
Applicability of Load Balancing Strategies to
Data-Parallel Embedded Runge-Kutta Integrators

Matthias Korch and Thomas Rauber

University of Bayreuth, Department of Computer Science
{matthias.korch, rauber}@uni-bayreuth.de

Abstract. Embedded Runge-Kutta methods are among the most popular meth-
ods for the solution of non-stiff initial value problems of ordinary differential
equations (ODEs). We investigate the use of load balancing strategies in a data-
parallel implementation of embedded Runge-Kutta integrators. Since the paral-
lelism contained in the function evaluation of the ODE system is typically very
fine-grained, our aim is to find out whether the employment of load balancing
strategies can be profitable in spite of the additional overhead they involve.

1 Introduction

In this paper, we consider the parallel solution of initial value problems (IVPs) of ordi-
nary differential equations (ODEs) defined by

y′(t) = f(t,y(t)), y(t0) = y0, y : IR → IRn, f : IR × IRn → IRn. (1)

The numerical solution of large IVPs is a computationally intensive task. Therefore,
efforts have been taken to find efficient parallel solution methods, e.g., extrapolation
methods [1], waveform relaxation techniques [2], and iterated Runge-Kutta methods
[3]. Most of these approaches develop new numerical algorithms with a larger potential
for parallelism, but with different numerical properties.

Non-stiff ODE systems can be solved efficiently by embedded Runge-Kutta (ERK)
methods with stepsize control. Popular methods are, for example, DOPRI5(4) and DO-
PRI8(7) [4]. An ERK method with s stages which uses the argument vectors w1, . . . ,
ws to compute the two new approximations ηκ+1 and η̂κ+1 from the two previous ap-
proximations ηκ and η̂κ is represented by the computation scheme

wl = ηκ + hκ

l−1∑

i=1

alif(tκ + cihκ,wi), l = 1, . . . , s,

ηκ+1 = ηκ + hκ

s∑

l=1

blf(tκ + clhκ,wl), η̂κ+1 = ηκ + hκ

s∑

l=1

b̂lf(tκ + clhκ,wl).

(2)
The coefficients ali, ci, bl, and b̂l are determined by the particular ERK method used.

Because, in general, all coefficients aij may be non-zero and an evaluation of the
right hand side function f(t,w) may access all components of the argument vector w,
the stages l = 1, . . . , s have to be computed sequentially. However, ERK methods pos-
sess a large potential for data-parallelism across the ODE system, since the function

W.E. Nagel et al. (Eds.): Euro-Par 2006, LNCS 4128, pp. 720–729, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Applicability of Load Balancing Strategies to Data-Parallel ERK Integrators 721

evaluations of individual ODE components can be performed in parallel. Experiences
from earlier experiments (e.g., [5,6], cf. [2]) suggest that this type of parallelism can be
exploited efficiently only if the ODE system is sufficiently large and the communication
network of the parallel computer system is fast in relation to the speed of the processors
or the function evaluations of the ODE components are computationally intensive. In
general, the obtainable performance strongly depends on the characteristics of the IVP
(cf. Section 5). But if these conditions are fulfilled, general ERK solvers can work effi-
ciently on small or medium-sized shared-memory multiprocessors (SMMs). However,
on larger SMMs and on most modern distributed-memory multiprocessors (DMMs) the
speedups obtainable with current implementations are not yet satisfactory [6].

Therefore, it is desirable to find new implementations that can deliver a higher effi-
ciency. Two possible approaches take advantage of special properties of either the ERK
method [7] or the ODE system [5,6]. In this paper, we follow a different approach which
requires no assumptions about particular properties of the method or the ODE system.
We investigate if an improvement in performance can be achieved by the application
of dynamic load balancing strategies. We show that if the load balance can be achieved
with only little overhead, a higher performance can be obtained if the right hand side
function of the problem is irregular and also in other situations where a load imbalance
limits scalability, while the performance for regular problems is still competitive with
solvers with a static work distribution.

2 Motivation and Computational Structure

Knowing from previous experiments that the communication costs of general ERK
solvers on DMMs are to high for most problems to achieve satisfactory speedups, we
concentrate our initial investigations of load balancing strategies on SMMs, because on
such machines load balancing strategies with little overhead can be realized.

The computational kernel of a data-parallel implementation of a general ERK solver
with a static blockwise data distribution can be realized as shown in Fig. 1. Since the
evaluation of the right hand side function f cannot start before the parallel computation
of the corresponding argument vector has been completed, a barrier operation must be
executed before each stage. Since no further synchronization operations are used, the
scalability is mainly determined by the efficiency of the barriers, the waiting times due
to memory operations and the waiting times of the processors at the barriers.

In practice, the processors may not arrive at the barriers simultaneously for several
reasons: (1) The function f can be irregular, i.e., a different number of instructions is
required to evaluate the individual components. Examples are shown in Section 3. (2) A
parallel computer can be heterogeneous, i.e., the processors work at different speeds.
(3) The operating system scheduler may temporarily suspend threads of the ERK solver
to execute other processes. (4) On systems with non-uniform memory access times
(NUMA), the latency of memory operations can vary between one and several thou-
sands of cycles. (5) On systems with simultaneous multithreading (SMT) support, the
threads of the ERK solver compete for the functional units of the processors.

Considering these facts, asynchronous techniques that adaptively assign work to the
participating processors might be able to improve the performance. Therefore, based on

722 M. Korch and T. Rauber

1: me := my thread id;

2: barrier();
3: for (j := first component[me]; j ≤ last component[me]; j++)
4: v := hfj(t + c1h, η);
5: for (i := 2; i ≤ s; i++) wi[j] := η[j] + ai1v;
6: ηκ+1[j] := b1v; η̂κ+1[j] := b̂1v;

7: for (l := 2; l ≤ s; l++)
8: barrier();
9: for (j := first component[me]; j ≤ last component[me]; j++)

10: v := hfj(t + clh,wl);
11: for (i := l + 1; i ≤ s; i++) wi[j] += ailv;
12: ηκ+1[j] += blv; η̂κ+1[j] += b̂lv;

Fig. 1. Computational kernel of a data-parallel ERK implementation for shared address space
using a static blockwise data distribution

our experience with load balancing of task-based irregular applications [8,9] we have
implemented different strategies that realize a dynamic work distribution and apply
them to several test problems. Our aim is to investigate if and under which conditions a
performance improvement can be achieved on modern SMMs, and which performance
bottlenecks still remain to be resolved.

3 Test Problems

We consider four test problems which exhibit different characteristics and are therefore
suitable for the investigation of different aspects of our load balancing strategies. Fig-
ure 2 shows the number of instructions and the number of cycles required to evaluate
the individual components of these problems on a Pentium 4 processor.

– EMEP [10] is the chemistry part of the EMEP-MSC-W ozone chemistry model.
The dimension of this problem is 66. This problem exhibits the most irregular struc-
ture of all problems in our testset because the equations that model the concentra-
tions of the individual species have a widely varying complexity.

– MEDAKZO [10]. The medical Akzo Nobel problem has been derived from two 1D
partial differential equations (PDEs) which describe the penetration of antibodies
into a tissue that has been infected by a tumor. The dimension of this system n =
2N depends on the discretization parameter N . The number of instructions required
to evaluate the ODE components differs between odd and even components. But if
a blockwise data distribution is used, the load is nearly evenly balanced.

– STARS [11,12] describes a 3D n-body problem. The original second order ODE
system has been transformed into a first order system by substitution of the first
derivative. The system dimension is 6N , where N is the number of stars. We con-
sider two orderings of the components: STARS-CON uses a consecutive ordering
of the first and second derivative and leads to a very uneven load balance. STARS-
MIX interleaves the two derivatives and thus balances the load more evenly.

Applicability of Load Balancing Strategies to Data-Parallel ERK Integrators 723

(a)
0 10 20 30 40 50 60

0

1000

2000

3000

4000

5000

6000

7000

8000

Component index

N
um

be
r

of
 ..

. p
er

 fu
nc

tio
n

ev
al

ua
tio

n

Instructions
Cycles

(b)
0 50 100 150 200 250 300 350 400

0

100

200

300

400

500

600

Component index

N
um

be
r

of
 ..

. p
er

 fu
nc

tio
n

ev
al

ua
tio

n

Instructions
Cycles

(c)
0 50 100 150

0

500

1000

1500

2000

2500

3000

Component index

N
um

be
r

of
 ..

. p
er

 fu
nc

tio
n

ev
al

ua
tio

n

Instructions
Cycles

(d)
0 20 40 60 80 100 120 140 160 180 200

50

100

150

200

250

300

350

400

450

Component index

N
um

be
r

of
 ..

. p
er

 fu
nc

tio
n

ev
al

ua
tio

n

Instructions
Cycles

Fig. 2. Number of instructions and number of cycles required to evaluate the individual compo-
nents of some test problems on a Pentium 4 processor. (a) EMEP, (b) MEDAKZO, N = 200,
(c) STARS-CON, N = 25, (d) BRUSS2D-ROW, N = 10.

– BRUSS2D [13] results from a 2D PDE system that describes the chemical reaction
of two substances. We consider two orderings: a row-oriented ordering, BRUSS2D-
ROW, where the concentrations of the two substances are stored consecutively,
and a mixed row-oriented ordering, BRUSS2D-MIX, where the components of the
two substances are interleaved. The evaluation costs of the components of the two
substances are slightly different. Elements at the boundary of the discretization
grid require a special treatment. The balance of the decision tree used to identify
boundary elements influences the regularity of the ODE system. The decision tree
realized for BRUSS2D-MIX is more evenly balanced than that of BRUSS2D-ROW.

4 Load Balancing Strategies

The realization of a load balancing strategy for an ERK solver leads to the problem of
scheduling the iterations of the irregular loops in lines 3 and 9 of Fig. 1 dynamically.
The problem of loop scheduling has been considered previously by several authors, e.g.,
[14,15]. We have implemented three different load balancing strategies that pay regard
to the special context of the loops within the ERK solver. All strategies start with the
same blockwise work distribution as the static implementation. But after a processor
has finished its own range of components, it ‘steals’ work from other processors and

724 M. Korch and T. Rauber

1: me := my thread id;
2: for (l := 1; l ≤ s; l++)
3: next work unitl[me] := first work unit[me];

4: for (l := 1; l ≤ s; l++)
5: barrier();
6: loop
7: work unit := FETCH AND INC(
8: next work unitl[me]);
9: if (work unit > last work unit[me])

10: me := NEXT THREAD ID(me);
11: if (me = my thread id) break;
12: else
13: PROCESS WORK UNIT(l,

work unit);

Fig. 3. Load balancing strategy ‘Simple’

Table 1. Overview of the load balancing im-
plementations

Name Strategy Granularity Synchronization
SCIL simple/increment components lock
SPIL simple/increment cache lines lock
SCIA simple/increment components atomic operations
SPIA simple/increment cache lines atomic operations
SCRA simple/random components atomic operations
SPRA simple/random cache lines atomic operations
TC task queue components lock
TP task queue cache lines lock
IC interval queue components lock
IP interval queue cache lines lock

thus ‘helps’ these processors that would otherwise arrive late at the next barrier. The
load balancing strategies differ by the data structures used to represent tasks, i.e., work
units and by the policies used to steal work. All strategies have been implemented in C
with POSIX Threads in two versions that support two different task granularities: single
components and a group of components that fit into one cache line. Table 1 shows an
overview of all load balancing implementations discussed in this article.

Strategy ‘Simple’. As a simple but effective load balancing strategy with small over-
head we have realized a strategy that was also used in the volrend application [16] in-
cluded in the SPLASH-2 benchmark suite. Every thread provides a counter that points
to the next work unit to be processed in the range initially assigned to the thread. During
execution, each thread fetches and increments the counter corresponding to its thread
ID. As long as the counter points to a work unit that lies within the range assigned to
its thread ID, the thread processes the corresponding work unit and then fetches and
increments the counter again. If the value of the counter leaves the range assigned to
the thread ID, the thread changes its thread ID and continues with the corresponding
counter. The pseudocode of this algorithm is displayed in Fig. 3.

We have implemented two strategies for changing the thread ID: ‘Increment’ com-
putes the new ID as in [16] by ((old id + 1) mod #threads). ‘Random’ reduces the
probability that many threads work on the same counter simultaneously by changing
the thread ID according to an initially generated random permutation.

Since the counters can be accessed by several threads simultaneously, we must en-
sure that the threads are not preempted when they read and increment the counters.
We achieve this by either using locks or atomic Fetch & Inc. The lock based imple-
mentations use mutex variables of type pthread spinlock t if available, e.g., on
Linux-based systems, or pthread mutex t on other systems. The implementations
based on atomic Fetch & Inc currently support the following platforms:

– IA64: Fetch & Add is available as a machine instruction.
– x86: We emulate Fetch & Inc by a loop using Compare & Swap.
– AIX: The operating system kernel provides the function fetch and add().

Applicability of Load Balancing Strategies to Data-Parallel ERK Integrators 725

Strategy ‘Task Queue’. This is a more sophisticated strategy than ‘Simple’ that re-
duces contention but requires a higher sequential overhead. It realizes one task queue
per thread with FIFO (first in, first out) access order. The tasks are represented by in-
teger values specifying the index of the associated work unit. Hence, the FIFO queues
can be implemented by fixed size arrays of integers with head and tail pointers. Locks
(pthread mutex t or pthread spinlock t if available) are used to avoid race
conditions when the queues are accessed by several processors simultaneously.

The load balancing algorithm based on the ‘Task Queue’ strategy is shown in Fig. 4.
At the beginning of each stage the queues are initialized according to the same block-
wise work distribution as used in the static implementation. But the size of the queues
is not revealed to the other threads before the barrier has been executed, so that no other
thread that still works on the preceding stage will steal work from a queue during this
initialization phase. After the initialization, the threads fetch tasks from the head of their
local queues until their local queues get empty. When a thread finds no more tasks in its
own queue, it tries to ‘steal’ work from another thread, i.e, it tries to move tasks from
another thread’s queue into its own queue. The stealing heuristics tries to steal half of
the average queue size tasks from the tail of the queue with the largest size. The stolen
tasks are appended at the tail of the target queue. But before the tasks are removed from
the source queue, the size of the source queue is decreased by the number of tasks to
be stolen, so that it appears less attractive to other threads searching for work. The new
size of the target queue is hidden to the other threads, thus pretending it were still empty
until all tasks have been transferred. Therefore, no thread will try to steal work from the
target queue during the task transfer.

Strategy ‘Interval queue’. Analyzing the behavior of the ‘Task Queue’ strategy we
observe that the queues always store consecutive intervals of work units. A different
data structure, called interval queue, can provide similar operations as the task queue
but stores only the lowest and the highest index of the range of work units contained in
the queue. It therefore leads to a significantly lower overhead. To fetch a work unit, the
local thread only needs to increment the start index of the interval by 1; m tasks can be
stolen at once in time O(1) by decrementing the end index of the interval by m. Hence,
the load balancing algorithm based on the interval queue can be realized similarly as in
Fig. 4 by replacing lines 4–6 by

REWIND(my queue, first work unit[me], last work unit[me]);

and lines 21–28 by

work unit := STEAL(queue[index], my queue, work units to steal);
UNLOCK(queue[index]);

where REWIND(Q, A, B) initializes the interval stored in queue Q to [A, B] and
STEAL(QS, QT , m) decreases the end of the interval of the source queue QS by m,
initializes the target queue QT with the stolen interval of size m and returns the first
element of this interval.

726 M. Korch and T. Rauber

1: me := my thread id;
2: my queue := queue[me];

3: for (l := 1; l ≤ s; l++)
4: REWIND(my queue);
5: for (j := first work unit[me]; j ≤ last work unit[me]; j++)
6: HIDDEN APPEND(my queue, j);
7: barrier();
8: REVEAL SIZE(my queue);
9: loop

10: LOCK(my queue);
11: if (EMPTY(my queue))
12: UNLOCK(my queue);
13: loop
14: sum :=

∑ #threads
k=1 SIZE(queue[k]);

15: index := argmax1≤k≤#threadsSIZE(queue[k]);
16: if (sum = 0) goto Stage Complete;
17: if (TRYLOCK(queue[index]))
18: if (SIZE(queue[index]) > 0) break;
19: UNLOCK(queue[index]);
20: work units to steal := STEAL HEURISTICS(SIZE(queue[index]), sum);
21: PREPARE STEALING(queue[index], work units to steal);
22: work unit := STEAL(queue[index]);
23: REWIND(my queue);
24: for (k := 1; k ≤ work units to steal; k++)
25: HIDDEN APPEND(my queue, STEAL(queue[index]));
26: FINISH STEALING(queue[index], work units to steal);
27: UNLOCK(queue[index]);
28: REVEAL SIZE(my queue);
29: else
30: work unit := FETCH(my queue);
31: UNLOCK(my queue);
32: PROCESS WORK UNIT(l, work unit);
33: label Stage Complete;

Fig. 4. Load balancing strategy ‘Task Queue’

5 Runtime Experiments

Runtime experiments with the implemented load balancing strategies have been per-
formed on three symmetric multiprocessors (SMPs): a 4-way 2.0 GHz Opteron 270
SMP, a 4-way 1.5 GHz Itanium 2 SMP, and an IBM p690 with 32 POWER4+ cores at
1.7 GHz. As a basis for the assessment of the implementations we use the average exe-
cution time per step measured by executing a limited number of time steps and dividing
the resulting execution time by the number of steps executed. As a reference for the
speedup calculation and the evaluation of the overhead we use a sequential implemen-
tation similar to Fig. 1, which contains no synchronization operations. All experiments
presented in the following have been performed using the ERK method DOPRI5(4).

Sequential Overhead. First, we investigate the sequential overhead of the parallel
implementations, that is the percentage of time they run slower than a sequential im-
plementation when executed on one processor. As an example, Table 2 shows the se-
quential overhead measured for BRUSS2D-ROW with N = 1000. For this problem the
highest overheads have been observed.

Applicability of Load Balancing Strategies to Data-Parallel ERK Integrators 727

Table 2. Overhead of the parallel implementations for BRUSS2D-ROW with N = 1000 in %

Target system static IC IP SCIA SCIL SCRA SPIA SPIL SPRA TC TP
Opteron 270 SMP 0.4 37.7 7.7 41.5 40.7 41.1 9.0 9.3 9.1 53.1 9.8
Itanium 2 SMP 4.7 29.6 6.2 10.9 29.8 10.9 5.0 6.1 4.9 35.0 6.8
IBM p690 5.1 274.4 37.4 131.6 266.8 124.7 10.8 21.5 6.4 299.2 42.2

Comparing the different target systems, the highest overheads have been measured
on the IBM p690. On this system, pthread spinlock t is not available and we
have to use pthread mutex t instead. Further, we used an AIX kernel function to
realize atomic Fetch & Inc instead of inline assembler instructions as on the other two
systems. Comparing the Itanium 2 and the Opteron SMP, we observe lower overheads
on the Itanium 2 system. Hence, it appears that the spinlocks require less instructions on
the Itanium 2 than on the Opteron. Also, the implementations that use atomic operations
to realize Fetch & Inc run more efficiently on the Itanium 2 since on this machine only
one machine instruction needs to be executed while on the Opteron more instructions
are required to emulate Fetch & Inc by Compare & Swap. Only the overhead of our
reference implementation based on a static work distribution is higher on the Itanium 2
than on the Opteron. This is due in part to cache effects caused by interferences between
memory accesses to data and instructions.

In general, on all machines the overhead of the load balancing implementations is
higher than that of the static implementation. The highest overhead was observed for
the implementations that use single components as work units. The lowest overhead of
the load balancing implementations is obtained by the implementations based on the
‘Simple’ strategy which use atomic operations to realize Fetch & Inc.

Scalability on the Itanium 2 SMP. In this section, we give a detailed discussion on
the results measured on the Itanium 2 SMP. Because on this system the overhead of the
load balancing implementations is lower than on the other two systems, we can observe
relatively high improvements over the static work distribution. The speedup diagrams
for the problems discussed in the following are shown in Fig. 5.

The most irregular test problem is EMEP. Due to its low dimension, only small
speedups can be obtained. The best speedup of the static work distribution is 1.14
obtained on two processors. The implementations of ‘Simple’ that use cache lines as
work units obtain a slightly better speedup of up to 1.17 on three processors. Using
MEDAKZO with N = 2400 we obtain significantly better speedups. Except for TC
and SCIL, all implementations obtain their maximum speedup on four processors. Us-
ing the static work distribution, a speedup of 2.74 is possible. But all load balancing
implementations that use cache lines as work units obtain higher speedups. The best
speedups between 3.02 and 3.06 are achieved by IP, SPRA, and SPIA. For STARS-CON
and STARS-MIX we use N = 1000 stars. The load balancing implementations obtain
nearly perfect speedups between 3.95 and 3.99 for STARS-CON and between 4.00 and
4.01 for STARS-MIX. With the static work distribution, only a speedup of 2.00 can
be obtained for STARS-CON due to the severe load imbalance, but for STARS-MIX a
speedup of 4.01 has been measured. For BRUSS2D with N = 1000 the speedups of the
two orderings are similar. The static implementation obtains speedups of 3.32 and 3.30,

728 M. Korch and T. Rauber

(a)
1 1.5 2 2.5 3 3.5 4

0.5

0.6

0.7

0.8

0.9

1

1.1

Number of threads

S
pe

ed
up

static
IC
IP
SCIA
SCIL
SCRA
SPIA
SPIL
SPRA
TC
TP

(b)
1 1.5 2 2.5 3 3.5 4

0.5

1

1.5

2

2.5

3

3.5

Number of threads

S
pe

ed
up

static
IC
IP
SCIA
SCIL
SCRA
SPIA
SPIL
SPRA
TC
TP

(c)
1 1.5 2 2.5 3 3.5 4

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Number of threads

S
pe

ed
up

static
IC
IP
SCIA
SCIL
SCRA
SPIA
SPIL
SPRA
TC
TP

(d)
1 1.5 2 2.5 3 3.5 4

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Number of threads

S
pe

ed
up

static
IC
IP
SCIA
SCIL
SCRA
SPIA
SPIL
SPRA
TC
TP

(e)
1 1.5 2 2.5 3 3.5 4

0.5

1

1.5

2

2.5

3

3.5

Number of threads

S
pe

ed
up

static
IC
IP
SCIA
SCIL
SCRA
SPIA
SPIL
SPRA
TC
TP

(f)
1 1.5 2 2.5 3 3.5 4

0.5

1

1.5

2

2.5

3

3.5

Number of threads

S
pe

ed
up

static
IC
IP
SCIA
SCIL
SCRA
SPIA
SPIL
SPRA
TC
TP

Fig. 5. Speedups measured on the Itanium 2 SMP. (a) EMEP, (b) MEDAKZO, N = 2400,
(c) STARS-CON, N = 1000, (d) STARS-MIX, N = 1000, (e) BRUSS2D-ROW, N = 1000,
(f) BRUSS2D-MIX, N = 1000.

respectively, for the two orderings on four processors. Since BRUSS2D-MIX is nearly
evenly balanced, the best load balancing implementations, SPRA and SPIA, only obtain
a slightly worse speedup of 3.29 for this ordering. But for BRUSS2D-ROW these two
implementations obtain a better speedup than the static implementation of 3.36.

Scalability on Other Systems. The speedups measured on the Opteron 270 SMP and
the IBM p690 are summarized in Table 3. On the Opteron system the load balancing
implementations are similarly successful as on the Itanium 2 SMP. Thus, except for
MEDAKZO, for every problem, at least one load balancing implementation obtains a
higher speedup than the static work distribution. But on the IBM p690, due to a higher
overhead, the load balancing implementations cannot obtain a higher performance than
the static work distribution for most problems. Only for STARS-CON, which is char-
acterized by a severe load imbalance, a significantly better speedup can be achieved.

Table 3. Summary of the speedups measured on the Opteron 270 SMP and on the IBM p690

Opteron 270 SMP IBM p690
Static Load balancing Static Load balancing

Problem Parameter Speedup Speedup Best implementation Speedup Speedup Best implementation
EMEP 1.37 1.50 SPIA 1.35 1.35 TP
MEDAKZO N = 2400 3.17 3.07 SPIA 3.23 2.88 SPRA
STARS-CON N = 1000 1.97 3.98 IC, IP, TC, TP 15.65 30.13 SCRA
STARS-MIX N = 1000 3.94 3.98 all except SCIL 30.60 30.24 SCIA
BRUSS2D-ROW N = 1000 2.10 2.11 IC, IP 27.19 25.33 SPRA
BRUSS2D-MIX N = 1000 2.26 2.28 IP 25.03 23.54 SPRA

Applicability of Load Balancing Strategies to Data-Parallel ERK Integrators 729

6 Conclusions

Our results show that load balancing strategies can successfully be applied to data-
parallel ERK solvers even though they require a larger sequential overhead than a static
work distribution. They are particularly successful for ODE systems which lead to a se-
vere load imbalance, but if special machine instructions are exploited to reduce the over-
head, an improvement can be obtained even for some problems with a well-balanced
right hand side function. However, our current load balancing implementations leave
room for improvements, and a further investigation of load balancing strategies might
lead to new insights.

References

1. Ehrig, R., Nowak, U., Deuflhard, P.: Massively parallel linearly-implicit extrapolation algo-
rithms as a powerful tool in process simulation. In D’Hollander, E.H., et al., eds.: Parallel
Computing: Fundamentals, Applications and New Directions. Elsevier (1998) 517–524

2. Burrage, K.: Parallel and Sequential Methods for Ordinary Differential Equations. Oxford
Science Publications (1995)

3. van der Houwen, P.J., Sommeijer, B.P.: Parallel iteration of high-order Runge-Kutta methods
with stepsize control. J. Comput. Appl. Math. 29 (1990) 111–127

4. Prince, P.J., Dormand, J.R.: High order embedded Runge-Kutta formulae. J. Comput. Appl.
Math. 7(1) (1981) 67–75

5. Korch, M., Rauber, T.: Scalable parallel RK solvers for ODEs derived by the method of lines.
In: Euro-Par 2003. Parallel Processing. LNCS 2790, Springer (2003) 830–839

6. Korch, M., Rauber, T.: Optimizing locality and scalability of embedded Runge-Kutta solvers
using block-based pipelining. J. Par. Distr. Comp. 6(3) (2006) 444–468

7. Jackson, K.R., Nørsett, S.P.: The potential for parallelism in Runge-Kutta methods. Part 1:
RK formulas in standard form. SIAM J. Numer. Anal. 32(1) (1995) 49–82

8. Hoffmann, R., Korch, M., Rauber, T.: Performance evaluation of task pools based on hard-
ware synchronization. In: SC ’04: Proceedings of the 2004 ACM/IEEE conference on Su-
percomputing, Washington, DC, USA, IEEE Computer Society (2004) 44

9. Korch, M., Rauber, T.: A comparison of task pools for dynamic load balancing of irregular
algorithms. Concurrency and Computation: Practice and Experience 16 (2004) 1–47

10. Lioen, W.M., de Swart, J.J.B.: Test Set for Initial Value Problem Solvers, Release 2.1. CWI,
Amsterdam, The Netherlands. (1999)

11. Hussels, H.G.: Schrittweitensteuerung bei der Integration gewöhnlicher Differentialglei-
chungen mit Extrapolationsverfahren. Diploma thesis, University of Cologne, Cologne, Ger-
many (1973)

12. Lecar, M.: Comparison of eleven numerical integrations of the same gravitational 25-body
problem. Bulletin Astronomique 3 (1968) 91

13. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff
Problems. 2nd rev. edn. Springer, Berlin (2000)

14. Banicescu, I., Carino, R., Pabico, J., Balasubramaniam, M.: Design and implementation of
a novel dynamic load balancing library for cluster computing. Parallel Computing 31(7)
(2005) 736–756

15. Tabirca, S., Tabirca, T., Yang, L.T., Freeman, L.: Evaluation of the feedback guided dynamic
loop scheduling (FGDLS) algorithms. IEICE Trans. Inf. & Syst. E87-D(7) (2004) 1829–
1833

16. Nieh, J., Levoy, M.: Volume rendering on scalable shared-memory MIMD architectures. In:
Proceedings of the Boston Workshop on Volume Visualization, ACM Press (1992) 17–24

	Introduction
	Motivation and Computational Structure
	Test Problems
	Load Balancing Strategies
	Runtime Experiments
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

