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Abstract. In this paper we present sim-async, an architectural simula-
tor able to model a 64-bit asynchronous superscalar microarchitecture.
The aim of this tool is to serve the designers on the study of different
architectural proposals for asynchronous processors. Sim-async models
the data-dependant timing of the processor modules by using distribu-
tion functions that describe the probability of a given delay to be spent
on a computation. This idea of characterizing the timing of the modules
at the architectural level of abstraction using distribution functions is
introduced for the first time with this work. In addition, sim-async mod-
els the delays of all the relevant hardware involved in the asynchronous
communication between stages.

To tackle the development of sim-async we have modified the source
code of SimpleScalar by substituting the simulator’s core with our own
execution engine, which provides the functionality of a parameterizable
microarchitecture adapted to the Alpha ISA. The correctness of sim-
async was checked by comparing the outputs of the SPEC2000 bench-
marks with SimpleScalar executions, and the asynchronous behavior was
successfully tested in relation to a synchronous configuration of sim-
async.

1 Introduction

Due to the current integration level and clock frequencies in microprocessor
architectures, synchronization with a single clock source and negligible skew is
an extremely difficult task. Fully asynchronous designs built using self-timed
circuits replace the clock signal by local synchronization protocols. Then, these
systems have no problems associated with the clock signal, and the global circuit
performance corresponds to the performance of the average case because a new
computation starts immediately after the previous has finished [1].

In the field of fully asynchronous systems, designers usually develop general
purpose processors (like those presented in [2,3,4,5]) using high-level description
languages like Occam, Tangram, Balsa or VHDL++. In addition, some works
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like [6,7] have proposed simulators of asynchronous processors, but they are
slightly parameterizables and they do not model the asynchronous behavior at
the architectural level of design. Albeit, these simulators are not able to run
standard benchmarks.

As occurs in the synchronous paradigm, asynchronous systems designers need
infrastructures for computer system modeling that abstract the implementation
of hardware models. These infrastructures must be capable of model the data-
dependant delay of a fully asynchronous system at the architectural level of
abstraction, and also they have to be able to run complete applications. The
main example of such a configurable, flexible and wide-spread toolset in the syn-
chronous world is SimpleScalar [8]. SimpleScalar allows to modify cache, branch
predictor or any other architectural parameter, and is able to run standard
benchmarks in order to get comparable measures for any kind of data related to
performance and also to custom statistics. Up to our best knowledge, such flexi-
ble infrastructures for simulation and architectural modeling of high-performance
fully asynchronous processors have not been reported in literature.

Once argued the necessity of a modeling infrastructure, one of the key ques-
tions is how the tool will model the data-dependant computation delays of the
modules that form an asynchronous processor. Since asynchronous circuits take
distinct amounts of time when computing different values, it is possible to collect
a large set of delays for a given circuit by running low-level simulations using
a representative number of inputs. From that set of delays one may obtain the
distribution function which characterizes the behavior of the circuit. Sim-async
applies this idea inside out, that is, the simulator uses distribution functions (in-
cluded as parameters) to dynamically select the delay for each computation of
each one of the modules of the processor. This solution is introduced in this paper
as a novelty related to the architectural asynchronous processor simulation.

Therefore, in this paper we present sim-async, an architectural simulator for
asynchronous superscalar processor modeling. Sim-async is able to model, at the
architectural level of abstraction, the data-dependant behavior of the modules
of the processor by using distribution functions. In addition, sim-async is able
to execute any test program compiled for the Alpha ISA, as SimpleScalar does.

The rest of the paper is organized as follows: Section 2 is devoted to describe
the simulated processor microarchitecture and the functionality of its stages. In
Section 3 we define the synchronization domains and detail the delays that model
them, the implementation of those delays as input parameters of the simulator,
and the communication protocol between the domains. In Section 4 we show the
validation of the simulator by running the SPEC2000 benchmarks under both
asynchronous and synchronous configurations. Finally, in Section 5 we explain
the conclusions and the future work.

2 Description of the Processor Microarchitecture

Sim-async models the microarchitecture of a 64-bit fully asynchronous super-
scalar processor with out-of-order and speculative execution of instructions, and
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Fig. 1. Schema of the modeled microarchitecture. The logic involved in the communi-
cation between modules is not included within this schema.

this section is devoted to its introduction. The processor consists on five stages:
fetch, issue, exec, write-back and commit. In Figure 1 we show the schema of the
microarchitecture1, where we have illustrated the Exec Unit with higher detail2.

The implementation of the asynchronous processor is identical to the syn-
chronous one, but substituting the clock network by a set of components that
allows the communication of results between modules. For the sake of clarity, we
briefly describe the functionality of each stage in this section.

Fetch. A parameterizable number of instructions is read from the I-cache taking
into account the branch prediction. The instructions are moved to the instruction
queue (IQ), where they wait for the issue stage. If one of the instructions in the
middle of the fetch group is a taken conditional branch or an unconditional
branch, then the subsequent instructions in the fetch group will be discarded.

Issue. As it is well-known, the design of the issue stage is crucial to obtain high
performance on a superscalar processor. We have chosen the implementation
called instruction shelving with reorder buffer (ROB) [9] for the issue stage
because it decouples the instruction issue and the dependency checking. With
shelving, the only fact that will provoke the block of the issue of instructions
is the lack of free entries in the reservation stations (RS, or shelving buffers) or
ROB, not the data dependencies, which are more frequently to appear.

This stage decodes and in-order issues a parameterizable number of instruc-
tions from the IQ to their corresponding RS and to the ROB. The issue is
1 The twelve shadowed areas of the figure represent the different synchronization do-

mains we have defined in the processor, but we postpone its explanation until the
following section.

2 This level of details of the execution unit will be useful in the following sections.
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performed in-order because preserving sequential consistency for out-of-order is-
sue requires a much higher effort than in-order issue does. In addition, due to
the rarely blocking of issue with shelving, implementing out-of-order issue would
only have a marginal benefit [9].

Execution. The RS preserve data dependencies maintaining the tags of the
instructions which will generate the pending operands, and hold values waiting
for the execution into the functional units (FU). As shown in Figure 1, the
microarchitecture is provided with four RS. The dispatch logic decides which
one of the ready instructions from the RS is issued to its corresponding FU
taking into account that as older the ready instruction as sooner it is issued.

Write-back. Once the computation of each FU is finished, the result is held on
its output flip-flop, triggered by a capture signal, till the write-back stage was
completed. In this stage, the selection logic chooses the results to be distributed
to the RS and the ROB through the number of instances (parameterizable) of
the common data bus (CDB), also sending the tag of the instructions which
generated each result. The wake-up logic of each RS compares the incoming
tags with the tags of the pending instructions performing the update of values
wherever a tag matches.

Commit. Each instruction at the ROB holds the result to be written to the
register file or to the memory and the destination register or memory address.
A parameterizable number of instructions is retired from the ROB maintaining
program order, and branch prediction is checked each time this stage executes.
Precise interruptions are also checked and the pipeline is flushed when a mispre-
dicted branch is processed.

3 Modeling the Asynchrony

A synchronization domain consists in all the flip-flops triggered by the same
signal and the combinational logic within their fan-in. In this paper we have
defined twelve synchronization domains (see shadowed areas in Figure 1), where
the communication between them is performed using a four-phase handshake
protocol. The following subsections are devoted to present the temporal modeling
of an individual domain and the assumed communication protocol.

3.1 Temporal Modeling of a Synchronization Domain

We have followed a mixed approach in the asynchronous paradigm to describe
the temporal behavior of the domains. We have used the computation completion
mechanism described in [10] to detect the end of the computation, and we have
employed a bounded delay approach to model the behavior of the control logic.

In the asynchronous systems the delay spent on computing a data, detecting
the computation completion and communicating the result to the receiver mod-
ule through the synchronization protocol takes a different and unpredictable
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value for each input data. That delay comes from the combination of several
other delays that appear during the operation of a module. Let’s examine these
delays, indicated with dotted lines in the scheme of Figure 2 (a).

The computation delay, tc , is the delay spent by the module on computing the
input data and generating the results. It is a variable delay because asynchronous
circuits present a data-dependant behavior. In our simulator, each stage and FU
of the microarchitecture receives its own tc as a distribution function. Then,
whenever the module makes a computation, the simulator randomly selects a
computation delay taking into account the shape of the distribution. Thus, the
actual delay for computing these data is not obtained, but the data-dependant
behavior of the module is maintained.

The completion detection delay, tcompl , corresponds to the time spent by the
completion detection logic (CD) on detecting a valid output and asserting the
compl signal. This delay is included as a constant input parameter on sim-async.

We use a delay insensitive codification and a completion detection logic due to
the variability of tc . Therefore, as Martin showed in [11], the modules alternate
a neutral or synchronization value (S ) which does not mean any Boolean value,
and the encoding of a valid output. The generation of that synchronization value
takes tsync time units (t.u.) and, after that, the module is ready to receive new
incoming data. This delay is also an input parameter of sim-async. The logic that
orders the generation of the synchronization value is omitted in the mentioned
figure for the sake of clarity.

The modeling of the handshake protocol is divided on two delays: request
delay, treq , which is the time spent from the assertion of the compl signal to
the assertion of the request signal, reqi ; and capture delay, tcap , which is the
time spent from the falling edge of the acknowledge signal from the receiver
module, acki+1 , and the assertion of the capture signal. The time spent during
the handshake is an uncertain delay that can be accurately obtained only by
simulation because it mainly depends on the occupation or availability of the
structures of the receiver module at each moment. Both treq and tcap are included
as constant input parameters on sim-async.

Once the protocol is completed, the capture signal is asserted as a pulse.
This assertion does not violate any timing assumptions because we consider
tcompl to be longer than the setup delay of the destination register. In addition,
the width of the pulse of capture, denoted as tcap−up , must be higher than the
hold delay of the register triggered by the capture signal because the generation
of the synchronization value is ordered by the falling edge of that pulse. The
tcap−up delay is included as another constant input parameter of our simulator.

The delay spent from the fall of the capture signal and the assertion of the
acki signal is denoted as tack , also included as an input parameter of sim-async.

3.2 Communication Protocol

The communication between domains is performed through channels implement-
ing a four-phase handshake protocol like the one described in [12]. Figure 2 (b),
shows the chronogram of an example of communication between the domain i
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(a) (b)

Fig. 2. (a) General scheme of a synchronization domain. Dotted lines are referred to
delays. (b) Chronogram showing the delays of the logic involved on one computation
of the module i and the communication of results to the next domain.

and its neighbor. We next explain this communication using the delays defined
in the previous subsection.

The moment when the module starts to compute is the instant in which the
data_ini signal propagates the input data. Then, the module processes these
data and, after a data-dependant delay, tc , the result is propagated through
the data_outi signal. The compl signal is asserted after tcompl t.u. and then the
handshake logic activates the reqi signal in order to start the communication
protocol. The receiver module is ready to process new data because acki+1 is
asserted. At that point, the handshake logic deasserts the request signal and
waits for the fall of acki+1 . The receiver module unsets the acknowledge signal
and the communication protocol ends. After that, the handshake logic generates
a pulse in the capture signal. On the raising edge of capture the destination
register latches the results of the module and, on the falling edge of capture,
the logic of the module return to the synchronization value before the next
computation. In addition, the falling edge of capture also provokes the assertion
of acki , which indicates that the module i is ready to receive new input data.

4 Experimental Results

In order to validate sym-async we have run the SPEC2000 benchmarks on differ-
ent timing configurations of the simulator. Then, we have compared the results
of these executions with those obtained from the original SimpleScalar (sim-safe
flavor) under the same cache and branch predictor configuration. The tests were
run parameterizing fetch, issue, write-back and commit stages to process up to
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Table 1. (a) Architectural configuration of the microarchitecture in the simulations.
(b) Worst case delay of stages and FU operations in the asynchronous simulations.

Branch Predictor: 2-level PAg

Level 1 1024 entr, his 10

Level 2 1024 entr

BTB 4096 sets, 2-way

Instructions queue (IQ) size 100 entries

Integer RS queue size 6 entries

FP Addition RS queue size 3 entries

FP Mul, FP Div/Sqrt RS queue size 2 entries

Memory RS queue size 5 entries

Integer / FP Register File 32 / 32

ROB size 100 entries

(a)

Stage / FU Operation T. U.

Fetch, Issue,
Int/Logic, 1000

WB, Commit

IntMul 7000

MemLoad, FPAdd, FPMul 4000

FPDiv/Sqrt 30000

(b)

four instructions each time they execute. Table 1 (a) shows the architectural
configuration of the microarchitecture.

The first timing configuration tested was the fully asynchronous one. In this
asynchronous configuration we used two distribution functions to characterize
the computation delays of the modules: slow case (SC) and medium case (MC)
functions. These functions were selected from the set of back-annotated gate-
level simulations of related asynchronous circuits, and were normalized to the
same upper bound (the worst case) of 1000 t.u..

The slow case (SC) function, shown in Figure 3 (a), whose average delay is
near the worst delay, represents a slow behavior because the most of the data
take a high delay. We had not made any assumptions about the implementation
of the functional units, so they were individually characterized through the SC
function. However, we considered the use of long-latency non-pipelined FU for
FP operations and integer multiplications, so the normalization of the function
was conveniently corrected to a higher upper bound for these slow non-pipelined
FU, according with the Table 1 (b).

The medium case (MC) function, presented in Figure 3 (b), describes an
asynchronous behavior where the average delay is close to the half of the worst
delay. We have use this function to characterize the rest of the stages: fetch,
issue, write-back and commit.

It is important to remark that the aim of these functions is not to be actual
patterns of the modules of the modeled processor. We present these functions
as typical examples of asynchronous circuit behaviors obtained from previous
low-level simulations.

In order to establish the delays of the control logic, we have considered the
work of Cheng in [10]. In that paper Cheng implemented a circuit for completion
detection and synchronization (reset completion-detection) of data lines using
a four-phase handshake protocol and dual-rail codification. He obtained an av-
erage delay of 0.28 ns for the completion detection circuit and 0.71 ns for the
synchronization (reset). Considering that digital IC performance has tracked
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(a) (b)

Fig. 3. (a) Slow case (SC) and (b) Medium case (MC) distribution functions

Moore’s Law and improved by 30% annually, the delays of that circuit using
current technology could be about 16 ps and 41 ps respectively.

Supposing that the critical path of the modules of the processor will be under
1.25 ns (that means a maximum frequency of 800 MHz in a synchronous version),
which we have normalized to 1000 t.u., the normalized values for tcompl and
tsync taking into account the scaling are 12.8 t.u. and 32 t.u. respectively, which
correspond to average delays. In our simulations we have conservatively doubled
that delays to 26 t.u. and 64 t.u. for all the modules. The rest of the control
logic delays, treq , tcap and tcap−up were fixed to 5, 5 and 10 t.u. respectively,
and tack was considered equal to tsync .

We have checked that the outputs obtained by sim-async running the
SPEC2000 benchmarks under the asynchronous configuration are identical to
those generated by SimpleScalar for all the benchmarks. That is, bzip generates
the same compressed file, gcc returns the same compilation statistics, and so
on. In addition, we have compared the number of instructions committed on
both simulators for the execution of those benchmarks and they only differ in
a negligible range between 0.21% and -0.012% (attributed to the slightly dif-
ferent implementation of the system calls), as shown in Table 2 (a). Therefore,
sim-async performs correct simulations and successfully executes the Alpha ISA.

With the aim of test that sim-async not only executes the Alpha ISA cor-
rectly, but it also correctly models the asynchronous behavior, we have made
the comparison between the former simulations and those resulting from sim-
async parameterized in order to model a synchronous processor. This is possible
because the synchronous behavior is a particular case of the asynchronous one.
That is, in a synchronous processor all the modules spend the same time on
computing a data (the worst case of the slowest stage) and the communication
protocol spends a delay of zero t.u. due to the clock signal.

Then, we set the parameters tcompl , treq , tcap , tcap−up , tsync and tack to
zero t.u., and tc was fixed to a distribution where all the delays were 1000 t. u.
long, the worst case of the asynchronous simulations, but considering the slowest
FU (IntMul, FPAdd and FPMul/Div) as fully-pipelined units. The capture signal
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Table 2. (a) Number of instructions committed for several SPEC2000 benchmarks
on SimpleScalar (sim-safe) and for sim-async under the asynchronous configuration.
(b) Average differences between the instructions executed and the use of modules of
sim-async on synchronous and asynchronous configurations running the SPEC2000.

SPEC SimpleScalar Async Sim-async Diff (%)

ammp 45812883 45810845 -0.004

apsi 197579651 197612776 0.017

bzip 1819780172 1819780267 0.000

crafty 94419973 94420229 0.000

galgel 139306245 139310055 0.003

gap 82873902 82874407 0.001

gcc 2016139124 2016204817 0.003

gzip 601857009 601857104 0.000

lucas 19239488 19242782 0.017

mesa 1608605448 1608410610 -0.012

parser 268979662 269006191 0.010

perlbmk 205853718 205914747 0.030

sixtrack 11699655 11724227 0.210

swim 23557475 23562358 0.021

vortex 453666 454534 0.191

(a)

Async vs. Synch % Avg Diff
# Insn Exec 0.132
Use of Fetch -42.076
Use of Issue -61.993
Use of Int -66.062
Use of IntMul -99.894
Use of FPAdd -95.665
Use of FPMul -97.733
Use of FPDiv -99.921
Use of Addr -79.314
Use of Mem -81.116
Use of WB -52.324
Use of Commit -73.852

(b)

(see Section 3) is only asserted if the receiving module is ready to accept new
input data.

The synchronous simulations were run under the same architectural config-
uration described for the asynchronous simulations, and we obtained identical
outputs and also identical number of committed instructions. In addition, we
took some statistics in order to measure the asynchronous behavior. As shown
in Table 2 (b), the number of instructions executed (including those specula-
tive) is, on average, 0.132 % higher in the asynchronous configuration. This
occurs because the average delays of the asynchronous stages are shorter than
the synchronous worst case. Then, the asynchronous microarchitecture is able
to advance on the execution of instructions faster than the synchronous one.

Albeit, the number of executions of the asynchronous modules is reduced in
relation to the synchronous simulations. The average reduction ranges from the
42.076 % of the fetch stage to the 99.921% of the FPDiv functional unit, which
remains idle almost all the time (see Table 2 (b)). This behavior corresponds to
the one expected for an asynchronous circuit because the modules only compute
when useful work has to be performed.

As an additional statistic, the speedup reached by the asynchronous configu-
ration in relation to the synchronous one is, on average, 1.135 for the SPEC2000.

Thus, this comparison between both asynchronous and synchronous simula-
tions verifies the correct modeling of the asynchronous behavior that sim-async
performs by using distribution functions to characterize the computation delay
of the modules of the microarchitecture.
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5 Conclusions and Future Work

In this paper we have presented sim-async, an architectural simulator able to
correctly model the behavior of a 64-bit asynchronous superscalar microarchi-
tecture at the architectural level of abstraction. To tackle this goal, we have
modified the source code of SimpleScalar by substituting the simulator’s core
with our own execution engine which provides the functionality of a parameter-
izable superscalar architecture adapted to the Alpha ISA.

In order to provide flexibility, we have defined twelve synchronization domains,
and the delays involved on their computation, including them as parameters of
sim-async. Albeit, due to the necessity of modeling a data-dependant behavior
of the modules which form the simulated microarchitecture, we have introduced
the idea of modeling the data-dependant computation delay of the modules by
using distribution functions.

We have verified the correctness of sim-async by comparing the outputs of
the SPEC2000 benchmarks run on the original SimpleScalar with those gener-
ated by sim-async. In addition, we have run simulations of sim-async where the
delays were defining a synchronous microarchitecture. The number of instruc-
tions executed (including those speculative) was, on average, 0.132 % higher in
the asynchronous configuration. This occurs because the average delays of the
asynchronous stages are shorter than the synchronous worst case. In addition,
the number of executions of the asynchronous modules suffered an important
reduction in relation to the synchronous simulations. This behavior corresponds
to the one expected for an asynchronous circuit because the modules only com-
pute when useful work has to be performed. Then, the comparison between the
asynchronous and the synchronous simulations shows that the modeling of the
asynchronous behavior is correct. In addition, the asynchronous configuration of
the processor presented an average speedup of 1.132 in relation to its synchronous
counterpart.

Currently we are working on two ways: on one hand, we are tuning sim-async
with the aim of reducing its execution time, which is still high (about thirty
six hours each set of benchmarks). On the other hand, we are working on the
implementation of the asynchronous modules of the microarchitecture in order
to reach higher performance.
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