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Abstract. This paper presents an adaptive scheduling method, which
can be used for parallel applications whose total workload is unknown a
priori. This method can deal with the unpredictable execution conditions
commonly encountered on grids. To address this scheduling problem, pa-
rameters which quantify the dynamic nature of the execution conditions
had to be defined. The proposed scheduling method is based on an on-
line algorithm so as to be adaptable to the varying execution conditions,
but avoids the idle periods inherent to this on-line algorithm.
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1 Introduction

In this paper, we present an adaptive method for scheduling parallel applications,
that can be used in the dynamic context of grids and when some of the infor-
mation traditionally used by scheduling algorithms is lacking. This method is
based on an on-line algorithm from Drozdowski [I]. We assume that a set of grid
resources has been identified and tackle the problem of distributing optimally
the tasks of a parallel application on this set of resources, so that the application
terminates as soon as possible. Precisely, we consider applications that process
a finite —but a priori unknown— amount of data independently. The total work-
load of the application is supposed arbitrarily divisible in any number of chunks
where each chunk consists of some amount of data. The same computation is
performed on each chunk, producing its own result without any communication.
Such applications are suitable for the master-worker programming model, with
the master distributing chunks to the workers, then collecting the corresponding
results from them. Clearly, for such a parallelization to be useful, the processing
cost for a chunk by a worker must dominate the corresponding communication
costs between master and worker in a certain sense that will be stated later on,
when appropriate notations have been introduced (see inequality (2)).

It has to be noted that although we consider so called divisible load, the DLT
(Divisible Load Theory [2, [3, [4, [5]) cannot be straightforwardly applied in our
case, as we suppose that the total workload of the application is not known a
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priori. For this reason, we shall be bound to use on-line algorithms to address
our scheduling problem.

We adopt a one-port communication model [6] without contention, which
means that for a fixed node neither two emissions nor two receptions can over-
lap each other, whereas one emission can overlap one reception, and computa-
tion can overlap communication. Furthermore, in the context of grid computing,
computation and communication latencies must both be considered.

This paper is organized as follows. Section 2] defines precisely the scheduling
problem we consider. Section[Bdescribes the on-line algorithm which our schedul-
ing method is based on and introduces some notations. Section €] presents the
new method itself. It first gives an overview of the approach then successively
states the conditions for the method to succeed, details the various computations
of the proposed scheduling algorithm and finally compares it with the initial on-
line algorithm. Section [B] concludes the paper and outlines future work.

2 The Scheduling Problem

We consider a master-worker model for which the data to be processed are
continuously received by the master in an input buffer until the final item is ob-
tained. It is only when the master acquires this last item that the total workload
of the application happens to be known. We want to minimize the makespan of
the application on a set of grid resources. As this problem is NP-complete when
latencies are considered [7], it can only be heuristically dealt with.

Execution parameters on a grid, such as available computing power or net-
work bandwidth, vary both in space (heterogeneity) and time (dynamicity). We
assume that we know all past values of these parameters and are unaware of the
future ones. Because of the one-port communication model, the workers cannot
start their work simultaneously: the master has to finish the emission of some
chunk to one worker before being able to begin to send a chunk to another one.

In this paper, we do not consider the fundamental problem of choosing the
nodes to be used and the order in which they are served. To terminate the
execution of the application as soon as possible, the computation should start
as soon as possible on all the selected worker nodes, which should then be sent
small initial amounts of work in order to quickly start their computation.

When each worker has received a first chunk, the execution enters the steady-
state phase [8]. The main characteristic of this phase is that the total workload
is still unknown. If the choice of the computing resources is optimal (i.e. opti-
mal nodes are chosen in optimal proportion), then keeping the selected nodes
active minimizes the makespan. When the master gets the final data item to be
processed, the steady-state phase ends and the clean-up phase begins.

From this time instant, the problem of scheduling the remaining load is suit-
able for DLT, as now the total workload is known: namely the amount of data
still present in the master input buffer. So, according to the optimality princi-
ple, we can try and minimize the makespan by synchronizing the termination of
the computation of all the workers. This, being possible only if the master does



190 S.-S. Boutammine, D. Millot, and C. Parrot

not overload any worker too much during the steady-state phase, which would
cause a discrepancy too large for late workers to catch up, thus preventing a
synchonous termination of all workers. In the following, we focus on scheduling
during the steady-state phase.

3 Drozdowski’s On-Line Scheduling Method

Our scheduling method is based the On-Line method presented by Drozdowski
in [I], denoted "OL" thereafter. OL proceeds incrementally, computing the size
o j of the chunk to be sent to a worker N; for each new round j, in order to
try and maintain a constant duration 7 for the different rounds and thus avoid
contention at the master.

OL determines o;; so as to make the distribution asymptotically periodic
with period 7, an arbitrarily fixed value, for all the workers. For worker IV, let
0i,j—1 be the elapsed time between the begining of the emission of the chunk of
its (j — 1)** round and the end of the reception of the result corresponding to
this chunk. OL determines the value of «; ; as follows:

T

(1)

Q5 j Q; 51 i1 .
That is it allocates comparatively bigger (resp. smaller) chunks to workers with
higher (resp. lower) performance. Hence, this method can take the heterogeneous
nature of computing and communication resources into account, without explicit
knowledge of execution parameters (as equality (l) shows); as Drozdowski states,
"the application itself is a good benchmark" [I] (actually the best one).

Lemma 6.1 in [I] shows that, in a static context, with affine cost models
for communication, the way «;; is computed using equation (IJ) ensures the
convergence of 0; ; to 7 when j increases indefinitely.

Being an estimation of the asymptotic period used for task distribution, 7 is
also an upper-bound on the discrepancy between workers. Being able to control
this bound makes it possible to minimize the makespan during the clean-up
phase.

The following notations are used throughout the rest of the paper:

— N number of workers,

— ~y; start-up time for a computation by worker N,

— w;,; computation cost for a chunk of size 1 of the 4t round by worker N;,

B; (resp. (3!) start-up time for a communication from the master to N; (resp.

from N; to the master),

— ¢i,j (resp.c; ;) transfer cost for a data (resp. result) chunk of size 1 of the gth
round from the master to worker N; (resp. from N; to the master).

It should be noted that, unlike previous work [I} [9], this paper introduces com-
putation start-up times in order to be more realistic when considering grids. As
suggested in section [2 the values of the execution parameters of any worker N;
— here w; j, ¢;j and ¢; ; — depend on the round. We assume that costs are
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roundwise affine in the size of chunks. Hence, for a chunk of strictly positive size
a (i.e. a € R™) of the j* round, we define the cost of:

e sending the chunk to worker N;j a-cij + B
e processing the chunk on worker N; - w; i+ v,
e receiving the corresponding result from worker N; a-c; + 6

We indicated in section[Ilthat the processing cost for a chunk should dominate its
communication costs in a certain sense. We choose to formulate this assumption
as:

Vo e R™, ~vi+a- mﬁ\rll wi ;> <a- m]?\? Cij +ﬂi> + <a- m]%?(* ci +ﬂ£> (2)

Jje Jje jE€

fori=1 N.

Equation (2)) ensures that sending chunks of any size « to a worker N; and
receiving the corresponding results cost less than processing these chunks.

The problem with OL is that computation never overlaps communication in any
worker node, as the emission of the chunk of the next round is at best triggered
by the return of the result of the previous one, with no possible anticipation.

4 The OLMR Method

4.1 Overview of the Method

Our method is based on OL, but avoids idle time with respect to computing.
When the total load is important compared to the available bandwidth be-
tween master and workers, the workload should be delivered in multiple rounds
[10, [I1, T2]. Therefore we will have each worker receive its share of the load
through multiple rounds, hence the name On-Line Multi-Round method [9], de-
noted "OLMR" thereafter. OLMR divides the chunk sent to V; for each round
J into two subchunks "I" and "II" of respective sizes oy ; and o;; — o ;. Di-
viding the chunks in two parts is enough in order to apply the principle, and
the division allows the computation to overlap the communications as can be
seen in figure F1c[Il In order to compute o j, we use a value of 0; ;1 derived
from the measurement of the elapsed time (including both communications and
computation) for subchunk I of the previous round: o; ;1. We will show that,
thanks to this anticipation (compared to OL) in the computation of «; ;, we can
avoid the inter-round starvation.

Figure Fic[2 gives the OLMR. scheduling algorithm. The OLMR scheduler
computes «; ; in the same way as the OL scheduler does, and the values of
0;,j—1 and a5 ; as detailed later in the next subsections.

Unfortunately, while attempting to deal with the inter-round starvations in-
herent to OL, there is a risk of creating intra-round starvation between subchunks
I and IT (see on figure Fic Bl the idle period A). We explain below how to prevent
both risks.
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Data Comm
Computing
Result Comm|

time

Fig. 1. Overlapping between communication and computation with OLMR

while (the last data item has not been acquired) do
if (Reception from N; of the result of subchunk I of its (j — 1)** round) then

Send a subchunk of size a; ; to N; as subchunk I of its j*" round

Send a subchunk of size (o ; — a; ;) to N; as subchunk IT of its j** round
end if

end while

o Get 04j-1, wij—1, ¢ j_; (and 7; for the first result from N;)

© COMPULE 4,1t vevetete et (cf. ()
© COMPULE (Ui« vvetee ettt e et et (cf. @)
© COMPULE (i, j o eveee ettt e e (cf. @)
[ ]

L]

Fig. 2. OLMR scheduler

Data Comm /] j/1I
Computing [T 3/1 |
Result Comm T T/ ] [ AT

time"™
Fig. 3. Example of intra-round starvation with OLMR

As we assume that (2) holds, intra-round starvation can be avoided if «; ; is
large enough for the processing of subchunk I to overlap the sending of subchunk
11 of size a; j — o ;. There is no intra-round starvation if and only if

g > i it e e, ®3)
Wi,j + Cij

Inter-round starvation between the j** and (j + l)th rounds of INV; could occur if

subchunk I happens to be too large compared to subchunk I7 (see figure FicH).

Let v; ; be some real number dominating o jyi1: vi; > «; j41. Figure FicHl

shows that, when N, is given a subchunk I of size v; ; for its (j + 1™ round,
there is no inter-round starvation if and only if
iy < O Wid T Vi Gt % (8 + Bi) 4)

/ -
Cij T Wi

If inequality (@) holds, then the necessary constraint o, ; < a4 ; holds too, as
soon as (B, + 3;) > .
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Data Comm |]
Computing
Result Comm

I

time

Fig. 4. Example of inter-round starvation with OLMR

Relying on inequations (B) and (), we can choose «; ; so as to avoid idle
periods of IV;. Finally, nothing remains but to determine o; ;_; and o ;.

4.2 Determining o;, ;

In order to fix the value of a; ; according to constraint (@), we need a value for
v;,5. We can decide such a value by extrapolating an upper bound for «; ;11 from
the values of «; j for the previous rounds, (ai’k)kzl,j' So long as inequalities (@)
and (@) hold, an inaccuracy in the value of v; ; does not have any dramatic
consequence on the course of the method. That is, if inequalities [B]) and (@) are
compatible, then starvation risks can be avoided.

As the amount of data processed during the steady-state phase is finite, there
necessarily exists a real number A; (A; > 1) for each N; such that:

Qi1 SN Vi € IN*.

A; characterizes the amplitude of the fluctuations of «; , between two successive
rounds. If A; can be estimated (see Remarks 2l and Bl for hints), then we have an
upper-bound v; ; for oy jy1:

Vi,j = /\z . Oéi,j- (5)

The following Theorem proposes a way to set the value of a; ; so that constraints
@) and @) are both satisfied (see [9] for similar proof).

7

Theorem 1. Given «; j, if vi, wij, cij, Bi, ¢; ; and B satisfy (@) and
(aij— (A + 1)) wig+ X +1)-7 = (M- ouj + (A +1) ey +(Xi+1)-5; (6)

for i=1,N.
Then, taking
Q; 5
- d 7
alﬂ )\Z + 1 ( )
constraints (3) and {J]) are satisfied. Therefore, the workers will compute without
any idle period during the steady-state phase.

Remark 1. Parameters T and \; are characteristic of the evolution of the ex-
ecution parameters. On the one hand, T characterizes their speed of evolution.
Practically, it is the period that should be used for reconsidering their value. On
the other hand, A\; measures the amplitude of their variations on such a period.
The obvious dependence between T and \; can take on the most varied forms. For
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instance, we can have rapid variations (small T) with little consequence on the
scheduling of the application (X\; close to 1), or on the contrary slow variations
(large T) with important consequences on the scheduling (N\; far from 1).

Remark 2. The knowledge of v; ; is implicitly the result of some extrapolation
of the values (aivk)kzl,j to get an upper-bound of a; j+1. If the variations are
slight, one can use the quasi-stationary approzimation of o jr1 by oy j. In this
case, we have o; j1+1 = «; ;. Then we only have to apply Theorem [ with \; = 1.
More generally, considering a polynomial interpolation of degree (p - 1) for the
value of o j41, we have ay j41 =p- o5 — ZZ; o k- In this case, it suffices to
apply Theorem [ with \; = p.

Remark 3. The satisfaction of the hypotheses of Theorem 1 guarantees the ab-
sence of idle time for the workers but requires the knowledge of ()\i)i:LN. Nev-
ertheless, OLMR may still be used when these values (which characterize the
dynamicity of execution parameters) are not known. Starting with arbitrary val-
ues (e.g. A\, = 1 corresponding to a stability assumption) the scheduler could, if
necessary, adjust \; values at any round according to information provided by
the workers. Actually an inappropriate value of \; used for some round will lead
to an intra- or inter-round starvation observable by the corresponding worker.
The scheduler could then adjust this value for the next round, according to the
type of starvation observed by the worker.

Remark 4. Although different, hypotheses ([2) and (@) both make the assump-
tion that processing should dominate communications. Recall that hypothesis (2)
ensures an efficient usage of the master-worker paradigm.

4.3 Determining o; ;1

In order to determine the size of the chunk to be sent for the next round without
waiting for the result of the currently processed chunk, it suffices to replace the
measured value o; ;1 in expression (IJ) by some computed value derived from
04j—1. But we only know the values of the execution parameters for the data
whose result have been received by the master. We choose to get these parameters
just after the master has reveived the result for subchunck I of round j — 1 (see
tag “Snapshot” on Fic[). It is another extrapolation problem. In order to solve
it, we assume that the time taken by N; to process some amount of data during
its (j — 1)** round is the same for both subchunks I and I1.

With the help of figure Fic[Bl and omitting the cost of the scheduling algo-
rithm itself, we have

Oij—1=045-1+ A+ B—-C,

Gijo1=0ij1+ (i1 —ij1)-wij+ (i1 —2- 1) ¢+ 7 (8)

Remark 5. The values of w;j_1, vi and C;,j—l can be estimated easily by the
master with the help of N;. There is no need to know the value of either the
communication start-up times B; and (] or that of ¢; j—1 in order to compute
oij—1 by means of equation (8).
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Oi,j—1
04,5—1
— — A
Data Comm ||igJl IERZAL -
Computing j-1/11
Result Comm j-1/1 [J-1/10
C_ B_
(Snapshot) time

Fig. 5. From the measurement of o; ;1 to the computation of o;,;_1

4.4 Comparing OL and OLMR

In this section, we compare OL and OLMR, and quantify the benefit of using
OLMR compared to OL. We study their behaviour in identical settings: a static
context.

Using OLMR requires that the hypotheses of Theorem [l be satisfied. Lemma
6.1 in [I] sets the context of OL as static. Let us denote ¢;, w; and ¢} the value
of ¢;j, w;; and cg) j for any round j as they do not depend on the round, due
to the static nature of the execution environment. Under these conditions, both
methods send chunks of the same size «; ; to IN; for any round j; for the same
value of 7. So processing a workload of size M by both methods requires the
same number of rounds d;. The gain Gjs of OLMR over OL when processing
this workload can thus be estimated as :

Gy = (6 — 1) - (Bi + 67) —6m - vi+ (M — cvi1) - ¢ + (M — (v 50, — Qisyy)) - €

This gain is the direct consequence of overlapping computation and communi-
cations (see figure Fic[d).

Data Comm _] -+ 1
Computing ‘ J+1
Result Comm ] I+ 1

OL

Data Comm saved time

Computing _]+1 I ‘ J+1 11 Gum

Result Comm ‘

OLMR

time

Fig. 6. Comparison between OL and OLMR
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Given hypotheses of Theorem 1 and an optimal choice of resources, compet-
itive analysis [I3] of OLMR method with an off-line method is not necessary;
due to the full use of the computing resources.

5 Conclusion

In this paper, we have considered a scheduling problem that we think is realistic
when executing parallel applications on shared resources such as those of a grid.
To the best of our knowledge, this scheduling problem has not received much
attention up to now. We have presented an adaptive scheduling method, OLMR,
to optimize the workload distribution, which can deal with the heterogeneity and
dynamicity of the grid if our modelisation hypotheses are realistic; it can also
be used when the information that scheduling algorithms traditionally need is
lacking. Sufficient conditions have been stated for full usage of the computing
resources by means of avoiding idle time.

In order to design the OLMR method, we had to consider the characterization
of the dynamicity of the execution conditions. This led us to define N 41 param-
eters: 7 and (\;);_; v (see Remark [[). But the improvement made by OLMR
to the on-line method presented in [I] has been quantified in a static execution
context only.

This approach of scheduling is susceptible to numerous developments, either
tending to confirm the results of this paper or aiming at enlarging the poten-
tialities of the OLMR method. First of all, it is useful to check experimentally
that, under the hypotheses of our model, the method gives the expected results.
For that, we are currently developping simulation programs, using the SimGrid
toolkit [I4] in order to study OLMR behavior in various conditions and make
comparisons with other methods. Furthermore, OLMR could be adapted in dif-
ferent ways: in this paper, 7 and A; have implicitly been considered as constant
throughout all the rounds, but this hypothesis restricts the degree of approxima-
tion (order one) of the dynamicity that the scheduler takes into account. From
one round to the next, the value of 7 could be adapted in order to take further
account of the evolution of heterogeneity and dynamicity that would be noticed.
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