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Abstract. In this paper, we present a parallel multigrid PDE solver
working on adaptive hierarchical cartesian grids. The presentation is re-
stricted to the linear elliptic operator of second order, but extensions are
possible and have already been realised as prototypes. Within the solver
the handling of the vertices and the degrees of freedom associated to them
is implemented solely using stacks and iterates of a Peano space–filling
curve. Thus, due to the structuredness of the grid, two administrative
bits per vertex are sufficient to store both geometry and grid refinement
information. The implementation and parallel extension, using a space–
filling curve to obtain a load balanced domain decomposition, will be
formalised. In view of the fact that we are using a multigrid solver of
linear complexity O(n), it has to be ensured that communication cost
and, hence, the parallel algorithm’s overall complexity do not exceed this
linear behaviour.

1 Introduction

An important issue of a finite element code is to implement it in an efficient way.
We want to examine four different aspects of efficiency: First of all the numerical
efficiency covering all mathematical aspects, from modelling and discretization
up to the solver. Second, there is the process integration efficiency, representing
classical front– and back–end application integration tasks, such as adding a
geometry input or embedding a flow solver into a fluid–structure interaction
application. Furthermore, we distinguish between the implementation efficiency,
regarding everything influencing the actual execution speed of a given program
on a given platform, and parallel efficiency. The latter three often suggest the
usage of cartesian grids, since then several implementation tasks are simplified.
However, cartesian grids are not competitive for any real world application if they
do not support adaptivity. On the other hand, with adaptivity the development
of a well–suited traversal order, appropriate data structures, and a data access
scheme is not a trivial task anymore.

In fact, many multigrid — i.e. numerically efficient — codes suffer from an
inefficient implementation, integration, and parallelisation. We want to address
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this problem and, in the following, will derive a traversal and data management
algorithm working on adaptive cartesian grids alike [7,12]. This algorithm then
is parallelised using a domain decomposition approach based on [6]. Although
the results are presented for a three–dimensional Poisson problem on an a priori
refined grid only, we are able to solve any d–dimensional problem that can be
discretised by a 3d–point stencil. This is an important subtask of many more
complex problems (the pressure Poisson part in the Navier–Stokes equations,
e.g.) and starting point for the implementation of more difficult operators, such
as the diffusion–convection operator or the diffusion operator for jumping ma-
terial parameters.

The remainder is organised as follows: In Section 2, we introduce the adaptive
cartesian grid our algorithm is based on. Section 3 is concerned with defining
a traversal order (a linearisation) for the cells of this grid and exposing a ver-
tex handling scheme, proving that two extra administrative bits per vertex are
sufficient, both to store the complete grid structure including the geometry and
to solve the equation system. Afterwards, in Section 4, we apply a hierarchical
domain decomposition technique to end up with an algorithm whose commu-
nication data scales linearly with regard to the maximum number of vertices
on the boundary of any partition. In Section 5, we present an upper bound for
the corresponding constant, showing it is quasi–optimal. Finally, in Section 6,
some numerical results for the Dirichlet Poisson problem are given, showing the
efficiency with respect to both memory access and the parallelisation. Some final
remarks in Section 7 conclude the discussion.

2 The Adaptive Grid

We create our grid using a hypercube [0, 1]d and embed the computational do-
main into it. Then, the grid is refined in a recursive way, splitting up each cell
into three parts along every coordinate axis. The depth of recursion and, hence,
the resolution depends on both the boundary approximation and the numerical
accuracy to be obtained. Following the notion of a spacetree (e.g. [1]) for a binary
substructuring, we call these trees Peano spacetrees. A more formal definition
as well as a reason for the division into three will be given later on.

On this grid, we use a nodal generating system [4] for the operator evaluation,
that is a nodal basis on every grid level. Hereby the support of any shape function
(hat), suitably scaled and dilated on a level k, shall be [0, 2

3k ]d. Consequently,
a strictly element–wise assembly of the operators [1] is feasible, whereas within
every geometric element only the element’s vertices are needed. Since one degree
of freedom is assigned to every vertex in this paper, the terms vertex and degree
of freedom are used equivalently. Before implementing a solver on such a grid,
one has to mention five important facts:

– If the values of an approximation are stored as hierarchical coefficients of the
generating system û on the vertices, the inverse hierarchical transform (map-
ping from the hierarchical representation into a nodal basis representation
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Fig. 1. An adaptive Peano grid and Peano spacetree of height three with corresponding
cell order in two dimensions

of the finest level) u = P û can be done within one top–down traversal of the
cell tree.

– If a value r is given on a vertex of the fine grid, the Galerkin hierarchical
transform (mapping the other way round) r̂ = PT r of this value may happen
during one bottom–up traversal.

– If a matrix–vector operation Au = r with A generated by a 3d−1 stencil
is given on any grid level, the result can be computed element–wise. Thus,
all elements of this level have to be traversed once. Furthermore, the result
value can be stored within the vertices directly, such that an explicit setup
of matrix A is not needed at any time.

– Because of the last issue, both a residual computation and a Jacobi update
step on any level can be done traversing all geometric elements of this level
only once:

u
(n+1)
level k = u

(n)
level k + ω diag−1(A)

(
b − Au

(n)
level k

)
. (1)

– Combining equation (1) with the top–down–bottom–up arguments given
above, one is able to implement an additive multigrid scheme with addi-
tive smoother [4], doing one depth–first sweep on the cell tree per iteration:

û(n+1) = û(n) + ω diag−1(PT AP )PT
(
b − APû(n)

)

=: û(n) + ω diag−1(PT AP )r̂(n). (2)

A detailed description of the actual realisation of such a solver can be found in
[7,13]. In the following, we will focus on the development of a well–suited depth–
first traversal of the grid, on the vertex management, and on the parallelisation.
Thereby, regarding the operator evaluation, we focus on a strict element–wise
evaluation scheme, where only the 2d vertices of the current element have to be
available at any time. As a result, every vertex is used 2d times per iteration.

3 Grid Traversal Using a Peano Curve

Space–filling curves [15] are well known to simplify a lot of different tasks, due
to their good locality properties ([3,5,6,7,8,10,12,13] e.g.). Their recursive, self–
similar definition implies a depth–first traversal of the corresponding cell tree
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and, therefore, an enumeration of the cells of all levels. We are using the Peano
curve as illustrated in Figure 1.

A Peano spacetree is a tree corresponding to a d–dimensional adaptive carte-
sian grid, where each node has either 0 or 3d children. There is an order on the
tree nodes (i.e. the geometric elements / grid cells) defined top–down by the
Peano space–filling curve. Note that, if one inverts the Peano curve on the root
level, the order on the child nodes on every level also is inverted. The resulting
tree is again a Peano spacetree, which means this set of trees is closed under the
invert–traverse operation.

Now, as a result of choosing this hierarchical grid and the Peano traverse,
we have to provide a data structure such that the traversal algorithm is able
to access the elements’ vertices within every node for element–wise operator
evaluation. This is not a new problem, e.g. [5] uses a hash function derived from
the space–filling curve to access the vertices and shows some nice properties of
such a scheme with respect to parallelisation and load balancing. We chose a
different approach, exploiting the properties of the curve as well. Here, this idea
is explained for the two–dimensional case. The recursive extension to arbitrary
dimensionality is very technical, but is based on exactly the same ideas [7,9].
Where necessary, the basic construction ideas for d > 2 are presented:

First of all, one can observe that every continuous traverse splits up all vertices
of the grid into left and right ones (in terms of their position with respect to the
Peano traverse). This is formalised by a left–right classifier function

cLR2 : vertices �→ {L, R} = {0, 1} in IR2. (3)

Given a d ≥ 2 there are d−1 mappings of both the vertices and the space–filling
curve onto the planes (x1, x2), (x1, x3), . . .. For the Peano curve, the projection
property holds [15], i.e. every projection onto the subplanes given before is a
Peano curve again (see Figure 2). Thus, on each plane one can evaluate cLR2

and combine the d − 1 classifiers resulting in a d − 1–dimensional left–right
classifier function

cLR : vertices �→ {0, 1}d−1. (4)

Fig. 2. On the left–hand side one can see the projection property, i.e. the projections of
the Peano curve are again Peano curves. In the middle the alternating edge colouration
is illustrated (even/odd indicated by dotted/solid), whereas on the right–hand side one
can observe the palindrom / stack property (fat arrows). To some vertices their classifier
value c is added.
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The second idea is to have a look at the chronology a vertex is needed on a
two–dimensional grid: If a ”left” vertex is needed before another ”left” vertex,
the next time, the vertex is needed for operator evaluation, it is the other way
round. Figure 2 shows this fact using grey arrows. Our idea is to use stacks, since
they meet the resulting requirements: put a record (vertex) on the top of a stack
after using it the first time, and pop a record from the stack when it is needed
the second time. In addition to the left and right stack, one has to add a third
idea, the stack colouring, within a hierarchical grid as pointed out first by [6],
to avoid access conflicts due to the top–down bottom–up steps of the traverse
in the generating system since there might be more than one degree of freedom
per vertex.

So, the third idea is to colour the edges of a two–dimensional grid alternating
along every axis in an even–odd manner. For example the left and the bottom
edge of the root element are coloured. On any refinement level first of all the
colours of the edges of the parent element are inherited, then the other edges are
coloured again alternating (see Figure 2). Since every vertex is element of two
edges, we get an additional qualifier

ccol : vertices �→ {0, 1}2 in IR2 (5)

defining the colour of a vertex. Combining (4) and (5), we end up with a classifier
function

c : vertices �→ {0, 1}3 c = cLR ◦ ccol in IR2 (6)

for every vertex.

Lemma 1. For d = 2 one is able to implement the whole vertex handling using
23 + 2 stacks only.

Assume there is a vertex stream, the vertices being ordered according to the
very first vertex access. The first time a vertex v is required, it is read from the
input stream. After the first usage, the vertex is stored on a stack c(v). Next
time it is needed for element–wise evaluation, it lays on top of stack c(v). After
the fourth usage, it is written to an output stream. As soon as one iteration is
done, you can invert the Peano spacetree traversal order and switch input and
output stream using them as stacks. For d > 2 this access scheme is extended in
a recursive way regarding the axes, and the whole vertex handling can be done
using 22d−1 + 2 stacks [9].

Implementing this algorithm, every vertex is augmented by two administrative
bits: The first bit describes whether the vertex is inside or outside the domain.
On the second bit we define an or–refinement semantic: An element is refined,
if at least the refinement bit of one of the 2d element’s vertices is set. Thus, if
n′ is the number of vertices of the Peano spacetree, only 2n′ bits are required
for both the geometry and the grid description. During depth–first traversal, the
whole traversal order can be reconstructed, evaluating the bits of the vertices of
the current element and the current traversal state.

Using stacks is the first key for the high cache efficiency reported in [7,9],
since for them the data access is highly local (no jumps within the memory),
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which is often named spatial locality. Using the Peano curve, the spatial locality
[11] of the traverse results in very small temporary stacks and, therefore, good
temporal locality of the stack access, which is the second key.

4 Domain Decomposition

Space–filling curves are well known within the parallel community for their good
load–balancing and good spatial locality properties, i.e. ratio of surface divided
by partition volume. For the Peano spacetree, we define a tree partition, based
on an existing fine–grid domain decomposition, in a bottom-up manner.

We assume that we have a Peano domain decomposition of a fine grid into
disjoint partitions. A Peano spacetree partition is a Peano spacetree minimal
with respect to the number of tree nodes. Within this tree, all nodes of the given
fine–grid partition as well as their fathers are contained and are called active.
All vertices adjacent to the active elements are called active, too. Besides the
active elements, the Peano spacetree partition contains all elements of the global
tree, which are adjacent to the active vertices. The additional elements are called
passive. As a result, every vertex a degree of freedom is assigned has again 2d

adjacent geometric elements within each spacetree partition it is contained.

Fig. 3. The left–hand side shows a domain decomposition into two hierarchical par-
titions. The grey cells are held on a processor, but not evaluated since they do not
belong to the processor (passive elements). The example on the right–hand side just
gives an idea how a three–dimensional partitioning might look like.

Figure 3 shows two Peano spacetree partitions belonging together: Only the
sets of active fine–grid elements are disjoint. For coarse grid elements this may
not hold. Now, every processor has to traverse its Peano spacetree partition,
whereas on the passive elements no calculation is done. In our additive multi-
grid algorithm, the restriction part of equation (2) is done on every processor
autonomously without any master process. As we added the passive elements to
the partition, the vertex management does not have to be modified and all the
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vertices, even those for which the process computed only a part of the residual,
are transferred to the output stack:

r̂(n) = PT (b − APû(n))
= PT (bp0 − (APû(n))p0)︸ ︷︷ ︸

processor 0

+ PT (bp1 − (APû(n))p1)︸ ︷︷ ︸
processor 1

+ . . . (7)

When implementing the algorithm, we split up the output stream into two
streams, one holding only vertices other processors are interested in. Either of
them contains a subset of the global vertex stream that would correspond to
a single processor run, and the global order of the vertices is preserved on all
the output streams. Every vertex, with at least two processors interested in, has
got a set of processors needing its residual contribution. This contribution might
be sent to the other processors immediately, before the vertex is stored on the
output stack, resulting in an asynchronous communication scheme. It is shown
in [12] how to compute the set of interested computers on the fly. Furthermore,
it is a good idea to buffer the elementary messages, depending on the hardware
used.

After one iteration, all the residual contributions received and the own data,
stored on one output stream, have to be merged. Since the order on the vertices
is preserved, this can be done in O(s), where s is the number of vertices that
had to be sent. Furthermore, this does not have to be done within a dedicated
merge phase, but can be done during the next top–down traversal.

5 Efficiency of the Parallel Algorithm

Prior sections have shown how to implement an algorithm, linear in the number
of unknowns n, in a (technically) efficient way on a parallel machine with p
nodes without any major intrinsic serial part. According to [5], the performance
of our algorithm, where the results have to be synchronised after every iteration,
solely depends on the amount of data s′k to be sent by a node k, such that the
computational time per iteration is given by

t(n, p) = Csolver
n

p
+ Cstartup + Ccomm max

k
{s′k}, (8)

if one is not able to do the communication in an asynchronous way. The algorithm
becomes quasi–optimal [5] for

max
k

{s′k} ≤ C

(
n

p

)1−1/d

, C ≥ d

√
2dd−1πd/2

Γ (d/2)
, (9)

reflecting the continuous Hölder continuity with parameter 1
d of a continuous

space–filling curve [5,15].
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In our case, the amount of data depends on the tree’s height and the surface
s of the fine–grid partition. There is a lot of published work on the interfaces
of space–filling curves’ partitions (e.g. [3,8]). Since most of this work deals with
Hilbert and Lebesgue curves only, the proofs given there have to be transfered
into the Peano curve case and have to be augmented by the tree issue.

In the following, we examine regular refined grids with n ∈ (3d)IN geometric
elements using p processors. The workload (number of geometric elements) is
distributed equally among them.

Fig. 4. Construction of a trivial upper bound of the surface of a partition induced by
the Peano space–filling curve (grey), and the star shaped domain used in Section 6

Lemma 2. The number of boundary vertices — vertices adjacent to passive
geometric elements — on the fine grid of any partition is bounded by

s′ ≤ 4d

1 − 31−d
3d−1

(
n

p

)1−1/d

. (10)

Proof. The proof follows the argumentation of [8]: Let M be the maximal tree
depth, and m be the maximal tree level one would be able to embed the n

p cells of
the partition into one geometric element. On level m, the partition is contained
in at most two elements, such that the bounding box of the two neighbouring
geometric elements sm is an upper bound for the continuous surface, if the do-
main was represented in the level’s resolution (compare to Figure 4). On the
finer levels k > m, there might be at most two appendices (cells containing not
only active subcells), since the space–filling curve used is compact and contin-
uous (therefore, all the children of a node are visited, before the next node is
processed). Their boundary box surface is already considered, but the possibly
resulting concave surface parts sk have to be added to the result. This surface is
bounded by the bounding box of an element of level k. Finally, the continuous
surface s(n, p) is divided by the fine grid element face size, which is 3−M(d−1),
giving the number of fine–grid vertices up to a small constant:

(
3d

)M
= n

(
3d

)M−m−1 ≤ n

p
≤

(
3d

)M−m
(11)

s(n, p) ≤ 2
M−1∑
k=m

sk ≤ 2
M−1∑
k=m

2d

(
1
3

)(d−1)k

≤ 4d

1 − 31−d
3(1−d)m



1072 H.-J. Bungartz, M. Mehl, and T. Weinzierl

s′ ≤ 4d

1 − 31−d
3(1−d)m+M(d−1) ≤ 4d

1 − 31−d
3d−1

(
n

p

)1−1/d

. (12)

The amount of data sent by one processor is bounded by a geometric series
with argument

( 1
3

)d−1 for the grid levels m to M scaled by s′, as the number of
vertices decreases with this factor for each coarsening step. For the levels 0 . . .−1
the number of active cells enclosing the partition is bounded by two. Therefore,
the number of boundary vertices is bounded by 3 · 2d−1 for each level.

s = s′
M∑

k=m

(
1
3

)(d−1)k

+ m
3
2
2d ≤ 3d−1

1 − 31−d
p1/d−1
︸ ︷︷ ︸

≤1

s′ + 3 · 2d−1 log3
d
√

p. (13)

6 Results

Figure 5 gives the parallel behaviour of the code presented in this paper for three
dimensions. This code is not optimised yet, but already shows all the properties
stated in this paper for a Dirichlet–Poisson problem on the cube, a sphere, or a star
domain (see Figure 4), as well as the excellent cache behaviour (see [6,7,9,10,12,13],
e.g.). The star domain experiment suffers from the lack of dynamic load balancing
not implemented yet: Since the ratio of inner cells to cells outside the domain,
where no operator evaluation is necessary, is unfavourable, a simple equidistant
curve partitioning fails. The same reasoning holds for the sphere.

cube 7293 sphere 7293 star 2433

real
dofs ≈ 4.0 · 108 ≈ 2.4 · 107 ≈ 4.3 · 105

S(2) 1.95 1.95 1.94
S(4) 3.9 3.77 3.58
S(8) 7.66 7.04 6.45
S(16) 14.92 13.65 11.11
L2
CHR 99.96% 99.94% 99.95%

Fig. 5. Some parallel performance results for d = 3 on a Myrinet cluster of Dual
Pentium III 800 MHz with 2GByte RAM per node [12]. S(p) denotes the speedup on
p processors, L2 CHR abbreviates level 2 cache–hit rate.

7 Concluding Remarks

In this paper, we have presented a parallel multigrid PDE solver based on the
Peano spacetree, handling all the vertices solely using stacks. Since this approach
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has proven to be of value with respect to memory requirements, parallelisation,
and cache efficiency, it is our strategy to use this algorithm within a more com-
plex environment. In fact, we have already used exactly the same approach to
prototype a Navier–Stokes solver [14]. Furthermore, it has been shown that our
algorithmic approach is well–suited for a posteriori refinement [13]. Since we are
working on trees, dynamic load balancing can be implemented in a very nat-
ural way by forking trees [10]. Right now we are integrating all these aspects
into one d–dimensional PDE solver, embedded into a fluid–structure interaction
application framework [2].

It is work in progress, how to extend the scheme to higher order stencils
and to provide better estimates on the amount of data to be communicated.
Furthermore, the behaviour on a massively parallel cluster and different load
balancing strategies have to be evaluated.

Special thanks to Markus Pögl and Markus Langlotz, for doing a first imple-
mentation of the algorithm presented and solving many implementation issues.
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