
Improvement of the Efficiency of Genetic
Algorithms for Scalable Parallel Graph
Partitioning in a Multi-level Framework

Cédric Chevalier and François Pellegrini

LaBRI and INRIA Futurs
Université Bordeaux I

351, cours de la Libération, 33405 TALENCE, France
{cchevali, pelegrin}@labri.fr

Abstract. Parallel graph partitioning is a difficult issue, because the
best sequential graph partitioning methods known to date are based
on iterative local optimization algorithms that do not parallelize nor
scale well. On the other hand, evolutionary algorithms are highly parallel
and scalable, but converge very slowly as problem size increases. This
paper presents methods that can be used to reduce problem space in a
dramatic way when using graph partitioning techniques in a multi-level
framework, thus enabling the use of evolutionary algorithms as possible
candidates, among others, for the realization of efficient scalable parallel
graph partitioning tools. Results obtained on the recursive bipartitioning
problem with a multi-threaded genetic algorithm are presented, which
show that this approach outperforms existing state-of-the-art parallel
partitioners.

1 Introduction

Graph partitioning is an ubiquitous technique which has applications in many
fields of computer science and engineering, such as workload balancing in parallel
computing, database storage, VLSI design or bio-informatics. It is mostly used
to help solving domain-dependent optimization problems modeled in terms of
weighted or unweighted graphs, where finding good solutions amounts to com-
puting, eventually recursively in a divide-and-conquer framework, small vertex
or edge cuts that balance evenly the weights of the graph parts.

For instance, the obtainment of small and balanced bipartitions is essential to
the reordering of sparse matrices by nested dissection [5]. This method consists
in computing a small vertex set that separates the adjacency graph of the sparse
matrix in two parts, ordering the separator vertices with the highest indices
available, then proceeding recursively on the two separated subgraphs until their
size is smaller than some specified threshold. The smaller and more balanced
the separators are, the smaller the fill-in incurred at the factorization stage, and
thus the number of operations required to factor the matrix (referred to as the
operation count, or OPC), is likely to be.

W.E. Nagel et al. (Eds.): Euro-Par 2006, LNCS 4128, pp. 243–252, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

244 C. Chevalier and F. Pellegrini

Currently, general-purpose sequential ordering software such as Scotch [12]
or MeTiS [9] can handle graphs of about ten million vertices on an average
workstation. However, as the power of parallel machines increases, so does the
size of the problems to handle, and since the large graphs which model these
problems cannot be processed on a single computer without incurring swapping,
it is necessary to resort to parallel graph ordering tools, based on parallel graph
bipartitioning algorithms. Several such tools have already been developed [9],
but their outcome is mixed. In particular, they do not scale well, as partitioning
quality tends to decrease, and thus fill-in to increase much, when the number of
processors which run the program increases.

The purpose of the PT-Scotch software (“Parallel Threaded Scotch”, an
extension of the sequential Scotch software), developed at LaBRI within the
ScAlApplix project of INRIA Futurs, is to provide efficient parallel tools to
partition graphs with sizes up to a billion vertices, distributed over a thousand
processors. Among our target applications is the parallel ordering of large graphs.

PT-Scotch is still under development, but several results have already been
achieved. Section 2 presents a constrained banding technique which, based on
the characteristics of the local optimization algorithms that are used to refine
the partitions, reduces considerably the size of the problem space without loss of
quality, already allowing one to develop semi-parallel programs that can compute
efficient bipartitions of graphs having a billion nodes. Section 3 describes how
this reduction enables us to use genetic algorithms, which are highly scalable but
slow to converge, in a practical way. Some graph ordering results are presented,
using a multi-threaded shared-memory genetic algorithm, which illustrate the
quality of the orderings that can be produced. Then comes the conclusion.

2 Reducing Problem Space in a Multi-level Framework

Experience has shown that best partition quality is achieved when using a multi-
level framework. This method, which derives from the multi-grid algorithms used
in numerical physics, repeatedly reduces the size of the graph to partition by
finding matchings that collapse vertices and edges, computes an initial partition
for the coarsest graph obtained, and projects the result back to the original
graph [2,6,8]. It is most often combined with greedy iterative algorithms, such
as Kernighan-Lin [10] or Fiduccia-Mattheyses [4] (FM), to refine the projected
partitions at every level, so that the granularity of the solution is the one of the
original graph and not the one of the coarsest graph.

Because of the local nature of both the FM and the uncoarsening algorithms,
it is most likely that the refined partition computed at any level will not differ
much from the partition that was projected back to this level, as this latter is
itself the projection of a partition that was a local optimum in the coarser levels.
Therefore, to refine a partition, FM-like algorithms may not need to know more
of the graph topology than a small “band” around the boundary of the projected
partition. The locality of the optimization process is already exploited in many
implementations of FM-like algorithms which, in order to save time and memory,

Improvement of the Efficiency of Genetic Algorithms 245

Table 1. Some of the test graphs that we use

Graph Size (×103) Average
V E degree

598a 111 742 13.37
aatken 43 88 4.14
auto 449 3315 14.77
bcsstk29 14 303 43.27
bcsstk30 29 1007 69.65
bcsstk32 45 985 44.16
body 45 164 7.26
bracket 63 367 11.71
coupole8000 1768 41657 47.12
m14b 215 1679 15.64
ocean 143 410 5.71
pwt 37 145 7.93
rotor 100 662 13.30
s3dkq4m2 90 2365 52.30
tooth 78 453 11.58

Graph Size (×103) Average
V E degree

audikw1 944 38354 81.28
b5tuer 163 3874 47.64
bmw32 227 5531 48.65
bmwcra1 149 5248 70.55
crankseg2 64 7043 220.64
inline1 504 18156 72.09
mt1 98 4828 98.96
oilpan 74 1762 47.77
ship001 35 2305 132.00
shipsec5 180 4967 55.23
thread 30 2220 149.32
x104 108 5030 92.81
altr4 26 163 12.50
chanel1m 81 527 13.07
conesphere1m 1055 8023 15.21

compute and update vertex swapping gains only for vertices that have to be
considered, that is, the ones that are in the immediate vicinity of vertices that
currently belong to the separator. However, these vertices cannot be known in
advance. Our idea is that, since the FM algorithm is local, we can constrain
it to operate on a small, predefined band of graph vertices without changing
significantly its outcome.

To validate this assumption, we have instrumented our Scotch sequential
partitioning software in order to measure how much refined partitions differ
from projected partitions. Since our current target application requires vertex
separators, we have focused on them for these experiments, but the same kind
of measures could be obtained from edge separation routines as well. The test
graphs we have used in all of our experiments are well-known cases of various
sizes, listed in Table 1.

For every separator computed in a nested dissection process (which stops
when subgraphs are of sizes of about a hundred vertices), we accumulate the
numbers of refined separator vertices that end up at a given distance from the
projected separators. These results are presented in Table 2.

As expected, the overwhelming majority of refined separator vertices is not
located at a distance greater than three from the vertices of the projected sep-
arators. Therefore, it can be assumed that the quality of partitions should not
be impacted if refined partitions are computed on band graphs only. In order
to validate this second assumption, we have developed in Scotch a partition-
ing method which extracts a band subgraph of given width from a given graph
and its given initial separator, applies a FM separator refinement method to
the initial separator of the band subgraph, and projects back the refined band
separator to the full graph. We have then replaced all of our calls to the FM
refinement algorithm by calls to this band FM refinement algorithm.

246 C. Chevalier and F. Pellegrini

Table 2. Distance histogram (in % of the number of separator vertices) of the loca-
tion of refined separator vertices with respect to projected separators. These statistics
have been collected over all separators when performing nested dissection on the given
graphs.

Graph Distance
0 1 2 3 ≥ 4

598a 76.23 23.45 0.32 0.00 0.00
aatken 77.00 20.45 2.27 0.24 0.04
auto 77.89 21.89 0.22 0.00 0.00

bcsstk29 82.04 17.66 0.30 0.00 0.00
bcsstk30 87.17 12.53 0.29 0.01 0.00
bcsstk32 81.91 17.80 0.23 0.03 0.02

body 67.49 30.20 2.08 0.20 0.04
bracket 72.47 26.19 1.08 0.16 0.10

coupole8000 90.23 9.74 0.03 0.00 0.00
m14b 78.65 21.17 0.18 0.00 0.00
ocean 60.43 32.86 4.58 1.29 0.84
pwt 54.35 37.31 6.10 1.56 0.69
rotor 77.09 21.99 0.75 0.11 0.06

s3dkq4m2 78.72 20.34 0.89 0.04 0.00
tooth 69.90 26.82 2.42 0.63 0.24

Graph Distance
0 1 2 3 ≥ 4

audikw1 91.44 8.55 0.01 0.00 0.00
b5tuer 74.18 22.96 1.85 0.42 0.59
bmw32 80.98 18.31 0.50 0.08 0.14

bmwcra1 91.29 8.58 0.13 0.00 0.00
crankseg2 95.80 4.17 0.01 0.02 0.00

inline1 87.57 12.35 0.08 0.00 0.00
mt1 84.79 14.00 0.93 0.25 0.04

oilpan 77.60 20.54 1.20 0.17 0.49
ship001 91.43 8.51 0.05 0.00 0.00
shipsec5 82.29 17.28 0.41 0.03 0.00
thread 91.40 8.53 0.06 0.00 0.00
x104 86.64 12.81 0.51 0.03 0.00
altr4 74.19 24.89 0.80 0.12 0.00

chanel1m 74.65 24.09 1.16 0.10 0.00
conesphere1m 82.16 17.67 0.17 0.00 0.00

The quality criterion that we have chosen is the operation count (OPC) re-
quired to factor the reordered matrix using a Cholesky method; it is an indirect
measurement of the overall quality of all bipartitions, in the practical context of
nested dissection ordering. The results that we obtain for all of our test matri-
ces, using band graphs with a width of three, show only marginal differences in
OPC compared to the original FM refinement algorithm, and no difference on
average. An explanation to this is that, even if the separator cannot move more
than three vertices away at any level, it has the ability to move again at the
next levels to reach its local optimum, therefore compensating on several levels
for the moves it could not do on a single level.

An interesting feature of band FM refinement is that is seems to be more
stable than the classical FM algorithm. In the production version of Scotch,
two runs of multi-level bipartitioning were performed for each subgraph, and
then the best separator of the two was kept. When using band FM refinement,
equivalent results are obtained with only one run, as presented in Table 3. Most
of the time, the quality of band FM lies between the one exhibited by one and two
runs of the classical FM method. In terms of time, we can evidence a moderate
over-cost with respect to a single run of classical FM, because of the computation
of the band graph. It seems that, by “amortizing” the move of the frontier, the
band FM algorithm prevents it from exploring local minima that differ too much
from the “pseudo-global” solution computed at the coarsest level and in which
it could be trapped afterwards. Further experiments are required to investigate
this.

Improvement of the Efficiency of Genetic Algorithms 247

Table 3. Comparison between band FM and classical FM. Tests have been run on a
375MHz IBM SP3.

Graph Band FM (1 run) FM (2 runs) FM (1 run)
OPC Time (s) OPC Time (s) OPC Time (s)

aatken 1.72e+11 6.17 1.70e+11 10.79 1.73e+11 5.38
auto 5.14e+11 47.09 4.98e+11 75.00 5.27e+11 39.40
bcsstk32 1.40e+9 1.16 1.28e+9 1.65 1.40e+9 1.02
coupole8000 7.57e+10 210.15 7.48e+10 346.81 7.57e+10 183.72
m14b 6.27e+10 21.4 6.31e+10 33.42 6.03e+10 17.56
tooth 6.50e+9 5.66 6.51e+9 9.01 6.71e+9 4.64
audikw1 5.58e+12 59.32 5.48e+12 86.78 5.64e+12 50.33
bmw32 3.15e+10 4.52 2.75e+10 6.51 3.07e+10 4.08
oilpan 2.92e+9 0.73 2.74e+9 0.95 2.99e+9 0.69
thread 4.17e+10 1.62 4.14e+10 2.30 4.17e+10 1.44
x104 1.84e+10 1.97 1.64e+10 2.60 1.80e+10 1.83
altr4 3.68e+8 1.55 3.65e+8 2.52 3.84e+8 1.32
conesphere1m 1.83e+12 122.03 1.85e+12 192.27 1.88e+12 100.19

By using this limitation of problem space, we can already devise a way to
compute high-quality partitions of distributed 3D mesh graphs of up to a billion
vertices: since the expected size of the separator of a n-vertex 3D mesh graph is
in O(n2/3) [14], the order of magnitude of the first separator of a 3D graph of
about a billion vertices should be of about a million vertices, which can be han-
dled by a sequential computer. Therefore, basing on existing parallel coarsening
algorithms such as the one of [13], one can coarsen a distributed graph so as to
get a coarsened graph that fits in the memory of a sequential computer, compute
an initial bipartition of this coarse graph using existing sequential partitioners,
and project back this partition as follows. During each uncoarsening step, once
the separator has been projected back to the finer distributed graph, a central-
ized copy of the distributed band graph surrounding the projected separator is
gathered on every processor. All of the processors can then run independently
a classical sequential FM algorithm on their centralized band graph, leading to
a better exploration of the reduced problem space, after which the best refined
separator found is projected back to the finer distributed graph. This uncoars-
ening process is repeated up to obtain a distributed bipartition of the original
graph. Recursive bipartitioning can then take place on the two parts created,
with separators of smaller sizes.

The above scheme, which may be useful to handle large graphs at the expense
of quite little work on top of existing software, is clearly not fully satisfactory,
since the refinement of the partitions is sequential in nature, and thus not scal-
able. In fact, local optimization algorithms are not well suited, because of their
iterative nature, while global heuristics, although more scalable, are usually not
considered as good candidates because of the size of the problem spaces to ex-
plore. However, taking advantage of the reduction of problem space that we have
evidenced, they could be, as described in the following.

248 C. Chevalier and F. Pellegrini

3 Using Genetic Algorithms in the Reduced Problem
Space

Currently, there exist only few software that do graph ordering in parallel, and
their quality is not equivalent to the one of sequential algorithms. For instance,
ParMeTiS [9] implements a parallel version of a FM algorithm to refine its
bipartitions but, in order to relax the strong sequentiality constraint of the algo-
rithm when moving vertices that have neighbors on other processors, only such
moves that improve the quality of the solution are accepted, therefore limiting
the hill-climbing feature of the FM algorithm and reducing further the qual-
ity of the solutions as the number of processors (and thus, of potential distant
neighbors) increase.

To avoid this intrinsic sequentiality problem, we have decided to turn to a
completely different class of algorithms. Genetic algorithms (GA) are highly
scalable meta-heuristics which allow to solve multi-criteria optimization prob-
lems using an evolutionary method. It is an iterative method that consists in
simulating the evolution of a population of individuals which represent solutions
to the problem, selecting best-fitting individuals as candidates for breeding the
next generation. GA are known to converge very slowly and cannot therefore be
applied to large graphs [1,3], but might be of use in the reduced problem spaces
of band graphs. In the graph separation problem, every vertex can belong to
three different domains: the separator, or any of the two separated parts. There-
fore, every individual in the population is implemented as a linear array, similar
in principle to a chromosome, which associates a number between 0 and 2 to any
graph vertex index.

The reproduction operator is a classical multi-points cross-over operator,
which is applied at a randomly-selected position of two mated individuals, and
swaps one part of their arrays to produce two descendants. The mutation oper-
ator consists in swapping the part of randomly chosen vertices on some individ-
uals. Since these naive operators cannot enforce that the crossed-over and mu-
tated individuals be valid solutions, they are post-processed with a consistency-
checking phase which adds vertices to the separator whenever necessary, and
removes unneeded separator vertices.

Individuals are evaluated by means of a fitness function, which linearly com-
bines dimensionless numbers such as the ratio of graph vertices that belong to
the separator, the imbalance between the two parts, and the ratio of graph edges
that link separator vertices. The first generation is made up of individuals that
are mutations of the projected partition, plus some entirely random individuals
which provide genetic diversity. To select and mate individuals, we have imple-
mented several classical algorithms [7,11]. Although all methods behave quite
similarly, best results were achieved with a mix of the elitism and roulette meth-
ods: the 5% best individuals are kept unconditionally, and each of the remaining
ones is kept with a probability proportional to its fitness. Then, individuals are
mated by pairs of descending fitness, and bred so as to keep constant population.

In order to increase concurrency in the GA algorithm, all of the individuals
that are located on the same processor are considered as an isolated population

Improvement of the Efficiency of Genetic Algorithms 249

Table 4. OPC of the reordered bcsstk29 matrix when multi-level band GA is used for
all levels of nested dissection. Classical multi-level FM yields an OPC of 3.43e + 8 in
0.74s.

Deme size # Demes Generations OPC Time (s)
40 1 25 5.322334e+08 4.05
80 1 25 5.370016e+08 7.95
80 1 100 4.355475e+08 25.72
40 2 25 4.653384e+08 6.61
40 2 100 4.569806e+08 20.17
80 8 100 3.751443e+08 50.90

(also called “deme”) living on an island [15]. Only occasionally can a few “champi-
ons” move from one island to another, to propagate their successful chromosomes
into other populations which can have been trapped in local optima. In our cur-
rent sequential implementation, every deme is handled by a different thread.
Migration is performed when the variety of the population in some deme de-
creases, i.e. when individuals are too similar to their local champion.

To evaluate the convergence speed of our GA algorithm, we have computed
nested dissection orderings of several test graphs with our multi-level band GA
method. All of our tests were run on the M3PEC machine of the Université Bor-
deaux I, an eleven-node IBM machine with eight 1.5 MHz dual-core processors
and 32 GB of memory per node. Since our current implementation is thread-
based only, timings of tests involving more than sixteen threads (written between
parentheses) are estimated: these tests are still run on a single SMP node, with
as many threads per core as necessary, and the running time is divided by the
appropriate ratio. ParMeTiS, however, uses MPI, and runs fully in parallel.

Table 4 provides some results for graph bcsstk29. These results show that GA
converges quite well, and that quality can be improved by increasing computation
time and/or population size. As expected, running times are high, but GA are
highly scalable, so that computation time can be reduced by adding processors,
and partitioning quality can be increased by giving more time.

The second class of experiments that we have run aimed at evaluating the
scalability of our method in terms of quality and running time. In order to
compare our ordering software to ParMeTiS in similar conditions, we ran our
method on numbers of processors p that are powers of two (while our method
does not require it), and performed band GA on the first log2(p) levels only,
using band FM afterwards; we will refer to this method as “limited GA” (LGA)
in all of the following. When running GA, the population is evenly spread on
all of the threads, with at least 100 individuals on the whole and at least 25
individuals per deme; therefore, above 4 threads, the population doubles along
with the number of threads.

Our results, which are summarized in Table 5, are extremely encouraging. First
of all, partitioning quality is not degraded too much when the number of processors
increases: on our worst case, bmw32, we loose about 60% in OPC quality between
1 and 64 processors, and the quality is almost constant for coupole8000. Above

250 C. Chevalier and F. Pellegrini

Table 5. Comparison between ParMeTiS (PM) and our multi-level limited band ge-
netic algorithm (LGA) for several graphs. CLGA and CPM are the OPC for LGA and
PM, respectively. Dashes indicate abortion due to memory shortage. LGA timings be-
tween parentheses are extrapolated times for cases requiring more than 16 threads, as
we had to run several threads per core on a single SMP node. Timings for ParMeTiS
are provided for graph altr4 to give an idea of its speed, but tPM and tLGA cannot
be compared, because PM is a fully parallel program, while our LGA testbed is the
purely sequential nested dissection routine of Scotch, which has been parametrized
so as to run the multi-threaded LGA algorithm only during the uncoarsening phases
of the first log2(p) stages of the nested dissection process.

CLGA

CPM

tLGA

CLGA

CPM

tLGA

CLGA

CPM

tLGA

CLGA

CPM

tLGA

tPM

CLGA

CPM

tLGA

CLGA

CPM

tLGA

CLGA

CPM

tLGA

8 processors, our results clearly outperform the ones of ParMeTiS, by a factor
greater than two for thread. As expected, the higher the degree of the graph is,
the bigger the difference is, because ParMeTiS can only do gradient local opti-
mizations on nodes which have neighbors on other processors.

Improvement of the Efficiency of Genetic Algorithms 251

Partitioning times are very good, too. Although the running time of a single
sequential band GA refinement algorithm is between 30 and 80 times higher
than the one of its sequential band FM counterpart, the overall running time
of our LGA ordering program does not increase too much when the number
of processors increase. While a doubling of the number of processors implies
the turning of a whole level of band FM refinements into band GA refinements,
the running time of LGA increases reasonably along with the number of threads,
because when the number of processors increases it is levels of smaller subgraphs
that are passed to the GA, which only results in a limited increase in the overall
running time compared to the time taken by the first GA levels. Much hope is
therefore placed in the development of a fully parallel, distributed-memory LGA
algorithm.

4 Conclusion and Future Work

In this paper, we have presented a constrained banding approach which dramati-
cally decreases problem size during the refinement phase of multi-level partition-
ing schemes. This method, which can be used with any refinement algorithm,
allows us to take advantage of heuristics which are usually too expensive to be
considered, such as genetic algorithms. We have implemented a shared memory
multi-threaded GA, and tried it on numerous test cases. Although our GA is
slower than distributed FM-like algorithms, it is scalable and provides better
results, and its quality can be parametrized more easily (in terms of population
size and of number of generations) to account for eventual time or quality con-
straints.

We are currently developing a distributed memory version of our GA algo-
rithm, based on MPI, which will allow us to run tests on a larger number of
processors, and to investigate the limits of using GA as a band refinement method
for very large graphs. Since the testbed that we will use for this new version will
be the parallel ordering routine of PT-Scotch, we will be able to compare its
running time with the one of other parallel ordering software. Moreover, in order
to have a reference for the quality of orderings, we are also currently completing
the coding in PT-Scotch of the centralized band FM refinement algorithm de-
scribed at the end of Section 2, which will allow us to compute, in a semi-parallel
fashion, high quality orderings of very large graphs.

References

1. S. Areibi and Zeng Y. Effective memetic algorithms for VLSI design automation
= genetic algorithms + local search + multi-level clustering. Evolutionary Com-
putation, 12(3):327–353, 2004.

2. S. T. Barnard and H. D. Simon. A fast multilevel implementation of recursive
spectral bisection for partitioning unstructured problems. Concurrency: Practice
and Experience, 6(2):101–117, 1994.

3. T. N. Bui and B. R. Moon. Genetic algorithm and graph partitioning. IEEE Trans.
Comput., 45(7):841–855, 1996.

252 C. Chevalier and F. Pellegrini

4. C. M. Fiduccia and R. M. Mattheyses. A linear-time heuristic for improving net-
work partitions. In Proc. 19th Design Automat. Conf., pages 175–181. IEEE, 1982.

5. A. George and J. W.-H. Liu. Computer solution of large sparse positive definite
systems. Prentice Hall, 1981.

6. B. Hendrickson and R. Leland. A multilevel algorithm for partitioning graphs. In
Proceedings of Supercomputing, 1995.

7. J. Horn, N. Nafpliotis, and D. E. Goldberg. A niched Pareto genetic algorithm for
multiobjective optimization. In IEEE World Congress on Computational Intelli-
gence, volume 1, pages 82–87, 1994.

8. G. Karypis and V. Kumar. A fast and high quality multilevel scheme for parti-
tioning irregular graphs. SIAM J. on Scientific Computing, 20(1):359–392, 1998.

9. MeTiS: Family of multilevel partitioning algorithms. http://glaros.dtc.umn.
edu/gkhome/views/metis.

10. B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning
graphs. Bell System Technical Journal, 49:291–307, February 1970.

11. P. Moscato. On evolution, search, optimization, genetic algorithms and martial
arts, towards memetic algorithms. Technical Report 826, California Intitute of
Technology, Pasadena, CA 91125, U.S.A., 1989.

12. Scotch: Static mapping, graph partitioning, and sparse matrix block ordering
package. http://www.labri.fr/˜pelegrin/scotch/.

13. K. Schloegel, G. Karypis, and V. Kumar. Parallel multilevel algorithms for multi-
constraint graph partitioning. In Proceedings of EuroPar, pages 296–310, 2000.

14. H. D. Simon and S.-H. Teng. How good is recursive bipartition. SIAM J. Sc.
Comput., 18(5):1436–1445, 1995.

15. D. Whitley, S. Rana, and R. B. Heckendorn. The island model genetic algorithm:
On separability, population size and convergence. Journal of Computing and In-
formation Technology, 7:33–47, 1999.

	Introduction
	Reducing Problem Space in a Multi-level Framework
	Using Genetic Algorithms in the Reduced Problem Space
	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

