscretionary {-}{}{}datalog2.pdf

	Introduction
	Preliminaries
	Definitions for Modal Logics
	The Modal Query Languages MDatalog and eMDatalog
	Modal Deductive Databases and Data Complexity

	Simple Cases
	The Data Complexity of MDatalog in K, K4, KD4, S4
	The Data Complexity of eMDatalog in KD, T, KB, KDB, and B
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

