
DOH: A Content Delivery Peer-to-Peer Network

Jimmy Jernberg1, Vladimir Vlassov1, Ali Ghodsi1,2, and Seif Haridi1,2

1 School for Information and Communication Technology (ICT), Royal Institute of
Technology (KTH), Stockholm, Sweden

2 Swedish Institute of Computer Science (SICS), Kista, Sweden

Abstract. Many SMEs and non-profit organizations suffer when their
Web servers become unavailable due to flash crowd effects when their web
site becomes popular. One of the solutions to the flash-crowd problem
is to place the web site on a scalable CDN (Content Delivery Network)
that replicates the content and distributes the load in order to improve
its response time.

In this paper, we present our approach to building a scalable Web
Hosting environment as a CDN on top of a structured peer-to-peer sys-
tem of collaborative web-servers integrated to share the load and to im-
prove the overall system performance, scalability, availability and ro-
bustness. Unlike cluster-based solutions, it can run on heterogeneous
hardware, over geographically dispersed areas. To validate and evaluate
our approach, we have developed a system prototype called DOH (DKS
Organized Hosting) that is a CDN implemented on top of the DKS (Dis-
tributed K-nary Search) structured P2P system with DHT (Distributed
Hash table) functionality [9]. The prototype is implemented in Java, us-
ing the DKS middleware, the Jetty web-server, and a modified JavaFTP
server. The proposed design of CDN has been evaluated by simulation
and by evaluation experiments on the prototype.

1 Introduction

The major focus of our research presented in this article is to design and evaluate
a scalable Content Delivery Network (CDN) built on top of a structured P2P
system that provides the Distributed Hash Tables (DHT). Such CDN can be used
as a Web-hosting environment that allows improving the overall performance and
storage capacity, scalability and availability of hosted Web sites.

As a motivational scenario, assume a small company has a web server on
a 10 Mbit broadband line, which usually serves it well. One day a large news
portal reviews and recommends the company site to the portal users. Since
the site becomes a ”hot object”, it starts generating a huge amount of hits.
Subsequently, the company’s web server will not be able to cope with the strain,
and, eventually, its bandwidth will be totally consumed, making the company’s
Web-pages unavailable. The situation described above is called the flash crowd
effect (also known as the SlashDot effect[1]), when a sudden increase in traffic
makes a web site completely unavailable.

W.E. Nagel et al. (Eds.): Euro-Par 2006, LNCS 4128, pp. 1026–1039, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

DOH: A Content Delivery Peer-to-Peer Network 1027

One solution for a company to survive a flash crowd is to pay for joining a
proprietary CDN like the one owned by Akamai[2] that offers services in dis-
tributing the load of heavily trafficked web sites for companies with an extensive
web presence. For SMEs and organizations without the need for a CDN on a
daily basis, the incurred costs of placing their web-sites on a proprietary CDN
might be considered too high.

In our view, one of the cost-efficient approaches to building high-performance
and scalable web-sites, CDNs and Web-hosting systems, is to integrate several
(open-source) web-servers in a scalable structured P2P system with DHT func-
tionality. A (part of the) URL of a Web-page can be used as a key to determine
a web-server on which the page is (to be) stored. The P2P system of web-servers
should support content replication in order to improve performance and avail-
ability of hosted Web-sites. We believe that this approach should make it possible
for SMEs and small organizations to obtain at an affordable price the same host-
ing services that have been available to big companies for years. CoralCDN[10]
is an existing P2P CDN that are already deployed, but while CoralCDN is de-
signed to be an overlay network for handling the flash crowd effect DOH aims for
more: to be a low cost, transparent, web-hosting service with a built in ability
to handle a flash crowd.

Extensive research has been done in building efficient DHTs on top of struc-
tured P2P overlay networks, see e.g.[3], [11], [19], [20], and [21]. A DHT provides
a distributed indexing service based on hashing and like an ordinary centralized
hash-table, a DHT, whose buckets are distributed among peers, can be used for
storing of different kind of information. Note that the DHT should be ”open”:
in the case of a hash collision, when different entries are hashed to the same
bucket, a single bucket can contain multiple entries, which should be searched
sequentially.

In this paper, we present our approach to building a scalable Web Hosting
environment as a CDN on top of a structured P2P system with DHT functional-
ity. In our design, several Web-servers are organized in a structured P2P system
in order to share their load and to improve the overall system performance,
scalability and storage capacity, as well as availability of hosted web-sites. The
underlying P2P overlay network provides an efficient and scalable lookup mech-
anism needed for DHT, replication and ability to automatically self-organize
when nodes join/leave the network.

The DHT is used for fetching and storing web pages. Each of the web-servers
is responsible for a region of DHT buckets used to store Web pages, referenced by
URLs. Even though the worst-case lookup latency in a structured P2P system
with N peers is O(log N), building a Web-hosting environment as a structured
P2P system allows improving overall performance and scalability of Web-hosting
due to multiple access points, well-balanced load distribution and content repli-
cation, increase in overall storage and computational capacity of the P2P CDN.
In our design, we use a sophisticated content replication mechanism, called sym-
metric replication [13], in order to even more improve the system performance,
availability and reliability.

1028 J. Jernberg et al.

To validate our approach, we have developed, implemented and evaluated a
system prototype called DOH (DKS Organized Hosting) that is a content de-
livery network implemented on top of the DKS (Distributed K-nary Search)
structured P2P system with DHT functionality [9]. DOH provides the same fea-
tures as a corporate CDN at the same cost as a regular low-end web server.
The system prototype is implemented in Java, using DKS[3], the Jetty[12] web
server, and a modified JavaFTP[6] server package. We have evaluated our pro-
posed CDN design by simulation and by performing evaluation experiments on
the developed prototype.

The remainder of the paper is organized as follows: Section 2 describes the
DOH architecture. Section 3 presents our DOH prototype. Section 4 presents
results of preliminary performance evaluation. Section 5 discusses some related
work. Conclusions and future work are given in Section 6.

2 DOH Design

When designing the DOH content delivery network, two different types of users
should be considered: a regular user (called User) browsing the Web; and a
content provider (called here Publisher) publishing content of a web-site in DOH.
As shown in Figure 1, DOH consists of two types of nodes: Translators and DOH-
Nodes (or shortly Nodes).

The DOH-Nodes are connected by the DKS P2P middleware in a structured
P2P network. Each DOH-Node contains an FTP server, a web server, and is
connected to the DKS overlay network (see Figure 1). It serves HTTP requests
submitted by Users; confirms identity, inserts, and removes content provided by
Publishers.

Translator nodes handles interaction between the User and the system before
an HTTP request is sent to a DOH-Node. A Translator redirects the User’s
browser to DOH-Nodes based on a load-balancing strategy. Each Translator
maintains a cache for storing information about other Translators and DOH-
nodes including their load status and RTT times, referred to as the Translator-
cache. This information is used for redirection decisions, and when Nodes join.
Servicing of an HTTP request arrived to one of the DOH Translator nodes,
passes the following steps:

1. Redirection from the old home to a Translator. This step is performed when
the DNS entry for the requested web page has been updated;

2. Redirection from a Translator to a DOH-node based on current load of the
DOH nodes and network congestion;

3. Retrieval of the requested file (replica) from the Translator-cache of the node
or, if the cache misses, from the DHT of the DKS P2P system.

4. Unwrap, assemble, and write the file to the disk (cache) of the requested
Node;

5. Sending the requested file to the requesting client.

DOH: A Content Delivery Peer-to-Peer Network 1029

Fig. 1. Architecture of the DKS-based Hosting (DOH) P2P Content Delivery Network

2.1 Translator

A web-hosting system like DOH allows storing (and replicating) content of sev-
eral web sites in one hosting system. As the content is referenced to by URLs,
the system needs to direct a HTTP request to one of DOH-Nodes that serve as
access points to the content, i.e. it needs to translate a requested URL to a new
URL that redirects a requesting client to one of the DOH-Nodes. To perform
this URL-to-URL translation, the DOH system includes Translator nodes that
are Users’ initial access points to the DOH content delivery network. Translators
serve as mediators that redirect web clients to one of the DOH-nodes based on
their current load and network congestion. Thus, the URL-to-URL translation
performed by Translators aims at load balancing in order to improve availability
and performance of the DOH content delivery network.

To perform load balancing, each Translator maintains a cache of information
on DOH-nodes: IP-addresses, load, and RTT values; and information on other
Translators it knows. This cache is called Translator-cache. When a Translator
receives an HTTP request, it checks the Translator-cache to find the currently
”best” DOH-node that can service the request. To redirect the client to a DOH-
node, the Translator issues an HTTP code 302 message that is used to respond
on requests for temporarily moved pages, and adds the IP address of the Node
to the new URL when forming the 302-code response to redirect the requesting
client. E.g., if the riginal URL is http://www.url.com/a/b/index.html, then
the translated URL is http://192.168.2.23/www.url.com/a/b/index.html,
where 192.168.2.23 has been chosen as the currently ”best” DOH node to
service the request.

Information in the Translator-cache is periodically updated by the Nodes. The
data collected in the Translator-cache are used to calculate Nodes’ load and net-
work congestion over time. The Translator-cache is also used for bootstrapping,
as it contains information on Nodes and Translators that are known to be up and
running. There are three levels of the caching structure: (1) level 1 keeps a list of
other known Translator-caches, (2) level 2 is the local Translator-cache level, and

1030 J. Jernberg et al.

(3) level 3 is a Translator-cache-entry that stores data on an actual Node. When
a new Node joins DOH, it first contacts the Translator-cache (if any) it used
last time. If that cache is down, the Node queries a cache list for online caches.
The queried Translator-cache may respond with several valid entries, and the
new (booting) Node contacts one of these Nodes to join the system. The same
mechanism is used when a Publisher wants to find a Node to upload its content
on DOH.

2.2 DOH-Node

In DOH, web content and its replicas are stored in a hash table distributed among
the DOH-nodes. The content is replicated in DHT according to the symmetric
replication mechanism used in DKS[13].

Each DOH-Node includes three subsystems which are the DKS middleware
that connect the Node to the P2P DKS overlay network, an FTP server, and a
web server. When a client requests a file, the web server searches the file locally,
and if the file does not exist locally, or the local replica is considered too old,
the web server will perform a lookup operation in the DKS DHT to retrieve the
requested file. The FTP server of a DOH-node is used when Publishers upload
content.

Granularity of content stored in DHT
To store contents (or content references) of hosted web sites, the DOH CDN
uses a Distributed Hash Table (DHT) provided by the DKS P2P middleware[3].
When content of a web site is stored to or fetched from the DHT, either the
entire URL or a part of the URL is considered as a key. The hashed key value
determines a DOH-node responsible for the DHT-bucket in which the content is
(to be) stored.

There are three strategies of placement of web-site content identified by URLs
to the DHT, that differ in the granularity of a web-site content stored in a
bucket of the DHT: (1) file-wise placement (uses the entire URL as a key, e.g.
http://www.url.com/a/b/index.html); (2) directory-wise placement (uses the
directory part of the URL as a key, e.g. http://www.url.com/a/b/); (3) site-
wise placement (uses the web-sire part of the URL as a key, e.g. http://www.
url.com/).

With the file-wise placement, files that belong to the same web-site can be
stored in different DHT buckets and distributed among the DOH-nodes.

With the directory-wise placement, all files of the same directory are hashed
to the same bucket, i.e. stored on the same DOH-node. Even though the files are
hashed directory-wise it does not mean they have to be returned directory-wise
on a DHT get request. The DKS API allows a file name to be sent along with
the DHT get request as an additional parameter to retrieve specific entry (the
requested file).

The web-site-wise placement is a coarse-grained placement and is similar to
the directory-wise placement described above. The site-wise placement causes
the entire content of a web-site to be stored in the same DHT bucket.

DOH: A Content Delivery Peer-to-Peer Network 1031

The coarser the placement is, the lower is the level of content distribution.
In our DOH prototype, we support all three different levels of granularity. Pre-
liminary evaluation of file-wise and directory-wise distribution shows that the
system performance is not very sensitive to the granularity of the content dis-
tribution in the DHT but rather to prefetching and caching. One can expect
that the file-wise and directory-wise distribution allows improving performance
in the case of intensive concurrent accesses to a web-site, as well as improving
its availability in the case of node failures. We leave more detailed evolution of
the distribution strategies to our future work.

Symmetric Replication and Adaptive Caching
DKS builds on symmetric replication, which is built on-top of the DHT layer.
Symmetric replication of DHT content enables parallel lookups, which increase
the responsiveness of the system, while keeping the number of messages needed
for restoring the replication degree after dynamism low. In addition to the sym-
metric replication for reliability and higher performance, DOH also implements
an adaptive caching of requested content at DOH-nodes. The caching algorithm
has been devised based on a combination of the Directory scheme defined in [14]
with the entry caching scheme of DNS. We assume that whenever an object (a
file) is requested, it is likely to be requested again from the same or another
access point. Therefore it makes sense to cache the object on its way to the node
that originates the lookup operation. In DKS, the return path of passing the
object to the requesting node is recursive; therefore the object can be cached in
the nodes along the return path. Consistency of copies is weak and can be kept
by using the if-modified-since field built-in to the header of the HTTP protocol.
When a cache is full, the Least Recently Used (LRU) algorithm or some other
caching policy, could be used for deciding which objects to evict.

3 A System Prototype

We have implemented the DOH prototype in Java, using the DKS P2P middle-
ware with the DHT API[3], the Jetty[12] web server, and a modified JavaFTP[6]
server.

In the DOH-Node prototype, the web server functionality has been imple-
mented by modifying the Jetty web server, which is licensed under the Apache
license[4]. For uploading, downloading and removing content in DOH, we use
the modified JavaFTP server package, also licensed under the Apache license.
The DOH-Nodes are peers in the P2P DKS network, and the DKS DHT API
is used to store and retrieve content of web sites hosted in DOH. In order to
integrate the Jetty server in our prototype, we have extended the server so that
it creates a special handler that searches the DKS DHT if a requested file is not
found locally in the web server’s cache.

JavaFTP server is a package that implements the FTP standard We have
modified the server so that it allows a content provider to upload the files in the
DHT rather than to the host’s local file system. In order for the DOH system

1032 J. Jernberg et al.

prototype to handle large objects, it uses data fragmentation that, we believe,
allows better control over memory usage and to avoid running out of memory
on a low-end server.

When a file is stored to the DHT the following steps are performed:

1. The key (it can be either the file name or the directory name or the web-site
name) is hashed to get a hash table index using SHA-1, shortened to 64 bits.

2. If necessary (it depends on the file size), the file is fragmented;
3. Each of the fragments or the entire file is put in the DHT entry defined by the

hash-table index. The put operation is based on the DKS lookup operation
that finds a DOH node responsible for the target bucket. placed.

When retrieving a file from DHT, a DOH node performs the following steps:

1. The key is hashed to obtain a hash table index;
2. A DHT get operation based on the DKS lookup operation is performed that

returns an array of entries (all the files) stored in the target DHT entry;
3. If fragmented, the requested file is assembled by combining the fragments.

Copies of the file are stored in the web-caches of the nodes involved in the
operation.

3.1 Implementation of a Translator

A Translator is a stand-alone node that serves as a web server for web-clients
accessing web-sites hosted in DOH. Translator receives HTTP requests and redi-
rects the clients to DOH-nodes. Translator provides the following functionality:
(1) maintains a cache of information on DOH nodes (IP addresses, load and RTT
times) and on other Translators (to retrieve information from their caches); (2)
provides load balancing so that it redirects HTTP requests to DOH-Nodes based
on their load and network congestion; (3) displays Node information to Publish-
ers in a human-readable format.

Each Translator redirects the clients to DOH nodes as described above except
of a special case when the requested URL refers to doh webcache.xml indicat-
ing that a Publisher asks for an IP address of a Node to upload content. In this
case, Translator replies with an XML page that contains information on Nodes
from its own Translator-cache. From this file the Publisher can choose a node to
connect to.

4 Preliminary Evaluation

In this paper, we present results of preliminary evaluation of the approach, leav-
ing more detailed evaluation to our future work. The DOH prototype has been
used to evaluate small-scale configuration mostly in order to verify the design,
whereas a specially developed DOH simulator has been used to evaluate impact
of different design choices (such as the use of content caches, the granularity of
content distribution) on the system performance and reliability of DOH with
varies (large) configurations.

DOH: A Content Delivery Peer-to-Peer Network 1033

In our experiments and simulation, the performance is measured as a service
time that is the time from receiving a request to sending a reply. A single stand-
alone Jetty web-server (without DHT), has been chosen as a baseline. We assume
the synthetic workload formed of streams of HTTP requests issued by the num-
ber of concurrent independent clients, each of which sends a random sequence
of requests to retrieve different randomly selected files from different randomly
selected sites with a specified intensity. To generate random sequences of re-
quests, we assume the Zipf distribution, as suggested in [8] for the distribution
of incoming page requests in the Web.

4.1 Preliminary Evaluation of the DOH Prototype

We used the prototype mostly in order to validate the DOH design. The evalua-
tion testbed included several Pentium 3, 500 MHz computers with 256 MB RAM
running Linux (Red Hat 9.3). We report results of two series of experiments. In
the first series, 50 files of the mean size of 10Kb of 6 web-sites were uploaded
to a DOH-node. In the second series, the content was ”heavier”: 18 domains, 47
directories, and 503 files (mean size is still 10Kb). The number of nodes varied
from 1 to 6 nodes.

As expected, our experiments have shown that the DOH performance is very
sensitive to the use of file caches in DOH-nodes when increasing the number
of nodes, i.e. increasing the level of distribution of web-sites in DOH. These
results suggest that it is worth to make more efforts to find an caching strategy.
Evaluation of the prototype has also shown that the performance of DOH heavily
depends on the performance of the underlying DKS network: over 90% of the
time used by the system consumed by DKS-related activities when the file size
is increased to 4Mb.

We have also preliminary evaluated three different strategies of storing files
in DHT: file-, directory-, and site-wise - in order to see whether the system
performance is sensitive to the strategy used, and which of the strategies is the
best with respect to performance. Remind that the three placement strategies
use different parts of a URL as a key to determine a DOH-node responsible for
the content pointed to by the URL. Unfortunately, the evaluation results for
small-scale system configurations show that there is no clear best candidate to
use in all cases studied. If published web pages are changing rapidly or if the
load of the network is small, then the file-wise approach yields the best results.
If there are seldom changes in the stored sites or the load is high, then the
directory-wise or even the site-wise approaches are better to use. The system
can perform even better if it can support a combination of at least two of the
placement strategies, and DKS indeed supports this kind of flexibility.

A full-scale evaluation of the prototype should be done on configurations larger
than the setups we could afford for now. In our future work we intend to evaluate
large more realistic configurations of the prototype (with large number of nodes
and clients). Our future plans also include further performance optimization of
the prototype.

1034 J. Jernberg et al.

4.2 Performance Evaluation Using the DOH Simulator

As we continue improving and optimizing performance of the DOH prototype
and, in particular, the DKS P2P middleware, we have developed an accurate
simulator of DOH in order to evaluate the impact of different design choices
(such as the use of caches in nodes, different strategies of storing files in DHT:
file-, directory-, and site-wise, prefetching, different replication schemes and the
number of replicas) and system changes (nodes leave the network, new nodes join
the network) on the overall system performance and reliability. The simulator
is based on timing estimates obtained from experiments on the DOH prototype
and a stand-alone Jetty web-server.

In our simulation, we assume the following workload: a random sequence of
requests with the predefined rate (1000-5000 requests/sec) is issued by several
clients to retrieve different randomly selected files from different randomly se-
lected sites; the content stored in DOH includes 18 sites, i.e. about 100 directories
with about 10 files in each directory; the average file size is assumed to be 30
Kb (concurring with the average file size in the Web, as shown in [5]); the ratio
of TTL for files in node caches varies from 0% (no cache) to 100% (always in
the cache) of the simulation time. The cache TTL defines how long a file stays
in a cache before it’s removed from the cache.

The average service time has been computed based on timing estimates ob-
tained from experiments on the DOH prototype with smaller configurations and
the Jetty web-server. We assume that there are three major factors that affect
the service time: (1) the current load of the server, (2) the size of the requested
file, and (3) whether the file is cached or not. The service time was computed as
follows:

Ts = 2 + Load × 0.85 + Miss × (15 + 2 × fileSize + H × 100 × log2 N)

Here Ts is the service time in ms; Load is the number of parallel requests served;
Miss ∈ 0, 1 indicates whether the cache misses (Miss = 1) or hits (Miss = 0);
fileSize is the size of the requested file in Kbytes; H ∈ 0, 1 indicates whether
the file is stored locally in one of the local DHT buckets (H = 0) or remotely
(H = 1) and a number of hops is required to find and fetch the file from DHT-
the probability that H = 1 is f/N , where f is the number of replicas per file in
DKS; N is the number of nodes. Numeric constants (in ms) in the formula are
average times obtained from experiments on the prototype and the stand-alone
Jetty web-server.

We have evaluated the effect of different design choices on the performance
of DOH. Figure 2 shows plots of the service time as the function of the number
of nodes for different TTL of cached content and different strategies of place-
ment of content to the DHT. As expected, it has been observed that the service
time is sensitive to the use of caches: the service time is shorter if cached con-
tent stays longer in the cache (i.e. the higher cache hit ratio). The service time
degrades as the number of nodes increases because of the increase in the DKS
lookup latency. However the service time degrades slower when TTL of cached
content is high. This result suggests that it is worth to make more efforts to

DOH: A Content Delivery Peer-to-Peer Network 1035

(a) file-wise placement in DHT (b) directory-wise placement in DHT

Fig. 2. Effect of the use of caches on performance of DOH with different number of
nodes, different TTL ratio and different DHT placement strategies. Request rate is
2500 req/sec.

find (more) efficient caching strategies. Plots in Figure 2 also show that DOH
with the directory-wise placement (Figure 2 (b)) serves faster than DOH with
the file-wise placement (Figure 2 (a)) because the directory-wise placement is
combined with prefetching: when a file is fetched from DHT the entire directory
is prefetched to the cache of the requesting node.

We have compared performance of DOH with different number of nodes and a
stand-alone web server (indicated in plots as cases where the number of nodes is
1). Figure 3 shows plots of the service time for different request rates in DOH with
the directory-wise placement and different number of nodes. The TTL of cache
content is assumed to be 30 sec. Even though the DOH performance degrades as
the number of nodes increases, the service time of DOH with the large number of
nodes scales better than the service time of a single server for high request rates.
As expected, in the case of low workload, DOH with the small number of nodes
performs slower than a stand-alone Jetty server because of an extra overhead
introduced by the DKS middleware, that causes increase of the average service

(a) (b)

Fig. 3. Performance of DOH with the directory-wise DHT placement strategy. The
cache TTL ratio is 30% of 100 sec of the simulation time (i.e. a file stays in the cache
30 sec).

1036 J. Jernberg et al.

time in DOH as the number of nodes increases. However, as the request rate
increases, DOH shows better performance scalability than a stand-alone Jetty
server: the DOHs service time does not increase as fast as the service time of
the stand-alone Jetty. For example, at the request rate 600 req/sec (100 parallel
requests), the average response time for Jetty is 87ms compared to 110ms for
DOH. However at service rate of 1170 req/sec (200 parallel requests), the average
response time for Jetty is 171ms compared to 135ms for DOH.

It has been observed that for each request rate there is a certain number
of nodes, at which the system shows minimum response time, i.e. there is no
improve in service time when increasing the number of DOH nodes beyond a
certain value. We believe that this effect depends on the distribution of content
in DHT and on how the content is cached in DHT nodes. We intend to study
this in our future work.

The simulator suggests that DOH will do well with service times under 300ms,
with request rates smaller than approximately 1200 requests per second per node.

Thus, our preliminary evaluation has shown that DOH would be able to handle
a flash crowd; however the price users would pay is that the page retrieval under
normal workloads would be sligthly slower than in the case of a stand-alone web
server.

5 Some Related Work

Many P2P systems, like those proposed in [18], [20], [15], [19], and [21], have been
used for creating DHTs. There are two main arguments for choosing DKS. First,
DKS provides local atomic joins and leaves that guarantees that the DHT will
never be in an inconsistent state. Second, DKS uses symmetric replication that
allows to improve lookup time as well as reliability of the DHT. It also allows
the client to get more than one result when doing a lookup. This feature can be
used in a voting protocol, making sure that the retrieved object not has been
tampered with. To our best knowledge, no other P2P overlay network provides
these features.

Globule[16], SCAN[7] and CoralCDN[10], all propose P2P CDN similar to the
one presented in this paper. The authors of Globule[16] make the observation
that local web space is cheap, and therefore it could be traded for non-local
space, creating replicas on different other servers (called slaves [16]) over the
world. In Globule, negotiation for the replication space, configuration, and man-
agement are not handled automatically but rather by a human, whereas DOH is
autonomous and has the ability to self-organize when a node joins/leaves. SCAN,
which is a P2P CDN proposed in [7], uses Tapestry[21] as an underlying P2P
network. One of the main goals of SCAN is to keep the number of replicas at a
minimum to reduce overhead. This may cause sites to be unavailable whenever
the master copy is unavailable. CoralCDN[10] uses the Coral[11] implementa-
tion of a Distributed Sloppy Hash Table to keep references to the master copy
(or valid cached copies) on different nodes. In CoralCDN, like in SCAN, if the
master copy of a site becomes unavailable for Coral, the site will soon become

DOH: A Content Delivery Peer-to-Peer Network 1037

unreachable. In contrast to SCAN and CoralCDN, DOH uses symmetric replica-
tion to improve availability of hosted web-sites. Furthermore, in CoralCDN the
URLs need to be ”coralized” (see [10]) to be a part of the overlay network, i.e.
CoralCDN is not even initally transparent to the end-users, which is one of the
major design goals of DOH. DotSlash[22] is described by the authors as being a
rescue system for web servers during hotspots. The authors of DotSlash do share
the same motivation for developing a P2P CDN as in this paper: to help web
servers survive a flash crowd. DotSlash does not store content globally (i.e. does
not distribute and/or replicate a web-site among nodes as it is done in DOH) but
all servers will store their own content. When a flash crowd occurs, an overlay
network with rescue servers will be created, and the ”hot objects” will be cached
at these servers during the flash crowd. This network will be abandoned when
workloads are back to normal. In contrast to DotSlash, DOH allows to distribute
content of a web-site and its replicas among nodes making the web site more
available for intensive concurrent requests.

6 Conclusions and Future Work

In this paper we have presented an approach to building a content delivery net-
work as a structured P2P system of web-servers. This approach allows improving
availability and scalability of a web site due to the load distribution, multiple ac-
cess points, and replication. Such content delivery P2P network of collaborative
web-servers can be used as a Web-hosting environment to host several web-sites.
This approach can also be considered as one inexpensive solution for surviving
of a flash crowd[1].

To validate, and preliminary evaluate our approach we have developed a sys-
tem prototype called DOH (DKS Hosting system) based on the DKS P2P mid-
dleware that integrate the Jetty web-servers in a scalable content delivery net-
work (web-hosting system). Each node in the DOH network is a DKS-node, i.e.
is a part of the DKS overlay network, has a web server (to retrieve files) and an
FTP server (to download/upload files). The network also includes Translators
which are client contact points to the DOH network. Translators are used to
distribute requests among DOH nodes to achieve load balancing. A Translator
redirects web clients to DOH nodes based on the nodes load and network conges-
tion. Each Translator maintains a cache of information about nodes (including
their load and RTT times) that are known to the system. The Translator-cache
is also used to help a content provider to find nodes , when uploading content
using FTP.

DOH stores files in a Distributed Hash Table (DHT) provided by DKS so each
node is able to retrieve the requested files from the DHT and cache them locally
for future requests. Thus when a sudden traffic surge occurs, there will not only
be one server (DHT-node) serving all the requests but a network of cooperating
web servers helping each other by dividing the load.

We have evaluated the prototype for small-scale DOH configurations. To pre-
liminary evaluate medium- and large-scale setup we have developed a DOH

1038 J. Jernberg et al.

simulator based on timing estimates obtained from the performance experiments
on the prototype. Evaluation results show that DOH performs better than a
stand-alone web-server in the case of the high request rate (a large number of
simultaneous requests) and the response time in DOH scales better than the
response time in a single web-server, so the approach is valid for solving the
intended problem of a flash crowd. However, as expected, with a low request
rate, the single web-server outperforms DOH. Experiments also show that per-
formance of DOH is very sensitive to the use of caches. We can also expect that
explicit replication supported in DKS will improve performance of the prototype.

Two scenarios of performance has thus been identified: during low and high
request rate, and both needs to be addressed in our future work which also
includes more detailed performance evaluation, including assessment of impact
(if any) of replication on service time; improving the caching mechanism in order
to improve system performance; extending the system design to support dynamic
contents (web-based applications). There are many issues to be considered when
extending the system for dynamic contents, e.g. how to deploy and replicate
applications, how to handle transactions, states, and failures; how to store the
state to achieve failover. We leave answering all these questions to our future
work.

References

1. Adler, S.: The Slashdot Effect: An Analysis of Three Internet Publications [Online]
http://ssadler.phy.bnl.gov/adler/SDE/SlashDotEffect.html (2005)

2. Akamai Technologies, Inc. [Online] http://www.akamai.com/
3. Alima, L.O.,El-Ansary, S., Brand, P., Haridi, S.: DKS(N, k, f): A Family of Low

Communication, Scalable and Fault-Tolerant Infrastructures for P2P Applications,
In The 3rd Int workshop CCGRID2003, Tokyo, Japan, (2003)

4. Apache License, Version 2.0 [Online] http://www.apache.org/licenses/LICENSE-
2.0

5. Arlitt, M. F., Williamson, C. L.: Internet web servers: Workload characterization
and performance implications. In IEEE/ACM Trans on Networking, 5(5) (1997)
631-645

6. R. Bhattacharyya [Online] http://www.mycgiserver.com/r̃anab/ftp/ (2005)
7. Chen, Y., Katz, R., Kubiatowicz, J.: SCAN: A dynamic, scalable,

and efficient content distribution network. Proc of Int Conf on Pervasive Comput-
ing, Zurich (2002)

8. Crovella, M. E., Taqqu, M. S., Bestavros, A.: Heavy-tailed probability distributions
in the World Wide Web. In A Pract. Guide To Heavy Tails, Chapman & Hall (1998)
3-26

9. Distributed K-ary System (DKS), [Online] http://dks.sics.se/
10. Freedman, M. J., Freudenthal, E., and Mazi‘eres, D: Democratizing Content Pub-

lication with Coral. In Proc of the 1st Symp on Networked Systems Design and
Implementation (NSDI 2004), San Francisco, USA (2004)

11. Freedman M., Mazi‘eres, D.: Sloppy hashing and self-organizing clusters. In 2nd
Int Peer To Peer Systems Workshop, Berkeley, USA (2003)

12. Jetty Java HTTP Servlet Server [Online] http://jetty.mortbay.org/jetty/
index.html

DOH: A Content Delivery Peer-to-Peer Network 1039

13. Ghodsi, A., Alima, L.O., Haridi, S.: Symmetric Replication for Structured Peer-to-
Peer Systems. In The 3rd Int Workshop on Databases, Information Systems and
Peer-to-Peer Computing, Trondheim, Norway (2005)

14. Iyer, S., Rowstron, A., Druschel, P.: Squirrel: A decentralized, peer-to-peer web
cache. In Proc of the 21st Ann ACM Symp on Principles of Distributed Computing,
ACM (2002)
jimmy:

15. Maymounkov, P., Mazi‘eres, D.: Kademlia: A peer-to-peer information system
based on the xor metric. In IPTPS02, Cambridge, MA (2002)

16. Pierre, G., van Steen, M.: Design and implementation of a user-centered content
delivery network. In Proc. 3rd Workshop on Internet Applications, San Jose, USA
(2003)

17. Pierre, G., van Steen, M., Tanenbaum, A. S.: Dynamically selecting optimal dis-
tribution strategies for Web documents. IEEE Trans on Computers, 51(6) (2002)
637651

18. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Schenker, S.: A scalable content-
addressable network, In Proc of the 2001 Conf on Applications, Technologies, Ar-
chitectures, and Protocols for Computer Communications, San Diego, USA (2001)
161-172

19. Rowstron, A., Druschel, P.: Pastry: Scalable, distributed object location and rout-
ing for large-scale peer-to-peer systems. In IFIP/ACM Int Conf on Distr Systems
Platforms (Middleware) (2001) 329-350

20. Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., Balakrishnan, H.: Chord: A
Scalable Peer-to-Peer Lookup Service for Internet Applications, In Conf on Ap-
plications, Technologies, Architectures, and Protocols for Comp. Communications
(2001) 149-160

21. Zhao, B. Y., Kubiatowicz, J. D., Joseph, A. D.: Tapestry: An infrastructure for
fault-tolerant wide-area location and routing. TR UCB/CSD-01-1141, UC Berkeley
(2001)

22. Zhao, W., Schulzrinne, H.: DotSlash: A selfconfiguring and scalable rescue sys-
tem for handling web hotspots effectively. In Int Workshop on Web Caching and
Content Distribution (WCW), Beijing, China (2004)

	Introduction
	DOH Design
	Translator
	DOH-Node

	A System Prototype
	Implementation of a Translator

	Preliminary Evaluation
	Preliminary Evaluation of the DOH Prototype
	Performance Evaluation Using the DOH Simulator

	Some Related Work
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

