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Abstract. Increasingly, a number of applications across computer sci-
ences and other science and engineering disciplines rely on, or can poten-
tially benefit from, analysis and monitoring of data streams. We view the
problem of flexible and adaptive processing of distributed data streams as
a grid computing problem. In our recent work, we have been developing
a middleware, GATES (Grid-based AdapTive Execution on Streams),
for enabling grid-based processing of distributed data streams.

This paper reports an application study using the GATES middleware
system. We focus on the problem of intrusion detection. We have created
a distributed and self-adaptive real-time implementation of the algorithm
proposed by Eskin using our middleware. The main observations from
our experiments are as follows. First, our distributed implementation can
achieve detection rates which are very close to the detection rate by a
centralized algorithm. Second, our implementation is able to effectively
adjust the adaptation parameters.

1 Introduction

Increasingly, a number of applications across computer sciences and other sci-
ence and engineering disciplines rely on, or can potentially benefit from, analysis
and monitoring of data streams. In the stream model of processing, data arrives
continuously and needs to be processed in real-time, i.e., the processing rate must
match the arrival rate. There are several trends contributing to the emergence
of this model. First, scientific simulations and increasing numbers of high preci-
sion data collection instruments (e.g. sensors attached to satellites and medical
imaging modalities) are generating data continuously, and at a high rate. The
second is the rapid improvements in the technologies for Wide Area Networking
(WAN). As a result, often the data can be transmitted faster than it can be
stored or accessed from disks within a cluster.

The important characteristics that apply across a number of stream-based
applications are: 1) the data arrives continuously, 24 hours a day and 7 days a
week, 2) the volume of data is enormous, typically tens or hundreds of gigabytes
a day, and the desired analysis could also require large computations, 3) often,
this data arrives at a distributed set of locations, and all data cannot be commu-
nicated to a single site, 4) it is often not feasible to store all data for processing
at a later time, thereby, requiring analysis in real-time.
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We view the problem of flexible and adaptive processing of distributed data
streams as a grid computing problem. We believe that a distributed and net-
worked collection of computing resources can be used for analysis or processing
of these data streams. Computing resources close to the source of a data stream
can be used for initial processing of the data stream, thereby reducing the vol-
ume of data that needs to be communicated. Other computing resources can be
used for more expensive and/or centralized processing of data from all sources.

In our recent work, we have been developing a middleware for enabling grid-
based processing of distributed data streams [6,5]. Our system is referred to
as GATES (Grid-based AdapTive Execution on Streams). One of the impor-
tant characteristic of this middleware is that it can enable an application to
achieve the best accuracy, while maintaining the real-time constraint. For this,
the middleware allows the application developers to expose one or more adapta-
tion parameters. An adaptation parameter is a tunable parameter whose value
can be modified to increase the processing rate, and in most cases, reduce the
accuracy of the processing. Examples of such adaptation parameters are, rate
of sampling, i.e., what fraction of data-items are actually processed, and size of
summary structure at an intermediate stage, which means how much informa-
tion is retained after a processing stage. The middleware automatically adjusts
the values of these parameters to meet the real-time constraint on processing,
through a self-adaptation algorithm. Self-adaptation algorithms currently imple-
mented in the middleware are described in our earlier papers [6,5].

This paper reports an application study using the GATES middleware system.
We focus on the problem of intrusion detection, which a widely studied problem
in computer security and data mining [1]. We have created a distributed and
self-adaptive real-time implementation of the algorithm proposed by Eskin [3].
This implementation generates local models using data received at each node,
and then combines these local models to create a global model. We use the
functionality of GATES in two different ways. First, as network records typically
arrive at multiple locations, a flexible distributed implementation can avoid high
communication costs associated with a centralized implementation. Second, as
data arrival rates can vary significantly, it is important for an intrusion detection
implementation to choose the right trade-off between accuracy and processing
rate, to continue to meet real-time constraints.

We have carried-out a number of experiments to evaluate our distributed im-
plementation. The main observations from our experiments are as follows. First,
our distributed implementation can achieve detection rates which are very close
to the detection rate by a centralized algorithm. Second, our implementation is
able to adjust the adaptation parameters. When the rate of data arrival is low,
it chooses a small value of the adaptation parameter, EM convergence threshold,
resulting in the best detection rate. On the other hand, when the data arrival rate
is very high, it chooses a larger value of this parameter, resulting in somewhat
lower accuracy, but still maintaining the same rate of processing.
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Input: k, # of EM clusters, D = {d1, d2, . . . , dn}, set of n 10 − dimentional points,
λ, probability for the set of intrusions, c, anomaly detection threshold.

Output: intrusion detection result.
var

Mt = probability distribution for normal elements at time t
At = probability distribution for anomalous elements at time t
Ct = number of intrusions detected at time t

begin
Mt = GMM generated by Expectation Maximization (EM) algorithm on D
At = a uniform distribution
Logistic Regression (LR) on D using 3 categorical attributes
for t = 1 to n

LLt(D) = |Mt|log(1 − λ) +
�

xi∈Mt
log(PMt(xi)) + |At|log(λ) +

�
xi∈At

log(PAt(xi))

Mt = Mt−1 − xt

At = At−1
�

xt

if (LLt − LLt−1) > c

then
Ct = Ct + 1

else
Mt = Mt−1

At = At−1

if (the result says 0 but LR says 1)
then dt is intrusion
else if (the result says 1 but LR says 0)
then dt is normal
else dt remains the same from the result

endfor
end

Fig. 1. Pseudo-code for the Anomaly Detection Algorithm

2 Anomaly Detection Algorithm

Intrusion detection problem has been extensively studied in recent years. There
are many different approaches for modeling normal and anomalous data, based
on which the detections are carried out. A survey and comparison of anomaly
detection techniques can be found in[1].

Our goal in this paper is to demonstrate that distributed and adaptive versions
of anomaly detection can be implemented using our middleware, GATES. For
this purpose, we have chosen an existing algorithm by Eskin [3]. One reason
for choosing this algorithm is that many other anomaly detection approaches
require training models over clean data. This can lead to problems since online
data is not clean and once the anomalies hidden in the data have been detected
as normal, further detections will also fail. Eskin’s algorithm, in comparison, has
the advantage that it can identify anomalies without clean data.
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We now briefly describe this algorithm. This method identifies anomalies
buried within the dataset. An assumption is made that the number of normal
elements in the data set is significantly larger than the number of anomalous ele-
ments. The pseudo-code for the algorithm is shown in Figure 1. We use Gaussian
Mixture Model (GMM) to represent the distribution of the normal elements in
the dataset. This is because it has the property of being able to represent any
distribution as long as the number of Gaussians in the mixture is large enough[7].
Further details of the use of EM algorithm to generate GMM can be found in
[4]. Once we have the model, anomaly detection begins with first assuming every
element is normal. Motivated by the model of anomalies, we use GMM to test
each element to determine whether it is an intrusion or not. This is based on the
difference of the loglikelihood by treating it as a normal element and as an intru-
sion. As compared to Eskin’s original algorithm, we also use logistic regression[2]
to further improve the performance of the algorithm.

3 GATES Middleware and Distributed Anomaly
Detection Implementation

In this section, we initially describe the GATES middleware system, and then
describe our distributed anomaly detection implementation.

3.1 Overview of the GATES System

GATES (Grid-based AdapTive Execution on Streams) is a middleware that sup-
ports the flexible and adaptive analysis of distributed data streams. A key goal
is to able to allow the most accurate analysis while still meet the real-time con-
straint. For this purpose, GATES applies self-adaptation algorithm. In summary,
GATES has the following features:

– It is designed to use the existing grid standards and tools to the extent
possible. Specifically, GATES is built on the Open Grid Services Architecture
(OGSA) model and uses the initial version of Globus Toolkits (GT) 3.0’s API
functions. Therefore, all components of GATES, including applications, exist
in the form of Grid services.

– It supports distributed processing of one or more data streams, by facilitating
applications that comprise a set of stages. For analyzing more than one data
stream, at least two stages are required. Each stage accepts data from one
or more input streams and outputs zero or more streams. The first stage is
applied near sources of individual streams, and the second stage is used for
computing the final results. However, based upon the number and types of
streams and the available resources, applications can also take more than two
steps. GATES’s APIs are designed to facilitate specification of such stages.

– It flexibly achieves the best accuracy that is possible while maintaining the
real-time constraint on the analysis. To do this, the system monitors the
arrival rate at each source, the available computing resources and memory,
as well as the available network bandwidth. Then it automatically adjusts
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the accuracy of the analysis by tuning the parameter within a certain range
specified by the user.

The self-adaptation algorithm used in GATES has been evaluated using a
number of stream-based data mining applications, including counting samples
and finding frequent itemsets in distributed data streams, using data stream
processing for computational steering, and clustering evolving data streams[6,5].
Results from the evaluation show that GATES is able to self-adapt effectively,
and achieve the highest accuracy possible while maintaining the real-time pro-
cessing constraint, regardless of the resource availability, network bandwidth, or
processing power.

3.2 Real-Time Distributed Intrusion Detection on GATES

The use of GATES middleware can provide two advantages in implementing
intrusion detection. First, it can allow a distributed implementation. Many sce-
narios for intrusion detection involve data arriving at multiple locations. One
possible solution for handling such cases is to forward all data to a single node,
however, this can result in high communication and computation overheads.
Second, it can allow for an adaptive implementation, which can trade-off rate
of processing and accuracy. Therefore, it can allow the implementation to meet
real-time constraints, and allow best accuracy for the given data arrival rate and
available computational resources.

Fig. 2. Communication Topology for the Distributed Intrusion Detection Application

Figure 2 shows the hierarchical structure of the real-time distributed intrusion
detection application built on GATES. Our implementation is composed of three
stages. The entire procedure of the intrusion detection is divided into a data
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preprocessing stage, a stage which performs local model generation and detects
intrusions, and a global model generation stage. We now describe each of these
stages in more details.

Producer is simply the data source, where some initial preprocessing can be
performed. We chose 10 out of 41 attributes (7 continuous and 3 categorical)
for each network data record. The attributes with the most significant variance
are included as they most likely to contain more information for distinguishing
intrusions from normal data. The filtered data is sent to the second stage.
Collector first collects the data from the Producer and applies the EM algorithm
to generate local GMMs. These are then used in the anomaly detection algorithm
we described earlier, for detecting local intrusions. Another function of this stage
is to forward samples, i.e. normal data points which have been detected as local
intrusions, to the final stage. The goal is to allow the global model to capture
their distribution. Finally, once the global model is generated, it is sent back
to this stage. Here, the anomaly detection algorithm is applied again to get the
global intrusions.

Note that the global model is improved iteratively, i.e., we approach closer to
the true probability distribution after each iteration, and have greater accuracy
in intrusion detection.

Combiner generates the global model based on the local model parameters and
samples. For GMM, the local model parameters used are the mean vector, covari-
ance matrix for each Gaussian model, and their weights contributing to the mix-
ture. We use Kullback-Leibler(KL)-divergence [8] as the measurement to decide
how similar two distributions are. KL-divergence is the most natural compari-
son measure since it is linearly related to the average loglikelihood of the data
generated by one model with respect to the other. It is also a well-behaved dif-
ferentiable function of the model parameters, unlike the other measures. Hence,
we combine two local models if the KL-divergence between them is below a user-
defined threshold, in which case, a modification has to be made to the global
model. Otherwise, new models would be added in. The Combiner sends back
the global model to the Collector to end the processing associated with each
iteration.

As we stated earlier, GATES uses programmer declared adaptation parameters
to achieve self-adaptation. In our implementation, we have used two different
adaptation parameters. The first parameter is the rate of sampling between the
Collector and the Combiner. If the Collector sends a very large number of samples
to the Combiner, it increases the communication as well as the computations at
the Combiner stage. On the other hand, a very small number of samples will
result in a less accurate global model. Similarly, the convergence threshold for
the EM algorithm also impacts the accuracy and the processing rate. The smaller
the value of this parameter, the more accurate local model we can get, which
also leads to a better global model. However, a small value of this parameter
also results in more computations for the EM algorithm to converge, making the
Collector overloaded.
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Note that the self-adaptation algorithm in GATES can only adjust one pa-
rameter at a time. Thus, in our experiments, we keep one of them fixed, while
allowing the middleware to adjust the other.

4 Experimental Evaluation

This section presents results from the real-time distributed intrusion detection
application built on GATES. We had several goals in our experiments. First,
we wanted to demonstrate that distributed implementations can achieve high
accuracy. Second, we wanted to evaluate the middleware’s ability to adjust the
two adaptation parameters, under different conditions. Finally, we also evaluate
the improvements in accuracy achieved through logistic regression, which is an
area where we had improved Eskin’s algorithm.

The dataset we used is KDD-CUP’99 Network Intrusion Detection data, which
contains a wide variety of intrusions simulated in a military network environ-
ment. It consists of approximately 4,900,000 network connection records with
more than 80% as intrusions. Each connection record has 41 attributes, including
categorical and continuous ones. According the requirement from the anomaly
detection algorithm[3], the majority distribution should have at least 90% of the
entire dataset. Therefore, we randomly duplicate the normal data and choose
part of the intrusion data, which result in a data set with 335,892 records in
total and only 9.04% are intrusions. Each type of intrusion is evenly distributed
and comes in a burst.

We conducted our experiments in a Linux cluster. Each node has a Pentium
III 933MHz CPU with 512MB of main memory and 300GB local disk space. The
interconnection network is a switched 100Mb/s Ethernet. In all our experiments,
the number of mixtures used in the centralized anomaly detection algorithm is
3 and the distributed version also results in the same number of mixtures.

4.1 Experiment 1: Adjustable EM Threshold vs. Fixed Sampling
Rate

In this experiment, we fix the sampling rates at certain values and let GATES ad-
just the EM threshold. The data production (arrival) rates vary from 100kb/s,
80kb/s, 50kb/s, 30kb/s to 10kb/s. Figure 3 shows how the EM threshold pa-
rameter converges to the ideal values with different data production rates. As
expected, when the production rate is small, EM threshold converges to a smaller
value since it can have enough time to perform the EM algorithm without be-
ing overloaded from its upstream. Also notice that the smallest EM threshold
GATES converges to is 0.000012, which is very close to the EM threshold used
in the centralized algorithm, 0.00001.

The detailed results, including processing time, detection rate, and false pos-
itive rate, are shown in Table 1. A centralized version, with no time constraints,
takes 923 seconds, and is able to detect 97.63% of the intrusions. It also has
a 8.08% rate of false positives. The best accuracy from the distributed version
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Table 1. Intrusion Detection Results

Exe. time(sec) Detection rate False positive
Centralized 923.0 97.63% 8.08%

Sample rate=40% 667.8 82.79% 5.95%
Distributed Sample rate=20% 637.2 91.38% 7.39%

Sample rate=16% 618.7 86.48% 6.35%
Producing rate Sample rate=13% 609.8 83.71% 6.04%

= 100kb/s Sample rate=10% 602.1 82.57% 5.83%
Sample rate=40% 710.1 84.72% 6.22%

Distributed Sample rate=20% 698.9 92.09% 7.57%
Sample rate=16% 674.2 88.69% 6.83%

Producing rate Sample rate=13% 653.3 86.21% 6.32%
= 80kb/s Sample rate=10% 642.9 84.58% 6.17%

Sample rate=40% 766.2 88.07% 6.88%
Distributed Sample rate=20% 738.6 92.44% 7.63%

Sample rate=16% 708.1 90.71% 7.19%
Producing rate Sample rate=13% 692.6 89.00% 6.95%

= 50kb/s Sample rate=10% 680.4 87.85% 6.%
Sample rate=40% 795.6 90.20% 7.22%

Distributed Sample rate=20% 766.7 94.63% 7.78%
Sample rate=16% 732.1 93.13% 7.67%

Producing rate Sample rate=13% 719.8 91.38% 7.55%
= 30kb/s Sample rate=10% 706.9 90.10% 7.10%

Sample rate=40% 862.1 93.74% 7.72%
Distributed Sample rate=20% 798.9 95.36% 7.90%

Sample rate=16% 762.4 95.16% 7.87%
Producing rate Sample rate=13% 741.8 94.29% 7.82%

= 10kb/s Sample rate=10% 728.3 93.50% 7.66%
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is 95.36%, which is quite close to the accuracy of the centralized version. The
best accuracy obtained under other (higher) data rates is at least 91.38%, which
shows that the middleware is able to tradeoff processing rates and accuracy
effectively.

Two other observations can be made from this table. First, the false positive
rate is always a fixed fraction of the detection rate, i.e., the higher the detection
rate, the higher is the false positive rate. The false positive rate is not impacted
by whether the implementation is centralized or distributed, or the value of the
adaptation parameters. Second, the trends between the choice of the sampling
rate and detection rate are quite interesting. Across different data production
rates, best accuracy is achieved when sampling rate is 20%. Both lower and
higher values of sampling rates result in lower detection rates. The reason is as
follows. When the sampling rate is higher, the Combiner takes a longer time to
compute global models. As a result, the collector operates with an older model
for a longer duration of time. On the other hand, when the sampling rate is
lower, a small number of samples at the Combiner results in lower quality global
models.

Table 2. Improvements Through Logistic Regression

without L.R. with L.R.
Detection Rate False Positive Detection Rate False Positive

Centralized 92.36% 8.35% 97.63% 8.08%
Producing rate=100kb/s 86.45% 7.64% 91.38% 7.09%
Producing rate=80kb/s 87.12% 7.82% 92.09% 7.57%
Producing rate=50kb/s 87.45% 7.88% 92.44% 7.63%
Producing rate=30kb/s 89.52% 8.04% 94.63% 7.78%
Producing rate=10kb/s 90.21% 8.12% 95.36% 7.90%

We also now evaluate the benefits of using logistic regression. We have im-
plemented logistic regression using three categorical attributes. The results are
shown in Table 2. The detection rate increases from 92.36% to 97.63% with
the false positive dropping from 8.35% to 8.08% for the centralized version.
Comparing the best results from the real-time distributed intrusion detection
implementation, we can get 95.36% as the detection rate and 7.90% as the false
positive rate, compared with 90.21% and 8.12% without using the logistic re-
gression, respectively. The overall observation is that once a data record fails
anomaly test, i.e. either normal data is detected as intrusion or an intrusion is
detected as being normal, the categorical attributes, namely, the protocol type,
the service information, and the flag, can correct the detection results.

Two other observations from our implementation are shown through Figures 4
and 5. Figure 4 shows that as the processing proceeds, we are having smaller
KL-divergence comparing to the true model, namely, the global model generated
from our algorithm is closer to the true model, as expected. As we can see from
the Figure 5, we are getting better detection rates for each processing round.
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We have used a ROC curve in this Figure, which is a graphical representation of
the false positive rate versus the detection rate. The reason for our observation
is that we have more data to generate the global model.

4.2 Experiment 2: Adjustable Sampling Rate vs. Fixed EM
Threshold

The other experiment we carried out involved a fixed EM threshold, and sam-
pling rate as the adaptation parameter. Again, under different data production
rates, we observed how the middleware is able to converge to a stable value
of the adaptation parameter. The results are shown in Figure 6. As expected,
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higher data production levels result in a smaller sampling rate, and lower data
production levels result in a higher sampling rate.

5 Conclusion

This paper has reported an application study using the GATES middleware,
which has been developed for supporting grid-based streaming applications. We
have focused on the problem of intrusion detection. We have created a distrib-
uted and self-adaptive real-time implementation of the algorithm proposed by
Eskin using our middleware. The main observations from our experiments are as
follows. First, our distributed implementation can achieve detection rates which
are very close to the detection rate by a centralized algorithm. Second, our im-
plementation is able to effectively adjust the adaptation parameters.
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