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Abstract. This paper presents rVsMR rollback-recovery protocol for
distributed mobile systems, guarantying Monotonic Reads consistency
model, even in case of server’s failures. The proposed protocol employs
known rollback-recovery techniques, however, while applying them, the
semantics of session guarantees is taken into account. Consequently,
rVsMR protocol is optimized with respect to session guarantees require-
ments. The paper includes the proof of safety property of the presented
protocol.
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1 Introduction

Applications in mobile domain usually tend to be structured as client-server
interactions. In such applications, clients accessing the data are not bound to
particular servers, but they can switch from one server to another. This switching
adds a new dimension of complexity to the problem of consistency and makes the
management of data consistency from client’s perspective very attractive. There-
fore, in [TDP+94] a new class of consistency models, called session guarantees
(or client-centric consistency models), has been proposed to define properties
of the system, observed from client’s point of view. Client-centric consistency
models define four session guarantees: Read Your Writes (RYW), Monotonic
Writes (MW), Monotonic Reads (MR) and Writes Follow Reads (WFR). RYW
expresses the user expectation not to miss his own modifications performed in
the past, MW ensures that order of writes issued by a single client is preserved,
MR ensures that the client’s observations of the data storage are monotonic and
finally, WFR keeps the track of causal dependencies resulting from operations
issued by a client.

In this paper we focus our attention on MR session guarantee. Below we give
a couple of examples that demonstrate the usefulness of MR. First, let us imag-
ine a mailbox of a traveling user, who opens the mailbox at one location, reads
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emails, and afterwards opens the same mailbox at different location. The user
should see at least all the messages he has read previously, which is impossi-
ble without MR. Further, imagine that user’s appointment calendar is stored
on-line in replicated database, and can be updated by both: the user and auto-
matic meeting scheduler. The calendar program periodically refreshes its display
by reading appointments from the database. The recently added (or deleted)
meetings can not appear to come and go, which is ensured, when copies of the
database held by servers are consistent with respect to MR [TDP+94]. Finally,
consider a Web page replicated at two different stores S1 and S2. If a client first
reads the page from S1 and later again from S2, then the second copy should be
the same, or newer as the one read from S1.

MR session guarantee is provided by appropriate consistency protocols
[TDP+94, BSW05b]. In order to construct effective solutions, adjusted to real ap-
plication requirements, these protocols should provide MR also in situations, when
servers holding replicated data brake down. Unfortunately, as far as we know,
none of the proposed consistency protocols preserving session guarantees, con-
siders such a possibility; they generally assume non-faulty environments. Such
assumption might be considered not plausible and too strong for certain mobile
distributed systems, where in practice failures do happen. Therefore, this paper
addresses a problem of providing MR session guarantee in case of server’s failures.

We introduce the rollback-recovery protocol rVsMR for distributed mobile
systems, which combines fault–tolerant techniques: logging and checkpointing
with coherence operations of a formerly proposed VsSG consistency protocol
[BSW05b]. As a result, the rVsMR protocol offers the ability to overcome the
servers’ failures, at the same time preserving MR session guarantee. Because of
client’s orientation, in rVsMR protocol run-time faults are corrected with any
intervention from the user. The main contribution of this paper is a presentation
of rollback-recovery protocol rVsMR of MR session guarantee and formal proof
of its safety.

2 Related Work

Session guarantees have been introduced in the context of Bayou replicated stor-
age system [TDP+94] to allow mobile clients to implicitly define sets of writes
that must be performed by servers. Since in Bayou each server’s state is main-
tained in the database, adding a persistent and crash resisting log is enough to
provide fault–tolerance in case of server’s failure. CASCADE — a caching service
for distributed CORBA objects [CDFV00], is another system using consistency
conditions based on session guarantees. In CASCADE it is assumed that pro-
cesses do not crash during the execution and all communication links are even-
tually operational. The Globe system [KKST98] follows the approach similar to
CASCADE, by providing a flexible framework for associating various replica-
tion coherence models with distributed objects. Among the coherence models
supported by Globe are also client-based models, although they are combined
with object-based consistency models in a single framework. Finally, Pastis —
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a highly scable, multi-user, peer-to-peer file system [PBS05] implements a con-
sistency model based on RYW session guarantee. In Pastis it is assumed that at
least one replica is not faulty and all users allowed to write to a given file trust
one another regarding the update of that file.

3 System Model, Basic Definitions and Notations

Throughout this paper, a replicated distributed storage system is considered.
The system consists of a number of unreliable servers holding a full copy of a
shared objects and clients running applications that access these objects. Clients
are mobile, i.e. they can switch from one server to another during application
execution. To access the shared object, clients select a single server and send
a direct request to this server. Operations are issued by clients sequentially,
i.e. a new operation may be issued after the results of the previous one have
been obtained. In this paper we focus on failures of servers, and assume the
crash-recovery failure model, i.e. servers may crash and recover after crashing
a finite number of times [GR04]. Servers can fail at arbitrary moments and
we require any such failure to be eventually detected, for example by failure
detectors [SDS99].

The storage replicated by servers does not imply any particular data model
or organization. Operations performed on shared objects are basically divided
into reads and writes. The server, which first obtains the write from a client,
is responsible for assigning it a globally unique identifier. Clients can concur-
rently submit conflicting writes at different servers, e.g. writes that modify the
overlapping parts of data storage. Operations on shared objects issued by client
Ci are ordered by a relation Ci⇁ called client issue order. A server Sj performs

operations in an order represented by a relation
Sj

�. Operations on objects are
denoted by w, r or o, depending on the operation type (write, read or these
whose type is irrelevant). Every server maintains the set CRSj of indexes of
clients from which it has directly received write requests and table RWSj , where
the number of writes performed by Sj before read from Ci was obtained, is kept
in position i. Relevant writes RW (r) of a read operation r is a set of writes that
has influenced the current state of objects observed by the read r. Formally, MW
session guarantee is defined as follows [BSW05b]:

Definition 1. Monotonic Reads (MR) session guarantee is a property meaning
that:

∀Ci ∀Sj

[
r1

Ci⇁ r2|Sj =⇒ ∀wk ∈ RW (r1) : wk

Sj

� r2

]

In the paper, it is assumed, that data consistency is managed by the VsSG
consistency protocol [BSW05b]. The formerly proposed protocol VsSG [BSW05b]
uses a concept of server-based version vectors for efficient representation of sets
of writes required by clients. Server-based version vectors have the following
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form: Vsj =
[
v1 v2 ... vNS

]
, where NS is a total number of servers in the system

and single position vi is the number of writes performed by server Sj . Every
write w in the VsSG protocol is labeled with a vector timestamp, denoted by
T (w) (T : O �→ V ) and set to the current value of the vector clock VSj of server
Sj performing w for the first time. During writes, performed by server Sj , its
version vector VSj is incremented in position j and a timestamped operation is
recorded in history HSj . OSj is a set of all writes performed by the server in the
past. The writes that belong to OSj come from direct requests received by Sj

from clients or are incorporated from other servers during the synchronization
procedure. The VsSG protocol eventually propagates all writes to all servers.
At the client’s side, vector RCi representing writes relevant to reads issued by

the client Ci is maintained. The linearly ordered set
(
OSj ,

Sj

�
)

of past writes is

denoted by HSj and called history [BSW05b]. During synchronization of servers,
their histories are concatenated. The concatenation of histories HSj and HSk

,
denoted by HSj ⊕HSk

, consists in adding new operations from HSk
at the end

of HSj , preserving at the same time the appropriate relations [BSW05b].
Below, we propose formal definitions of fault-tolerance mechanisms used by

the rVsMR protocol:

Definition 2. A log LogSj is a set of triples:

{ 〈i1, o1, T (o1)〉 〈i2, o2, T (o2)〉 ... 〈in, on, T (on)〉} ,

where in represents the identifier of the client issuing a write operation on ∈ OSj

and T (on) is timestamp of on.

Definition 3. Checkpoint CkptSj is a couple
〈
VSj , HSj

〉
, of version vector VSj

and history HSj maintained by server Sj at the time t, where t is a moment of
taking a checkpoint.

In this paper we assume, that log and checkpoint are saved by the server in
a stable storage, able to survive all failures [EEL+02]. Additionally, we assume
that the newly taken checkpoint replaces the previous one, so just one checkpoint
for each server is kept in the stable storage.

4 The rVsMR Protocol

For every client Ci that requires MR session guarantee when executing read r,
results of all writes, which have influenced the read issued by a client before r
cannot be lost. Unfortunately, at the moment of performing the operation, the
server does not possess the knowledge, whether in the future the client will be
interested in reading results of its writes or not. So, to preserve MR, the recovery
protocol should ensure that outcomes of all writes performed by the server are
not lost in the case of its failure.

In the proposed rVsMR protocol, we introduce a novel optimization that
reduces the number of saved operations: we propose that every server Sj saves
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Upon sending a request 〈o〉
to server Sj at client Ci

1: W ← 0
2: if (not iswrite(o)) then
3: W ← max (W,RCi)
4: end if
5: send 〈o, W 〉 to Sj

Upon receiving a request 〈o, W 〉
from client Ci at server Sj

6: while
(
VSj �≥W

)
do

7: wait()
8: end while
9: if iswrite(o) then

10: CWSj ← CWSj ∪ i
11: VSj [j]← VSj [j] + 1
12: timestamp o with VSj

13: LogSj ← LogSj ∪ 〈i, o, T (o)〉
14: perform o and store results in res
15: HSj ← HSj ⊕ {o}
16: nWrites← nWrites + 1
17: end if
18: if not iswrite(o) then
19: if i ∈ CRSj then
20: secondRead← TRUE
21: else
22: CRSj ← CRSj ∪ i
23: RWSj [i]← nWrites
24: end if
25: if (RWSj [i] > 0) and secondRead

then
26: CkptSj ← 〈VSj , HSj 〉
27: LogSj ← ∅
28: CRSj ← ∅
29: secondRead← FALSE
30: nWrites← 0
31: RWSj ← 0
32: end if
33: perform o and store results in res
34: end if
35: send

〈
o, res, VSj

〉
to Ci

Upon receiving a reply 〈o, res, W 〉
from server Sj at client Ci

36: if iswrite(o) then
37: RCi ← max (RCi , W )
38: end if
39: deliver 〈res〉

Every Δt at server Sj

40: foreach Sk �= Sj do
41: send

〈
Sj , HSj

〉
to Sk

42: end for

Upon receiving an update 〈Sk, H〉
at server Sj

43: foreach wi ∈ H do
44: if VSj �≥ T (wi) then
45: perform wi

46: VSj ← max
(
VSj , T (wi)

)
47: HSj ← HSj ⊕ {wi}
48: end if
49: end for
50: signal()

On rollback-recovery
51: 〈VSj , HSj 〉 ← CkptSj

52: CRSj ← ∅
53: secondRead← FALSE
54: nWrites← 0
55: RWSj ← 0

56: Log�

Sj
← LogSj

57: vrecover ← 0
58: while { o�

j : T (o�

j)>vrecover}�= ∅ do

59: 0choose 〈i�, o�

i, T (o�

i)〉with minimal
T (o�

j) from Log�

Sj
where T (o�

j) > VSj

60: VSj [j]← VSj [j] + 1

61: perform o�

j

62: HSj ← HSj ⊕
{
o�

j

}
63: CWSj ← CWSj ∪ i�

64: vrecover ← T (o�

i)
65: nWrites← nWrites + 1
66: end while

Fig. 1. Checkpointing and rollback-recovery rVsMR protocol
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only operations obtained directly from clients. Although only some of operations
performed by Sj are saved, we prove that MR is fulfilled in case of Sj failure.

The server that obtains the write request directly from client Ci, logs the
request to stable storage (Figure 1, l. 13), and only afterwards performs it (l. 14).
The moment of taking a checkpoint is determined by obtaining a read request r2,
which follows another read r1 issued by the same client. The server, which obtains
operation r2 from a client, checks first, whether such a read can be performed
(by comparing the values of vectors VSj and W - l. 6). When performing read
r2 is possible, the server checks if it has already performed, since the latest
checkpoint, any write operation that influenced the state of objects observed
by the read r1 (l. 25). When at least one such write has been performed, the
server checkpoints its state (l. 26), performs the read operation (l. 33) and sends
a reply to the client (l. 35). Otherwise, the new checkpoint need not be taken.
After the checkpoint is taken, server logs are cleared (l. 27). Saving the state of
server earlier would be unnecessary, as when write request is not followed by a
read one, it does not violate MR. Essential is the fact, that first the checkpoint
is taken, and only afterwards the content of log LogSj is cleared. (l. 27). After
the failure occurrence, the failed server restarts from the latest checkpoint (l.
51) and replays operations from the log (l. 58-65) according to their timestamps,
from the earliest to the latest one. Writes received from other servers during
update procedure, and missing from the local history of Sj , are performed, but
not logged (l. 45-47). Thus, such writes are lost after the failure occurrence.
However, those writes are saved in the log or in the checkpoint of servers, which
received them directly from clients. Hence, lost writes will be eventually obtained
again in consecutive synchronizations.

5 Safety of rVsMR Protocol

Lemma 1. Every write operation w issued by client Ci and performed by server
Sj that received w directly from client Ci, is kept in checkpoint CkptSjor in log
LogSj .

Proof. Let us consider write operation w issued by client Ci and obtained by
server Sj .

1. From the algorithm, server Sj before performing the request w, saves it in the
stable storage by adding it to log LogSj (l. 13). Because logging of w takes
place before performing it (l. 14), then even in the case of failure operation
w is not lost, but remains in the log.

2. Log LogSj is cleared after performing by Sj the second read request issued
by the same client. However, according to the algorithm, read operations
cause storing the information on writes by checkpointing the server’s version
vector VSj and history HSj in CkptSj (l. 26). The checkpoint is taken before
clearing log LogSj (l. 27). Therefore, the server failure, which occurs after
clearing the log, does not affect safety of the algorithm because writes from
the log are already stored in the checkpoint.
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Lemma 2. The rollback-recovery procedure recovers all write operations issued
by clients and performed by server Sj that were logged in log LogSj in the moment
of server Sj failure.

Proof. Let us assume that server Sj fails. The rollback-recovery procedure re-
covers operations remembered in the log (l. 58), after recovering VSj and HSj

from a checkpoint (l. 51). The recovered operation updates version vector VSj (l.
60), is performed by Sj (l. 61) and added to the server’s Sj history HSj (l. 62).

Assume now, that failures occur during the rollback-recovery procedure. Due
to such failures the results of operations that have already been recovered are
lost again. However, since log LogSj is cleared only after the checkpoint is taken
(line 27) and it is not modified during the rollback-recovery procedure (l. 56),
the log’s content is not changed. Hence, the recovery procedure can be started
from the beginning without loss of any operation issued by clients and performed
by server Sj after the moment of taking checkpoint.

Lemma 3. Operations obtained and performed in the result of synchronization
procedure and required by MR, are performed again after the failure of Sj, before
processing a new read from a client.

Proof. By contradiction, let us assume that server Sj has performed a new read
operation r obtained from client Ci before performing again operation w, re-
ceived during a former synchronization and lost because of Sj failure. According
to VsSG protocol, before executing r the condition VSj ≥ RCi is fulfilled (l. 6) .

Further assume, that w issued by Ci before r, has been performed by server Sk.
According to the protocol, after the reply from Sk is received by Ci, vector RCi is
modified: RCi ← max (W, RCi) . This means that vector RCi is updated at least
at position k: RCi [k] ← k + 1. (l. 37). Server Sj , during synchronization proce-
dure with Sk, performs w and updates its version vector: VSj ← max

(
VSj , T (w)

)
,

which means that VSj has been modified at least in the position k (l. 46). How-
ever, if failure of Sj happens, the state of Sj is recovered accordingly to values
stored in the checkpoint CkptSj (l. 51) and in the log LogSj (l. 58-65). From
the algorithm, while recovering operations from the log, the vector VSj is up-
dated only at position j. Thus, if operation w1 performed by Sj in the result of
synchronization with server Sk is lost because of Sj failure, the value of VSj [k]
does not reflect the information on w. Hence, until the next update message is
obtained, VSj [k] < RCi [k] , which contradicts the assumption.

Lemma 4. The recovered server performs new read operation issued by a client
only after all writes performed before the failure and required by MR are restored.

Proof. By contradiction, let us assume that there is a write operation w per-
formed by server Sj before the failure occurred, that has not been recovered
yet, and that the server has performed a new read operation issued by client Ci.
According to original VsSG protocol [BSW05b], managing only consistency not
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reliability issues, for reliable server Sj that performs new read operation, the
condition VSj ≥ RCi is fulfilled (l. 6-7).

Let us consider which actions are taken when a write operation is issued by
client Ci and performed by server Sj. On the server side, the receipt of the
write operation causes the update of vector VSj in the following way: Vsj [j] ←
V Sj [j] + 1 and results in timestamping w with the unique identifier (l. 12). The
server that has performed the write sends a reply containing the modified vector
VSj to the client. At the client side, after the reply is received, vector RCi is
modified: RCi ← max (W, RCi) (l. 37). This means that vector RCi is updated
at least at position j: RCi [j] ← max[j] + 1. If there is a write operation w
performed by server Sj before the failure that has not been recovered yet, then
VSj [j] < RCi [j], which follows from the ordering of recovered operations (l. 59).
This is a contradiction with VSj ≥ RCi . Hence, the new read operation cannot
be performed until all previous writes are recovered.

Theorem 1. MR session guarantee is preserved by rVsMR protocol for clients
requesting it, even in the presence of server failures.

Proof. It has been proven in [BSW05b] that VsSG protocol preserves MR ses-
sion guarantee, when none of servers fails. According to Lemma 1, every write
operation performed by server Sj is saved in the checkpoint or in the log. After
the server’s failure, all operations from the checkpoint are recovered. Further, all
operations performed before the failure occurred, but after the checkpoint was
taken, are also recovered (according to Lemma 2). According to Lemma 4, all re-
covered write operations are applied before new reads are performed. Moreover,
operations obtained by Sj during synchronization procedure and lost because
of Sj failure, are also performed once again before new reads from Ci (from
Lemma 3). Hence, for any client Ci and any server Sj , MR session guarantee is
preserved.

Full versions of the theorems and proofs can be found in [BKS05].

6 Conclusions

Although our implementation of rollback-recovery protocol is based on the known
techniques of operation logging and checkpointing of server’s state, it is never-
theless unique in exploiting properties of Monotonic Reads session guarantee
while applying these techniques. This results in checkpointing only the results
of write operations, which are essential to provide MR. Furthermore, we have
designed novel optimisations that reduce the number of saved operations. We
believe that rVsMR protocol can be applied to other systems (Section 2), where
it is required to maintain consistency for mobile clients.

Our future work encompasses the development of rollback-recovery protocols,
which are integrated with other consistency protocols. Moreover, appropriate
simulation experiments to quantitatively evaluate overhead of rVsMR protocol
are being carried out.
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