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Abstract. Alignment problems in computational biology have been fo-
cused recently because of the rapid growth of sequence databases. By
computing alignment, we can understand similarity among the sequences.
Dynamic programming is a technique to find optimal alignment, but it
requires very long computation time. We have shown that dynamic pro-
gramming for more than two sequences can be efficiently processed on a
compact system which consists of an off-the-shelf FPGA board and its
host computer (node). The performance is, however, not enough for com-
paring long sequences. In this paper, we describe a computation method
for the multidimensional dynamic programming on distributed systems.
The method is now being tested using two nodes connected by Ether-
net. According to our experiments, it is possible to achieve 5.1 times
speedup with 16 nodes, and more speedup can be expected for compar-
ing longer sequences using more number of nodes. The performance is
affected only a little by the data transfer delay when comparing long se-
quences. Therefore, our method can be mapped on any kinds of networks
with large delays.

1 Introduction

Alignment problems in computational biology, namely homology search, have
been focused recently because of the rapid growth of sequence databases[1,2,3].
By computing alignment, we can investigate similarity among the sequences. Dy-
namic programming is a technique to find optimal alignment among sequences.
In dynamic programming, all causal connections to the final result are stored,
and back-traced in order to obtain the optimal alignment. Its computational
complexity, however, is very large (order LN to compare N sequences of length
L), and it is not realistic to use algorithms based on dynamic programming even
for alignment between two sequences on desk-top computers. In order to reduce
the computation time, many heuristic algorithms[6,7,8] or hardware systems
[9,10,11,12,13,14,15] have been proposed. Most of them, however, are designed
for two-dimensional alignment (alignment between two sequences) because of the
complexity to calculate alignment among more than two sequences under limited
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hardware resources. We have already proposed computational methods for more
than two sequences [16,17], and shown that high performance can be achieved
on a compact system which consists of an off-the-shelf FPGA board and its host
computer (node). The performance is, however, not enough for comparing long
sequences.

In this paper, we describe a computation method for the multidimensional
dynamic programming on distributed systems, which consist of the nodes con-
nected as a ring. The communication pattern between the nodes in our approach
is very simple and regular. Each node receives data from its predecessor, and
sends its results to its successor. This data transfer can be overlapped with the
computation of the dynamic programming. The method is now being tested
using two nodes connected by Ethernet.

This paper is organized as follows. Section 2 introduces the outline of dynamic
programming for homology search, and our computation method for more than
two sequences are described in Section 3. The parallel computation method on
distributed systems are given in Section 4, and the estimated performance based
on the experimental results is given in Section 5. The current status and future
works are given in Section 6.

2 Dynamic Programming for Homology Search

In the dynamic programming for homology search, sequences are compared in-
serting gaps with extra costs. Figure 1 shows an example of alignment of two
sequences by dynamic programming (two-dimensional). In Figure 1(A), scores
on each node on the search space (M × N) are calculated using the equation
in Figure 2. Scores for each matching between two elements (Ms[a[x], b[y]]) and
inserting gaps (GC()) are given by score matrices [4,5]. In each node, there are
three candidates of its score (from the left-upper node, upper node and left node)
in two-dimensional search, and the maximum of them is chosen. The paths which
give the maximum values are stored, and after calculating scores of all nodes,
the paths are back-traced from the last node to the start node to obtain the
alignment of the two sequences (Figure 1(B)).

To obtain an alignment of more than two sequences, the same procedure is ap-
plied to the sequences. The search space of N -dimensional dynamic programming
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(A) computation of scores of each node (B) backtracing from Last Node

Fig. 1. Two Dimensional Dynamic Programming
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Two-Dimensional Search:
score(x, y) =

max

⎧
⎨

⎩

score(x-1, y-1)+Ms[a[x], b[y]]
score(x, y-1)+GC(x, -)
score(x-1, y)+GC(-, y)

⎫
⎬

⎭

Three-Dimensional Search:
score(x, y, z) =

max

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

score(x-1, y-1, z-1)+Ms[a[x], b[y], c[z]]
score(x, y-1, z-1)+Ms[-, b[y], c[z]]+GC(x, -, -)
score(x-1, y, z-1)+Ms[a[x], -, c[z]]+GC(-, y, -)
score(x-1, y-1, z)+Ms[a[x], b[y], -]+GC(-, -, z)
score(x-1, y, z)+GC(-, y, z)
score(x, y-1, z)+GC(x, -, z)
score(x, y, z-1)+GC(x, y, -)

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

Fig. 2. Equations to calculate Scores

becomes LN (when N sequences have length L). As indicated by the equations
in Figure 2,

1. the number of candidates of the score for each node is 2N−1 in N -dimensional
dynamic programming, and

2. the size of score matrices is kN (k is the number of type of elements in the
sequences), which becomes very large for larger N .

Figure 3 shows the maximum parallelism in dynamic programming. As shown
in Figure 3, nodes on a diagonal line (plane) can be processed in parallel. The
maximum parallelism in N -dimensional search is the product of the size of N -1
sequences (in the maximum case). When N=2, the maximum parallelism is Y ,
and it takes X × Y - 1 steps to calculate the alignment.

3 Multidimensional Dynamic Programming on an FPGA

In the dynamic programming, we need to store paths to each node to back-
trace. The total size of the paths becomes LN(the number of the nodes in the
search space) ×N(data bit width of a path), which becomes very large for larger
N . However, if the given sequences are not apparently similar, we do not need
the alignment. Therefore, in our approach, two types of circuits are configured
on FPGA[15,17]. With the first type circuits, the similarity among sequences
are checked by computing only the scores. Then, the second type circuits are

t=1

t=2

t=X       t=X+1  .......................... t=X+Y-1

............

X

Y

(A) Parallel Processing of two dimensional
        dynamic programming

(B) Parallel Processing of three dimensional
        dynamic programming

Z

t=X+Y+ k’

Y

X

Fig. 3. Parallelism in Dynamic Programming
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configured on the FPGA, and the alignments are calculated for the sequences
with high similarity (score) by storing all causal connections. In the following
discussion, we focus on the first type circuits.

In our approach, N -dimensional dynamic programming is achieved by re-
peating two-dimensional dynamic programming along other dimensions in or-
der to reduce the size of the score matrices which have to be cached on the
FPGA (for the protein sequences (k=24), the total size of the score matrix be-
comes 324K words when N=4). Suppose that we repeat the following procedure
for four-dimensional dynamic programming (a four-dimensional score matrix
Ms[a[x], b[y], c[z], d[t]] is used).

1. Calculate the alignment between two sequences (a and b) without changing
other two sequences (c[z] = Ck and d[t] = Dl; Ck and Dl are constants).

2. Increment z, and then t (c[z] or(and) d[t] is changed).

Then, we need only a part of the four-dimensional matrix, which is a two-
dimensional score matrix (Ms[a[x], b[y], Ck, Dl]) in the first step of the proce-
dure. However, we need different two-dimensional score matrix when the value
of c[z] or d[t] is changed. In our implementation, two-dimensional score matrices
are implemented using dual-port RAMs in FPGA, and score matrices for next
b[z] or/and d[t] (namely next parts of the four-dimensional score matrix) are
downloaded from external RAMs on the FPGA board in parallel with the com-
putation of scores. The number of score matrices which are download during
the computation becomes 2N−2. Thus, with a certain value of N , the down-
loading time of the next score matrices exceeds the time of the computation of
the two-dimensional dynamic programming, and becomes the bottleneck of this
approach.

In the following discussion, suppose that X , Y , Z and T are length of se-
quences placed along x, y, z and t axes, and Wx, Wy, Wz and Wt are part of
sequences which can be processed continuously without extra input/output for
boundary data. Figure 4 shows how three-dimensional dynamic programming
is executed by the repetition of the two-dimensional dynamic programming. In
Figure 4, processing of Wx ×Wy nodes (two-dimensional dynamic programming)
in the scan window (gray square in the figure) is scanned along z axis (the black
arrow shows the scan line). When the scan window reaches at the end of z axis,
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Step(Z+ 0) .....Step(Z+K) ....
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W
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X W
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Fig. 4. Three-Dimensional Dynamic Programming
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Fig. 5. Boundary Data for Three-Dimensional Dynamic Programming

it is shifted along y axis by Wy , and is scanned along z axis again. After pro-
cessing Wx ×Y ×Z nodes, the scan window is shifted down along x axis by Wx,
and the same procedure is repeated.

Figure 5 shows the data input/output for the three-dimensional dynamic pro-
gramming. In Figure 5(A), two dark gray rectangles show the inputs to the scan
window (light gray square), and two rectangles with slanted lines show the out-
put by the scan window. The outputs are stored, and used for the computation
of other scan lines. In Figure 5(B), in order to calculate scores in the current
scan window, data in previous scan window are also necessary (those data are
not necessary in Figure 5(A), because the scan window is placed at the boundary
on the search space, and boundary conditions are given instead of those data).
Therefore, the data in previous scan window are held on FPGA.

Figure 6 shows the scan cube for four-dimensional dynamic programming (a
cube is used instead of the window). Processing of nodes in the cube (size is
Wx × Wy × Wz) is scanned along t axis, changing positions of the scan line.
In order to calculate scores of the nodes in the cube, the scan window in the
cube (light gray square in Figure 6(A)) is scanned along z axis. Suppose that
current cube is on (x, y, z, t=Ck). In order to start the calculation of the scan
window (Figure 6(B)(1)), we need scores in dark gray parts and scores in the
previous cube along t axis ((x, y, z, t=Ck-1) which are temporally held on the
FPGA (not shown in the figure) as boundary data. Among these data, two
dark gray rectangles in the figure can be obtained while calculating the scores
of the nodes in the scan window. However, data in the dark gray square (the

Wz

Wx

Wy

Start 
node

End node

(A) Scan Cube (B) Boundary Data Given to the Currnet Search Cube and Stored for other Cubes

previous scan
cube
on x-axis

previous scan cube
on y-axis

previous scan cube
on z-axis Outputs to next scan cubes on x and y axes

Outputs 
to next 
scan cubes
on z axis

(1) (2) (3)

Fig. 6. Four-Dimensional Dynamic Programming
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last scan window in the previous scan cube along z axis) need to be loaded
before starting the calculation, because the size of data is large, and can not
be loaded in parallel with the computation. The outputs by the scan window
are two rectangles with slanted lines. When the scan window is in the cube
(figure 6(B)(2)), scores calculated in the previous scan window are held on the
FPGA, and used for the calculation of the current scan window (the scores in
the previous cube along t axis which are held on the FPGA are also used). When
the scan window reaches at the end of the cube, scores in the current window are
stored for later processing (figure 6(B)(3)). In this processing of the scan cube,
there are two types of data;

1. data which can be loaded, and output in parallel with the computation of
the scores of the nodes in the scan window (two dark rectangles in Figure
6(B)(1,2,3)), and

2. data which have to be loaded before the computation (dark gray square in
Figure 6(B)(1)) and which have to be stored after the computation (dark
gray square in Figure 6(B)(3)).

The total clock cycles by our approach can be estimated as follows, when the
data width of each element in score matrices is 16 bits, and the external memory
banks run at the same speed as the circuit on the FPGA. In the following equa-
tions, the first term chooses the maximum of the computation time of the scan
window (Wx + Wy) and the time to update score matrices which is executed in
parallel with the computation. In other terms, constant values show the time
to download score matrices, and other values show the time to input/output
boundary data (some matrices can not be loaded in parallel with the computa-
tion, and we need to download them when c[z], d[t] and so on are changed).
Three-Dimensional:

max
{

Wx + Wy

242/4

}

× XY Z

WxWy

Four-Dimensional:
max

{
Wx + Wy

242/8 × 2

}

× XY ZT

WxWy

+ max
{

242/2
WxWy × 2/5

}

× XY ZT

WxWyWz

Five-Dimensional:
max

{
Wx + Wy

242/16 × 4

}

× XY ZTU

WxWy

+ max
{

242/4 × 2
WxWy × 2/5

}

× XY ZTU

WxWyWz

+

max
{

242/2
WxWyWz × 2/5

}

× XY ZTU

WxWyWzWt

Six-Dimensional:
max

{
Wx + Wy

242/32 × 8

}

× XY ZTUV

WxWy

+ max
{

242/5 × 4
WxWy × 2/5

}

× XY ZTUV

WxWyWz

+

max
{

242/5 × 8
WxWyWz × 2/5

}

× XY ZTUV

WxWyWzWt

+ max
{

242/5 × 7
WxWyWzWt × 2/5

}

× XY ZTUV

WxWyWzWtWu

In the equations above, {Wx, Wy , Wz, Wt, Wu} are parameters which decide
the performance, and have to be chosen so that the maximum performance can
be realized under given hardware resources (the size of the FPGA, and the mem-
ory bandwitdh). For example, in our current implementation on ADM-XRC-II
(FPGA board byits Alpha Data) with one Xilinx XC2V6000, {Wx, Wy, Wz , Wt}
are {10,64,6,3} for five-dimensional dynamic programming, and it takes about
1.35 × 104 seconds to calculate the alignment, when the length of the sequences
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Fig. 7. Parallel Processing with Multiple FPGAs

is 256. This performance is more than 100 times of Pentium 4 2GHz[17], but is
still too slow for comparing longer sequences.

4 Multidimensional Dynamic Programming on a
Distributed System

Figure 7(A) shows the search space in three-dimensional dynamic programming.
With one FPGA, the computation of the scan window is started from the left-
hand side of box 11, and the scan window is scanned along z axis (scan line).
After finishing box 11, the scan window moves to box 12, and the computation of
the scan window is repeated. Figure 7(B1) shows how to divide the search space.
In Figure 7(B1), FPGAk processes box k1 - kN sequentially. When the first scan
window in box 11 is processed by FPGA1, the boundary data on its bottom are
transferred to FPGA2. Then, FPGA2 starts the computation of the first scan
window in box 21. In the same way, FPGA3 starts the computation of the first
scan window in box 31 as soon as the boundary data for the scan window arrive
from FPGA2. Figure 7(B2) shows only the boxes which are processed in parallel.
In this parallel processing, data transfer can be overlapped with the computation
of scan windows. After finishing the computation of box 11, FPGA1 starts the
computation of box 12, and FPGA2 also starts the computation of box 22 (Figure
7(C1)(C2)).

Figure 8 shows when the computation of the scan window can be started on
FPGA1 and FPGA2. The gray boxes in Figure 8 shows the first term of the
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matrices
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.......

FPGA1
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(A) data sending/receiving < max(comp. , loading) (B) data sending/receiving > max(comp. , loading)

idle timeone  scan window

Fig. 8. Flow of the computation on FPGA1 and FPGA2

equation in Section 3. During the computation of a scan window in FPGA1,
its boundary data are sent to FPGA2, and FPGA2 starts the computation of
its scan window using the boundary data. Figure 8(A) shows the flow of the
computation when the data transfer is faster than the computation of the scan
window, and Figure 8(B) shows the flow when it is slower. In Figure 8(B), each
FPGA becomes idle to wait for sending its boundary data to its successor, and
for the arrival of the boundary data from its predecessor.

Data transfer delay is not important in our computation method. The reason
is as follows. FPGA1 can continue its computation until it finishes all the com-
putation assigned to FPGA1, and the data transfer can be overlapped with the
computation of the scan windows. FPGA2 becomes idle when waiting for the
first arrival of the boundary data because of the data transfer delay, but after
that, FPGA2 can continue its computation as far as the boundary data arrive
within a certain delay. Therefore, the increase of the computation time by the
data transfer delay is only

the data transfer delay × (the number of FPGAs - 1)
in the total computation time.

Figure 9 shows a distributed system for our computation method. In our
approach, the search space is divided along x axis as shown in Figure 7(B1).
When the number of FPGAs(N) is smaller than the number of the divided
search spaces, some FPGAs have to process several of them sequentially (for
example, FPGAi processes the i-th, (N+i)-th, (2N+i)-th spaces, and so on).
Therefore, the nodes are connected as a ring. Each node on the system consists

.......

FPGA

Processor

NIF NIF

node node node node

Fig. 9. A distributed system
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of an FPGA board with one FPGA, its host processor, and two network interface
cards. With two network interface cards, each node receives boundary data from
its predecessor, and send new boundary data to its successor.

5 Estimated Performance

We have implemented two circuits (four-dimensional and five-dimensional ho-
mology search) on XC2V6000, and they run at 36.6MHz and 31.0MHz respec-
tively. The main reason of the low operational frequency is selectors to choose
the maximum 2N − 1 candidates.

We are now testing the computation method using two nodes (two FPGA
boards and their host processors) connected by Ethernet (100Mbps). Figure 10
shows the performance of the computation method which is estimated based
on our experiments (five-dimensional, and legth of all sequences is 256). Boxes
with slanted lines correspond to the second and the third terms of the equation
shown in Section 3, and grey boxes correspond to the first term (the computa-
tion time, and the downloading time of the score matrices which can be executed
in parallel with the computation). The size of the scan cube is {10,64,6,3} for
non-distributed processing by one FPGA, and {10,32,14,3} for the distributed
processing by more than one FPGA. These sizes are dicided so that the maxi-
mum performance can be achieved in each case. In the five-dimensional dynamic
programming, the time to download score matrices is larger than the computa-
tion time. Therefore, we need to minimize the downloading time when processing
by one FPGA. However, the downloading time can be hidden by the idle time
caused by the slow data transfer on the distributed system, which allows us to
focus to minimize the computation time. Because of the lack of the throughput
for data transfer, the idle time occupies more than half of the total computa-
tion time when the number of FPGAs is larger than one. The computation time
with two FPGAs is larger than one FPGA. However, we can obtain performance
gain as the number of FPGAs increases. The performance gain becomes 5.1
times with 16 FPGAs, and about 10 times with 26 FPGAs. With 26 FPGAs,

1

2

4

8

16

26

#FPGA

0 2 4 6 8 10 12 14 16 x10  sec3

time to load/store boundary data
when t is incremented
time to load/store boundary data
when z is incremented

time to load score matrices

computation time 
of the scan cube

idle time

Fig. 10. Estimated performance on the distributed system
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each FPGA processes only one divided search space, because the search space is
divided to 26 sub-spaces (X/Wx = 256/10).

The data transfer delay is not important in our computation method as de-
scribed in Section 4, when the computation time by each FPGA is large enough.
When the number of FPGAs is N , the increase of the total computation time is
abount N × d seconds if the data transfer daley becomes d second longer. This
increase is very small compared with the total computation time.

6 Conclusions and Future Works

In this paper, we described a computation method for the multidimensional
dynamic programming on distributed systems. The method is now being tested
using two nodes connected by Ethernet. The data transfer speed of Ethernet
(100 Mbps) is not enough, but according to our experiments, it is possible to
achieve 5.1 times speedup with 16 nodes. The performance is affected only a
little by the data transfer delay when comparing long sequences. Therefore, our
method can be mapped on any kinds of networks with large delays.

We still have two major works. First, we need to evaluate the method using
more FPGA boards, and then using more FPGA boards placed at distant places.
Second, the size of boundary data can be compressed less than half, because two
continuous data on the boundary have same values with high probability. We
need to implement circuits to compress and uncompress the boundary data on
FPGAs.
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