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Abstract. Wireless sensor networks (WSNs) pose challenges not present
in classical distributed systems: resource limitations, high failure rates,
and ad hoc deployment. The lossy nature of wireless communication can
lead to situations, where nodes lose synchrony and programs reach arbi-
trary states. Traditional approaches to fault tolerance like replication or
global resets are not feasible. In this work, the concept of self-stabilization
is applied to WSNs. The majority of self-stabilizing algorithms found in
the literature is based on models not suitable for WSNs: shared mem-
ory model, central daemon scheduler, unique processor identifiers, and
atomicity. This paper proposes problem-independent transformations for
algorithms that stabilize under the central daemon scheduler such that
they meet the demands of a WSN. The transformed algorithms use ran-
domization and are probabilistically self-stabilizing. This work allows to
utilize many known self-stabilizing algorithms in WSNs. The proposed
transformations are evaluated using simulations and a real WSN.

1 Introduction

Wireless sensor networks (WSNs) are networks of small, battery-powered, re-
source-constrained wireless devices equipped with sensors embedded in a physical
environment where they operate unattendedly for long periods of time. WSNs
pose challenges not present in classical distributed systems, foremost extreme
resource limitations, high failure rates, and ad hoc deployment. These bound-
ary conditions and the high number of nodes preclude dependence on manual
configuration and control. Inevitably unattended WSNs must self-organize in
response to node failures or addition of new nodes, and must adapt to changing
environmental conditions. The dynamic and lossy nature of wireless communi-
cation caused by the primitive, low-power radio transceivers found in WSNs can
lead to situations, where nodes lose synchrony and their programs reach arbi-
trary states [1]. Traditional approaches to fault tolerance like replication where
the effects of faults are shielded or a shutdown and globally reset of the complete
network are not feasible. In this work, the concept of self-stabilization pioneered
by Dijkstra [2] is applied to WSNs. A distributed system is self-stabilizing if
after transient faults, regardless of their cause, it returns to a legitimate state in
a finite number of steps regardless of the initial state, and the system remains
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in a legitimate state until another fault occurs [3, 4]. Self-stabilizing algorithms
tolerate arbitrary transient failures caused by corruptions of local state, or the
disruption of message passing channels, or system resets with unknown initial-
ization. They do not try to handle every individual failure separately, but try to
capture the commonality of all failure modes.

Self-stabilization provides a generalized non-masking approach to fault tol-
erance. This implies that the system experiences the effect of transient faults, in
contrast to the replication paradigm. As a consequence applications must be pre-
pared to handle or tolerate these situations. A disadvantage of self-stabilizing
algorithms is that a node does not know when the algorithm has stabilized.
Self-stabilization fits into the unattended operation style of WSNs, where no
outside intervention is necessary. Over the last 20 years many self-stabilizing
algorithms have been proposed, quite a few of them are of interest for WSNs:
graph coloring [5], articulation points [6], dominating sets [7], depth-first trees
[8], and spanning trees [9]. However, the majority of these algorithms is based on
models not suitable for the constraints of WSNs: shared memory model, central
daemon scheduler, unique processor identifiers, and atomicity. To utilize these
algorithms in WSNs, transformations from these strict models into the WSN
model are needed. The majority of transformations that have been proposed so
far appear to be problem-specific (for an exception see [10]). There is a strong
need to devise a general method for systematically transforming algorithms into
the realm of WSNs while preserving the stabilization character.

The main contribution of the paper consists of problem-independent stabi-
lization preserving transformations for algorithms that stabilize under the cen-
tral daemon scheduler in a bounded number of moves in anonymous networks.
This is a generalization of problem-specific solutions for graph algorithms such
as vertex coloring [5] and minimal independent sets [11]. The key concept is to
introduce randomization, as a consequence the transformed algorithms are only
probabilistically self-stabilizing. This work enables us to execute self-stabilizing
algorithms designed for the central daemon scheduler in WSNs. More impor-
tantly, it also helps to develop new and more practical self-stabilizing algorithms
for WSNs.

The paper is organized as follows: Section 2 introduces the main concepts of
self-stabilization and Section 3 discusses the problems of self-stabilizing WSNs.
After that the example used in the experiments covered in Section 6 is presented.
Section 5 contains the main contribution, the transformations. In Section 6 pre-
liminary results attained by simulations and through an implementation of the
transformation using a real sensor network are presented. The paper ends with
related work and a conclusion.

2 Self-stabilization

The objective of self-stabilization is to recover from transient faults in a bounded
time without any external intervention. The absence of faults is defined by a
predicate P over the global state of the system, P is defined locally, i. e., based
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on the local state of each node and the states of their neighboring nodes. More
formally, let N = {N1, N2, . . . , Nn} be a set of sensor nodes and E ⊆ N × N
be a set of bidirectional communication links in a sensor network. The topology
of the system is represented as the undirected graph G = (N,E). A set of local
variables defines the local state of a node. By si, we denote the local state of
node Ni ∈ N . A tuple of local states (s1, s2, . . . , sn) forms a configuration of the
sensor network and defines the global state. Let Σ be a set of all configurations.
A system is a pair (Σ,→), where→: Σ×Σ is a transition relation. An execution
is a maximal sequence c0, c1, c2, . . . of configurations such that ci → ci+1 for each
i ≥ 0.

A transition is caused by the execution of a program on a node (all nodes
run the same program). Programs consist of rules of the following kind:

precondition1 −→ statement1
precondition2 −→ statement2

. . .

The preconditions are Boolean expressions based on the state of a node and
the states of its neighbors only (i. e., no global view of the network). The seman-
tics of a program is that whenever a node executes, it executes the statements
corresponding to a rule whose precondition evaluates to true. The statements of
a rule can only change the local state. It is assumed that reading the states of
the neighbors is atomic. The execution of a selected statement is also assumed
to be atomic. If more than one precondition is satisfied, then one of them is cho-
sen non-deterministically. A move of a node is the execution of a rule. A rule is
called enabled if its precondition evaluates to true, otherwise it is called disabled.
A node is called enabled if at least one of its rules is enabled.

A configuration c ∈ Σ is called legitimate relative to P if c satisfies P. Let
L ⊆ Σ be the set of all legitimate configurations. A system (Σ,→) is self-sta-
bilizing with respect to P if the following two conditions hold:

1. If c ∈ L and c→ c′ then c′ ∈ L (closure property).
2. Starting from any configuration c ∈ Σ every execution reaches L within a

finite number of transitions (convergence property).

Self-stabilization models the ability of a system to recover from failures under
the assumption that they do not continue to occur forever (eventual-quiescence).
To model long periods of time during which the system operates without errors,
it is assumed that eventually the system enters a last operational interval that
is infinitely long in which there are no more faults occur. This interval is called
the final interval. When a fault occurs the system enters a new configuration
and the algorithm restarts from this configuration. The same is true for changes
of the topology, i. e., adding or removing node or links.

Designing self-stabilization for anonymous networks under the distributed
scheduler is a difficult task and for some problems the non-existence of such
algorithms has been proven. A distributed scheduler may select two enabled
neighboring nodes to execute at the same step, and as a result both nodes
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may be enabled thereafter. It is not difficult to see that if any two neighboring
nodes never execute at the same step, the computation is equivalent to the
centralized scheduler. By local mutual exclusion, execution of two neighboring
processes at the same step is disabled (see [12, 10] for example). If the nodes
have unique identifiers, then they can often be used for this purpose, e. g., [5].
Another solution is to use randomization. A system is called randomized, if the
execution of an enabled node depends on the outcome of a random experiment.
A randomized system (Σ,→) is said to be probabilistically self-stabilizing with
respect to a predicate P if it satisfies the closure property as defined above
and there exists a function f : IN → [0, 1] satisfying limk→∞ f(k) = 0, such
that the probability of reaching a legitimate configuration, starting from an
arbitrary configuration within k transitions, is 1−f(k) (probabilistic convergence
property).

The execution of the transitions of the enabled nodes is controlled by a
scheduler. A schedule S is a sequence S1, S2, . . . of non-empty subsets of enabled
nodes called rounds. All nodes in Si may execute their moves in parallel, but the
first move in Si can only be executed after the last move of Si−1 has finished. At
the beginning of every round, all nodes evaluate the preconditions of their rules
and a subset of the enabled nodes is selected. Then all selected nodes execute
the statement of a single enabled rule. Schedules are an abstraction used to
model the semantics of concurrent execution, they are not an implementation
requirement. Schedules are restricted to satisfy certain fairness and atomicity
properties. A scheduler is fair if for any schedule S it selects, for all p ∈ N , for
infinitely many values of i, p ∈ Si holds. A central daemon scheduler is one that
satisfies |Si| = 1 for all i; it models the serial activation of one process at each
step. A distributed daemon scheduler satisfies |Si| ≤ n for all i, i. e., all enabled
nodes may execute their statements in parallel.

3 Self-stabilizing WSNs

Wireless sensor networks are inherently fault-prone due to the shared wireless
communication medium: message losses and corruptions due to fading, collisions,
and hidden-terminal effects are the norm rather than the exception [1]. In many
cases nodes can communicate with each other only with a very low probability.
Moreover, node failures due to crashes and energy exhaustion are commonplace.
These faults can drive a portion of a WSN to be arbitrarily corrupted and
hence to become inconsistent with the rest of the network. Since WSNs are
deployed in remote locations, in-situ maintenance is not feasible and therefore
sensor network applications should be self-healing. Self-healing ensures eventual
compliance with a specification upon starting from a corrupted state. A big
challenge for fault-tolerance is the energy constraint of the nodes. Applications
cannot impose an excessive communication burden on nodes. As a consequence,
self-healing of WSNs must be local and communication-efficient.

Self-stabilization is a specific form of self-healing that has many advantages
for WSNs. Large scale WSNs will be operating over a longer period of time and
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additional nodes can be added at any time. Self-stabilizing eliminates the over-
head of initialization all nodes in a consistent manner, actually state variables
need no initialization at all. The software of the nodes in a long running network
needs an upgrade over time, the software may be distributed over the wireless
medium. While switching to the new version, it will be impossible for all nodes to
simultaneously switch software. A self-stabilizing system guarantees completion
of this change in a finite number of operations. Once a node recovers after failing
(e. g., after a temporary power outage or due to a memory crash) its state may
be inconsistent with the rest of the system. Self-stabilization also guarantees
consistency of the nodes in this case. And finally, errors in transmissions leading
to corruption of data may be handled by self-stabilizing algorithms as well.

Most research on self-stabilizing algorithms has concentrated on the central
daemon scheduler. The main reason is that proving correctness of algorithms is
much easier than in the case of a distributed scheduler. But the concept of a
central daemon is against the spirit of Distributed Systems since it does not allow
for concurrency. Also, it is difficult to implement this scheduler in a WSN. In
the shared memory model each process can read the local states of all neighbor
processes without delay. This model is not suitable for sensor networks, instead
broadcasts, the communication primitive of wireless networks, should be used.
Herman introduced the cached sensornet transformation (CST) as an alternative
model for WSNs [13]. Let each node Ni ∈ N in the WSN have a single variable
si that completely represents the local state of the node. Let Ni have for each
neighbor Nj a variable ∇isj , which denotes a cached version of sj . Atomically,
whenever Ni assigns a new value to si, node Ni also broadcasts the new value
to its neighbors. Whenever a node Nj receives a new value for si, it immediately
(and atomically) updates ∇jsi. Because sending and receiving operations are
exclusive in the nodes, we suppose that receiving a cache update message cannot
interfere with concurrent assignment and broadcast by the receiving node. To
use a self-stabilizing algorithm under this transformation, the rules have to be
changed: at every node Ni each reference to sj is replaced with∇isj for all j. The
execution of a statement does not modify the cache and receiving a broadcast
message only changes the cache and not the state of the node.

A system is called cache coherent if ∇jsi = si for all (Nj , Ni) ∈ E. Cache
coherence is invariant under local broadcast provided that no messages are lost.
Let A be a self-stabilizing algorithm under the central daemon scheduler. Then
the CST transformed algorithm is also self-stabilizing under the central daemon
scheduler provided the initial state of the execution was cache coherent and no
messages are lost or corrupt.

4 Example

Clustering is a useful technique to control the topology of WSNs. Clustering al-
gorithms should satisfy two properties: In order to allow efficient communication
between nodes, every node should have at least one clusterhead in its neighbor-
hood and no two clusterheads should be within each others mutual transmission
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range. The latter property greatly facilitates the task of establishing an efficient
MAC layer, because clusterheads will not face interference. These properties lead
to the concept of a maximal independent set in a graph: An independent set (IS)
I of G is a subset of N such that no two nodes in I are neighbors. I is a maximal
independent set (MIS) if any node v not in I has a neighbor in I. The following
self-stabilizing algorithm has been proposed by several authors. Each node has
a Boolean variable in. A state is called legitimate if the set of nodes v with
v.in = true forms a MIS of G. The rules of the algorithm are:

if (in = false ∧ ∀ neighbors v : (v.in = false )) −→ in := true
if (in = true ∧ ∃ neighbor v : (v.in = true )) −→ in := false

It was been proved in [14] that this algorithm self-stabilizes under the central
daemon scheduler after at most 2n moves. There is no guarantee about the
quality of the produced MIS, i. e., there may exist another MIS containing more
nodes. Clearly this algorithm does not stabilize under the distributed daemon
scheduler. Suppose the variable in of all nodes initially has the value true. Then
the first rule of all nodes is enabled. If all nodes execute, then the value changes
to false for every node and all nodes are enabled again. This process continues
forever. Applying the transformation described in the next section to this algo-
rithm yields a randomized algorithm that is probabilistic self-stabilizing under
the distributed daemon scheduler.

5 Transformation of self-stabilizing algorithms

This section presents techniques to transform algorithms that self-stabilize under
the central daemon scheduler such that they can be used in WSNs under the
distributed daemon scheduler. The WSNs under consideration are anonymous
networks, i. e., nodes have no globally unique identifiers. Nodes must be able to
distinguish their neighbors. It is assumed that messages are not corrupted (e. g.,
by using error correcting codes). For the time being it is also assumed that no
messages are lost. This restriction will be removed in the following part.

Let A be a self-stabilizing algorithm that stabilizes under the central dae-
mon scheduler in a finite number of moves. The main issue with the distributed
daemon scheduler is to enforce the separation of the executions in consecutive
rounds. If all nodes have a common understanding of time, then the rounds
can be organized under the assumption that the execution times of the state-
ments are bounded by a finite constant. There are several proposals for time
synchronization in WSN, e. g., [15]. The first step is to apply the cached sensor-
net transformation to A, call the resulting algorithm AC . The main issue with
AC in WSNs is to guarantee the atomicity of the moves as described above. To
deal with concurrent moves within a round, a random element is introduced. It
is assumed that each node is equipped with a random number generator rand.
Furthermore, all nodes have agreed on a constant p ∈ (0, 1). Let RuleAC be the
set of rules of algorithm AC , then for each rule
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precondition −→ statement

from RuleAC construct a new rule:

precondition −→ if (rand() < p) then statement

Call the randomized algorithm for this new set of rules ACR. Note that the
execution of a statement now involves a call to the random number generator
and that a statement of an enabled rule is not necessarily executed in the current
round. Algorithm ACR has the following property.

Theorem 1. Let A be a self-stabilizing algorithm that stabilizes under the cen-
tral daemon scheduler after a finite number of moves with respect to a predicate
P. If the initial configuration is cache coherent, then algorithm ACR is proba-
bilistic self-stabilizing with respect to P under the distributed daemon scheduler
provided that all broadcasts are reliable.

Proof. Suppose that algorithm A stabilizes after at most M moves. Consider
the execution of algorithm ACR. Since the initial configuration is cache coherent
all following configurations are also cache coherent since all messages are sent
successfully. Let (Si) be a schedule under the distributed daemon scheduler.
Assume that Si 6= ∅ for all i > 0 (otherwise ACR stabilizes). The probability
that exactly one node is executed in round Si is equal to βi = cip(1 − p)ci−1

where ci = |Si| ≤ n. Let (bi) be a binary sequence where bi = 1 if exactly one
node executes during round i and 0 otherwise. Note that Prob(bi = 1) = βi and
Prob(bi = 0) = 1 − βi and that |{βi | i ∈ IN}| ≤ n. If the sequence (bi) has a
subsequence bj+1, bj+2, . . . , bj+M of length M where all elements have the value
1, then ACR stabilizes after round j+M , because this sub-schedule is equivalent
to a schedule under the central daemon scheduler. Let f(k) be the probability
that such a subsequence is not contained in b1, b2, . . . , bk. Then by Theorem 3
(see Appendix A)

lim
k→∞

f(k) = lim
k→∞

PM (k) = 0

and hence ACR is probabilistic self-stabilizing under the distributed daemon
scheduler. ut

Note that the requirement that the initial configuration is cache coherent
cannot be dropped. The problem is that if there are nodes with non-coherent
caches then there can be situations where no nodes are enabled and the predicate
P is not satisfied at the same time. Theorem 1 does not make a statement about
the rate of stabilization, e. g., about the probability that the algorithm stabilizes
in k moves. The expression 1 − f(k) is a lower bound for this probability, but
we have no explicit expression for f(k). Also the values of ci are specific to
the algorithm under consideration. The lower bound 1 − f(k) can be improved
using the following observation. A sub-schedule Sj , Sj+1, . . . , St is equivalent to
a schedule under the central daemon scheduler if the nodes of each round of that
sub-schedule that execute form an independent set. The proof of Theorem 1
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covers the special case of only a single node executing. Note that if two non-
neighboring nodes, that have a common neighbor, execute, then the probability
that their broadcasts during the sensornet transformation collide at the common
neighbor is high.

Unreliable Communication In the following the assumption about the re-
liability of broadcasts is dropped, i. e., not all neighbors receive a broadcasted
message. Let q be the probability that a message is successfully transmitted
from one node to another. We make the assumption that all transmissions are
independent. Note that the loss of a message is not regarded as a transient fault,
it is a possible behavior of the system that is tolerated by the algorithm. Hence,
messages may also be lost during the final interval. The argument of the proof
of Theorem 1 can also be applied in this case. The probability that exactly one
node is executing in round i and that at the same time all broadcasts of this
node succeed is equal to

βi = p(1− p)ci−1
∑
j∈Si

qdj

where dj is the degree of node j. The set of all βi is again a finite set (n∆

is an upper bound). From Theorem 3 it follows that the probability that this
algorithm halts after k rounds converges to 1 with increasing k. But that does
not necessarily mean that the algorithm is probabilistic self-stabilizing under the
distributed daemon scheduler. The problem is that the algorithm may reach a
non-cache coherent configuration in which no node is enabled. To overcome this
problem each node broadcasts the values of its public variables to its neighbors
periodically at the beginning of every round, call this algorithm ACRP . The
probability that exactly one node is executing in round i and that at the same
time all broadcasts succeed is equal to βi = qmcip(1 − p)ci−1 where m is the
number of links in the network. The proof of the following theorem is similar to
the proof of Theorem 1. Note that the initial configuration does not need to be
cache coherent.

Theorem 2. Let A be a self-stabilizing algorithm that stabilizes under the cen-
tral daemon scheduler after a finite number of moves with respect to a predicate
P. Let the probability that a message is successfully transmitted from one node to
another be fixed and assume that these events are independent. Then algorithm
ACRP is probabilistic self-stabilizing with respect to P under the distributed dae-
mon scheduler.

Broadcasting the public variables at the beginning of every round causes
two problems: It increases the total energy consumption and if all nodes make
their broadcast at the beginning of a round, many collisions will occur, probably
leading to a prolonged stabilization time. The second problem can be mitigated if
the nodes broadcast their data after a random waiting period. Another solution
is that nodes do not broadcast their data in each round, but make this decision
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dependent on the outcome of a random experiment. Call this new algorithm
ACRPP . Let r be the probability that a node makes a broadcast. Then the
probability that exactly one node is executed in round i and that at the same
time all broadcasted messages are successfully received is equal to

βi = rnqmcip(1− p)ci−1

where n is the number of nodes in the network. Using Theorem 3 it can be
shown that Theorem 2 also holds for algorithm ACRPP . To further reduce the
number of messages sent, the probability of a broadcast could be decreased in
every round after a state change, e. g., by reducing the probability to 50%. But
then it is no longer possible to prove the probabilistic self-stabilization behavior.

Periodic Broadcasting with implicit Acknowledgments. Once all neigh-
bors of a node know the current state of the node, the node can suspend broad-
casting until the state of the node changes again. In order to implement this
technique a node needs the information that all neighbors know its current state.
To realize this task, nodes include in their broadcasts the latest received states of
all neighbors. This way a node can find out whether its current state is known to
all neighbors and may then stop the periodic broadcasting. The node still needs
to perform broadcasts to signal other nodes that it received their current state.
The following code illustrates this procedure. Nodes are in one of two modes:
Broadcast and Suspend, initially the mode is Broadcast. Also every time the
state of the node changes, the mode immediately changes to mode Broadcast.

. Mode Broadcast

while not all neighbors have acknowledged current state do
broadcast

end while
mode← Suspend

. Mode Suspend

if received broadcast from neighbor then
broadcast

end if

Call this new algorithm ACRPPA. Theorem 2 still holds for this algorithm since
the modifications have no influence on the stabilization behavior. An increase
in packet size is the price for reducing the number of messages. Larger packets
result in larger transmission times and may lead to more collisions, which may
slow down the stabilization process. The main advantage of this approach is
that after the system has reached a legitimate state, no broadcast messages are
needed until the next transient fault.

Unidirectional links. WSNs suffer from unidirectional links where one sensor
can communicate with another with a high probability although the probability
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of the reverse communication is very low. Unidirectional links are not consid-
ered useful in the context of WSNs, the reason is the lack of efficient MAC layer
protocols that work with unidirectional links (e. g., both RTS-CTS and ACK
based schemes cannot be used directly). Almost all self-stabilization algorithms
are defined for bidirectional links only. As an example, consider the algorithm
presented in Section 4. If this algorithm is executed on a system with unidirec-
tional links then the result is no longer a MIS. We therefore propose to exclude
unidirectional links from being used by self-stabilization algorithms. To meet this
end the neighborhood protocol in use should discard such links. The protocol
described in [1] can be used for this purpose, it can also be combined with the
periodic broadcasts in order to reduce the total number of messages sent. A link
that continuously shows a low quality is discarded by this protocol, at the same
time new links are accepted as they appear. These events have to be regarded
as faults and therefore cannot occur during the final interval. In order to avoid
links to appear and disappear frequently over time, neighborhood protocols have
to find a balance between agility and stability. If the intervals between faults of
this kind are long enough, the proposed algorithms may stabilize during an in-
terval, otherwise the stabilization process will be disrupted considerably. Since
the different algorithms have different stabilize times a general statement about
this kind of stability is impossible.

Failing nodes. In the following the case of completely failing nodes is con-
sidered. If a node fails it stops broadcasting its state, but neighboring nodes
continue to regard this node as a neighbor. The remedy is to associate with
each cache value ∇isj of a node Ni a time to live (TTL) value. The TTL value
is renewed every time the node receives a message with the state of neighbor
Nj and it is decreased every round in which no such message is received. If a
cache value ∇isj is not confirmed within TTL rounds it is discarded and Ni
is no longer regarded as a neighbor of Nj . As a consequence a disabled node
might get enabled. Thus, the situation is comparable to a discarded link and the
discussion from the last section applies.

The concept of TTL values cannot be used in combination with the above
described technique to limit the periodic broadcasts with implicit acknowledg-
ments, i. e., algorithm ACRPPA. The problem is that a node can no longer distin-
guish a node that suspended broadcasting from a failed node. As a consequence,
the failed node could stay permanently in the neighborhood list of a node. This
may in turn lead to a non-coherent cache. But TTL values can be combined
with algorithm ACRP . The value of TTL should be large enough to distinguish
the case of a failed node from a node that is temporary not able to communi-
cate with its neighbor. Otherwise nodes with an instable link may disappear and
appear repeatedly in the neighbor list of a node with negative consequences for
the stabilization process. The handling of newly introduced nodes requires no
special treatment. In case the join and leave rates are low, the algorithm may
stabilize during intervals with fixed topology. This kind of stabilization behav-
ior depends on the number of moves required to stabilize the system after the
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failure/introduction of a node. The technique of TTL values can also be com-
bined with algorithm ACRPP . In this case the relationship between TTL and
r, the probability that a node makes a broadcast, needs to be carefully tuned.
Otherwise, the algorithm will not stabilize during intervals with fixed topology.
A detailed analysis of these situations is outside the scope of this paper.

6 Experiments

The stabilization behavior of the proposed transformations were further analyzed
in a series of experiments with a MIS algorithm. The experiments are based on
simulations and on a real WSN. Let A be the MIS algorithm based on the
two rules presented in Section 4. The stabilization behavior of algorithm ACR
was analyzed in a simulation. At the beginning of each round the set Nen of
enabled nodes was determined and after this step all nodes in Nen executed
the statements of the enabled rule (without checking whether the node was still
enabled). As a consequence a node may execute a rule, even though it is no longer
enabled. The reason for this mode of operation is to simulate the interleaving
execution of the nodes. The algorithm was run on several graph classes:

Gn,q: Graphs with n nodes and any pair of nodes is connected by an edge with
probability q ∈ [0, 1].

Kn: Complete graphs with n nodes.
Un,d: Unit disc graphs with n nodes where the locations of the nodes are ran-

domly selected in a square of side length d.
The Unit disc graph model is included, because it is regularly used in theoretical
models of WSNs. For each graph algorithm ACR with p = 0.5 was executed 500
times.
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Fig. 1. Average number of rounds of algorithm ACR with p = 0.5 before stabilization
for various classes of graphs

Figure 1 shows the average number of rounds the algorithm needed to stabi-
lize for the different classes of graphs (note the logarithmic scale of the x-axis).
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The data shows that the number of rounds for classes Kn and Gn,q is roughly
proportional to log2 n. For Unit disc graphs the number of rounds grows slightly
faster. Figure 2 shows the average number of the sum of moves executed by all
nodes before stabilization. The data shows that roughly n/2 moves were needed
on the average independently of the class of graphs. Interestingly our experi-
ments also showed that the average number of moves for ACR is only slightly
higher than in the case of a central daemon scheduler.
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Fig. 2. Average total number of moves of algorithm ACR with p = 0.5 before stabi-
lization for various classes of graphs

The main weakness of the transformations described above with respect to
WSNs are the assumptions about the atomicity of the cached sensornet trans-
formation and about the reliability of message delivery. To analyze the impact of
these assumptions an experiment with a real WSN was carried out. The experi-
ment was based on algorithm ACRP . The sensor network consisted of 25 nodes of
type ESB, a sensor node platform developed by the Free University Berlin [16].
A node consists of the micro controller MSP 430 from Texas Instruments, the
transceiver TR1001, which operates at 868 MHz at a data rate of 19.2 kbit/s,
some sensors, and a RS232 serial interface. Each node has 2 KB RAM and 64 KB
EEPROM. The lowest layer of the implementation is a synchronization protocol
that is used to force the nodes to operate in rounds, each round had a duration of
10 seconds. In order to reduce the possibility of collisions, the cached sensornet
transformation was implemented such that each node randomly selected an in-
stant during each round and broadcasted its state. At the end of each round the
enabled nodes executed an enabled rule with fixed probability p. To analyze the
influence of the value of p on the stabilization time, the experiment was repeated
four times with p = 0.25, 0.5, 0.75 and 1.0. The sensor nodes were distributed in
a grid-style inside a large lecture hall. Each node could communicate with its im-
mediate neighbors, depending on the position in the rectangular grid a node had
between 3 and 8 neighbors. Messages from nodes further away were discarded.
The transmissions power of the nodes was reduced such that this topology was
realized and no avoidable interference was caused.
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Fig. 3. Wireless sensor network with 25 nodes executing algorithm ACRP to compute
a minimum independent set. The experiment was repeated with four different values of
p. The diagrams depict the number of nodes, clusterheads and rule executions during
the first 40 rounds.

The duration of each experiment was 400 seconds, i. e., 40 rounds. Initially
no node was a clusterhead (i. e., the variables in had the value false). The
algorithm reached a legitimate configuration for the probabilities p = 0.25, 0.5
and 0.75 within the first 19 rounds. Without randomization (e. g., p = 1.0) the
algorithm did not reach a legitimate configuration within 40 rounds. In this case
in every round more than 50% of all nodes made a move, as a consequence the
number of clusterheads alternated between a few nodes (0,1 or 2) and about
15-20 nodes. The particular style of initialization of the variable in caused this
pattern to emerge. In the first round all nodes were enabled, these nodes turned
into clusterheads enabling all nodes in round two. At the end of this round no
node was a clusterhead. This pattern would have been repeated if no messages
had been lost. When a messages is lost after a node has changed its state, the
caches at the neighbors of this node are no longer coherent. Because of this
phenomenon only 20 nodes made a move in round three.

The other three experiments suggest that the optimal stabilization time is
achieved for p = 0.5. In this case, the system stabilized after 7 rounds making
a total of 44 moves. In case p = 0.25 the system could have stabilized after
round 12, but the execution of the corresponding rule was deferred for another
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six rounds until round 18. The reason is that with p → 0 the behavior of the
transformation converges to that of the central daemon. The sequence of exper-
iments also shows that the number of moves decreases with the value of p: 136,
44, and 36. A detailed analysis is part of future work.

7 Related Work

Self-stabilization as a tool to achieve fault tolerance in WSNs was first inves-
tigated by Herman [13]. He surveys standard models of self-stabilization and
relates these to WSNs. In particular, the cached sensornet transformation – a
construction that transforms a sensor network to a central daemon model –
is introduced. Based on the assumption that all links are bidirectional and that
nodes possess a CSMA/CA capability, probabilistic stabilization of an algorithm
for maximal independent sets is proven.

The work of Herman is extended by Kulkari et al. [17]. To overcome the
read/write model – which is used in many existing algorithms, but not appli-
cable to WSNs – the write all with collision model (WAC) is introduced. WAC
captures the computations of sensor networks. Intuitively, in one atomic action,
a node can update its own state and the state of all its neighbors. If two nodes
simultaneously try to update the state of a node, then the state of this node is
unchanged. Transformations from existing models to the WAC model and vice
versa are presented. To obtain the transformed program that is correct in the
WAC model, the nodes are organized in a ring. Such a ring can be statically em-
bedded in any arbitrary graph by first embedding a spanning tree in it and then
using an appropriate traversal mechanism to ensure that each process appears
at least once in the ring. The nodes execute one after the other as they appear
on the ring. For timed systems a transformation using a collision-free time-slot
based protocol is presented. Under some assumptions it is shown that if the
given algorithm is self-stabilizing then the transformed algorithm is also self-
stabilizing for a fixed topology. It is also argued that in some cases for untimed
systems self-stabilization preserving transformations into the WAC model are
not possible. A distributed algorithm for TDMA slot assignment in WSNs that
is self-stabilizing to transient faults and dynamic topology change is presented in
[18]. The work of Römer et al. on role assignment in WSNs is in parts related to
self-stabilizing algorithms [19]. The authors present heuristics to maintain local
cache tables at the nodes. They employ randomized delays in order to avoid
temporary inconsistencies due to the lack of sequentialization.

Refining self-stabilizing algorithms using tight scheduling constraints into
corresponding algorithms for weaker scheduling constraints, while preserving the
stabilization property, has been subject of serious research in the last decade.
In most cases the core of the transformations is a self-stabilizing local mutual
exclusion algorithm based on unique node identifiers [10]. Kakugawa et al. have
developed an algorithm that transforms a serial model program to a distributed
model [20]. A timestamp based self-stabilizing concurrency control (CC) pro-
tocol is incorporated in the transformed program. After the CC protocol sta-
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bilizes, it is guaranteed that for each execution of the transformed distributed
model program, there always exists an equivalent execution of the original se-
rial model program. Therefore, if the original program is correct with respect to
self-stabilization, the transformed program is also self-stabilizing. A drawback
of this approach is the efficiency of transformed algorithms, they require more
messages than the ones coded from scratch. Furthermore, these transformations
cannot be easily adopted to the case of unreliable broadcasts.

Mizuno and Nesterenko considered distributed systems where all processors
have unique identifiers. They propose a procedure to transform a self-stabilizing
algorithm under the central daemon scheduler to an equivalent self-stabilizing
algorithm that runs on an asynchronous shared memory parallel computing sys-
tem [12]. Timestamps are used to guarantee mutually exclusive execution of
guarded commands among neighbor processes.

8 Conclusion

The transformations presented in this paper allow to utilize self-stabilizing algo-
rithms developed for the central daemon scheduler in WSNs. Foremost these are
algorithms for coloring, spanning trees, independent and dominating sets [5–9].
Furthermore, this work simplifies the design of self-stabilizing for WSNs, devel-
opers can work with the central daemon scheduler and do not have to take into
considerations the imponderabilities of wireless communication. The proposed
transformations are easy to implement and do not pose much overhead. The
result of our simulations and experiments demonstrate for a self-stabilizing MIS
algorithm that the transformed algorithm stabilizes quickly. The main drawback
of self-stabilizing algorithms for WSNs is the dynamic nature of the communica-
tion topology. We conjecture that the transformed algorithms have a very good
stabilization behavior if used in conjunction with a stable neighborhood proto-
col to deal with connections that are susceptible to interference. It remains to
analyze the influence of the probability threshold used in the transformations.
In future we will investigate criteria for self-stabilizing algorithms operating in
dynamic topologies.
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A Appendix

The proof of the following theorem is omitted due to space limitations.

Theorem 3. Let D be a set of real numbers strictly between 0 and 1 and (βi) an
infinite sequence with βi ∈ D. Furthermore, let (bi) be an infinite sequence with
bi ∈ {0, 1} and Prob(bi = 1) = βi for all i ≥ 0. For m ∈ IN let (1)m be the finite
sequence 1, 1, . . . , 1, i. e., 1 is repeated m times. Let Pm(k) be the probability that
(1)m is not a subsequence of b1, b2, . . . , bk. If D is a finite set or lim

i→∞
βi > 0 then

lim
k→∞

Pm(k) = 0 for all m ∈ IN.
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