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Abstract. Scalability of Cluster-Computers utilizing Gigabit-Ethernet
as an interconnect is limited by the unavailability of scalable switches
that provide full bisectional bandwidth. Clos’ idea of connecting small
crossbar-switches to a large, non-blocking crossbar – wide-spread in the
field of high-performance networks – is not applicable in a straight-
forward manner to Ethernet fabrics. This paper presents techniques
necessary to implement such large crossbar-switches based on available
Gigabit-Ethernet technology. We point out the ability to build Gigabit-
Ethernet crossbar switches of up to 1152 ports providing full bisectional
bandwidth. The cost of our configuration is at about e125 per port,
with an observed latency of less than 10µsec. We were able to find a bi-
directional point-to-point throughput of 210 MB/s using the ParaStation
Cluster middle-ware[2].

1 Introduction

Sophisticated software accelerators enable Gigabit-Ethernet[1] to act as an al-
ternative in the field of interconnects for Cluster-Computing[2]. Since small- and
medium-sized switches are available economically priced, this technology is able
to serve as an inexpensive network for Clusters with up to ∼ 64 nodes – as long
as the communication requirements of the applications allow to disobey high-
end technologies like Myrinet, InfiniBand, InfiniPath or Quadrics. Nevertheless,
in this role Gigabit Ethernet suffers from the unavailability of large, reasonably
priced switches. Thus, for large Clusters one either has to purchase one expensive
monolithic switch providing full bisectional bandwidth or is forced to accept the
handicap imposed by cascaded, medium-sized switches. The latter configuration
is afflicted with decreasing accumulated bandwidth from stage to stage.

In the early 50’s Clos already proposed a way out of this dilemma[3]. Originally
in the field of telephony networks he suggested to set up a special topology of
cascaded crossbar-switches providing full bisectional bandwidth. This idea is
widespread in the field of high-performance networks. Actually this scheme is
used by e.g. Myrinet or InfiniBand.

In order to solve the problem discussed above at least in principle, it is pos-
sible to use a similar setup with Gigabit Ethernet switches, too. Unfortunately,
some specific features of the Ethernet protocol inhibit to actually exploit the
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bandwidth provided by this topology to a large extent. This work will present a
way out of this dilemma.

The abilities of the switch building-blocks play an essential role for the con-
structions of Ethernet Clos-switches. On the one hand, they have to support vir-
tual LANs (VLAN)[9]. On the other hand, it is necessary to modify the switches
routing tables on the level of MAC addresses. Switches fulfilling these conditions
are usually called to be “level 2 manageable”.

This paper is organized as follows: In the next section, Clos ideas are briefly
reviewed. The following two sections discuss some essential features and exten-
sions of the Ethernet protocol, namely spanning trees, VLANs and multiple
spanning trees. Based on this fundament we will sketch the setup of cascaded
Ethernet crossbar switches in section 5. This includes presenting our testbed
and discussing the need for explicit routing tables. Section 6 displays the results
produced using the testbed. We end with conclusions and give a brief outlook
on further work done in the context of the ALiCEnext project in Wuppertal.

1.1 Related Work

The idea of extending the basic fat tree Ethernet topology is wide-spread. Never-
theless, all projects targeting the improvement of the accumulated bandwidth of
a Cluster’s Ethernet fabric do not implement full bisectional bandwidth. Instead,
special network topologies are developed which are well suited for the commu-
nication pattern of a specific class of applications the corresponding Cluster is
dedicated to. Good examples of this philosophy are the network of the McKenzie
Cluster[12] dedicated to astrophysics or the flat neighborhood networks[13] of
the KLAT2 and KASY0 machines used for computational fluid dynamics.

Another approach getting along without any switch is the ALiCEnext mesh
network dedicated to lattice QCD[14]. This network only supports pure nearest
neighbor communication.

All these concepts prove to be efficient only as long as communication pat-
terns are used they were specifically tuned for. As soon as other applications
with different communication patterns are involved, either the fabric has to be
re-cabled or a significant performance penalty has to be accepted. In particular
such concepts are not feasible for general purpose Clusters running various appli-
cations with diverse communication patterns, using different numbers of nodes,
serving many users in parallel, etc.

The Viking project[11] pursues a concept similar to the one presented in this
paper. I.e. it uses VLANs to create many independent spanning trees. Since
the main target of Viking are metropolitan area networks, a static configuration
like the one proposed in the present work is not feasible. Instead, they use so
called node controller and manager instances in order to adapt the configuration
of the Ethernet fabric dynamically to the constraints of the current hardware
configuration and the needs of the actual communication load. Furthermore,
since full bisectional bandwidth is not the main goal of the Viking project, the
proposed network topology is not the one presented by Clos but a grid like.
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Fig. 1. Example of a full 3-stage Clos-network based on 8-port switches. The full
hierarchical switch provides 8 × 4 ports with full bisectional bandwidth.

2 Clos-Switches

In 1953 Clos[3] introduced the concept of multiple cascaded switches intercon-
nected in a mesh like topology. Originally having telephone networks in mind the
idea behind this topology was twofold: Make the network more fault tolerant,
i.e. more robust in the case of the loss of one or more switches and increase the
scalability of the accumulated bandwidth of such systems substantially.

At last, Clos’ idea paved the way for multi-stage crossbar networks providing
full bisectional bandwidth. The maximum size of a fully connected network is no
longer limited by the number of ports offered by the biggest switch available. Of
course, with increasing number of ports more switching hierarchies are necessary,
each adding to the switching latency.

Today, actually all switched high performance networks (e.g. Myrinet[4],
Quadrics[5] or InfiniBand[6]) make use of Clos’ idea in order to provide full con-
nectivity to large fabrics. This is necessary since the atomic crossbars available
for these technologies typically offer not more than O(32) ports.

The basic topology of a 3-stage Clos-network is sketched in figure 1. It is easy
to prove that at any level the same number of connections are available and
full bisectional bandwidth is provided in this sense. In order to maximize the
usable connectivity, an appropriate routing strategy has to be introduced. The
main result of this work is a technique devising a routing strategy for a hierarchy
of Gigabit-Ethernet switches. Furthermore figure 1 serves as an introduction of
some terminology used in the course of this work:

– Switches connected to nodes are called level-1 (or L1) switches. In the ex-
ample of figure 1 these are the switches 0, 1, 2, 3, 8, 9, 10 and 11.

– Switches connecting level-1 switches are called level-2 (or L2) switches.
Switches 4, 5, 6 and 7 are the example’s L2 switches.
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Fig. 2. Basic loop appearing in Clos-switch topologies marked by fat lines. In order to
suppress such loops, STAs will switch off the dashed links.

3 Spanning Trees

Trying to construct Clos’ topology based on Ethernet technology, a first limita-
tion origins in the use of spanning trees. These are needed to avoid loops within
the network fabric. While this feature is inevitable for an Ethernet fabric to
work at all, it prevents from using the multiple paths between two switches in
parallel. This leads to an accumulated bandwidth found to be identical to the
one delivered by cascaded switches.

The very importance of the absence of loops within an Ethernet fabric lies
in the fact of missing restricted lifetimes of packets on Ethernet level. This will
enable packets to live forever, if the routing-information within the switches
creates loops due to misconfiguration. Furthermore – even if the routing is set
up correctly – the existence of broadcast packets within the Ethernet protocol
provokes packet storms inside the fabric: Whenever a switch receives a broadcast
packet on a given port, this packet will be forwarded to all other ports irrespective
of available routing information. If there are at least two connections between
two switches, a broadcast package sent from one switch to another via a first
connection will be sent back to the originating one using the second connection.
Once the first switch is reached again, the packet will be sent on its original way
again and a loop is created.

Unfortunately, Ethernet broadcast packets play a prominent role within the
Internet protocol family, since ARP messages at least on Ethernet hardware are
implemented using this type of communication[7]. Thus, every time the MAC-
address corresponding to a destination’s IP address is unknown, broadcast mes-
sages are sent on Ethernet level. Consequently, it is almost impossible to prevent
this kind of Ethernet packets in practice.

To beware an Ethernet fabric of this vulnerability, spanning trees were intro-
duced [8]. The main idea here is the detection of loops within a given network
fabric and the selective deactivation of such connections, which would eventually
close loops. Unfortunately, this will happen on a quite fundamental level of the
switch’s functioning and thus prevent this link from carrying any data at all.
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Investigating Clos-switch topology one can find loops even within the simplest
example. Figure 2 sketches one loop in a setup of 2 × 4 switches1. In fact, even
this simple setup hosts many loops each of them preventing it from working
correctly. On the other hand, the spanning tree algorithm detects these loops
and – at the same time – disables all the additionally introduced bandwidth.
In figure 2 all connections deactivated by an assumed spanning tree algorithm
(STA) are depicted as dashed lines.

4 Virtual LANs and Multiple Spanning Trees

Particularly important for our purposes is the concept of virtual local area net-
works (VLAN)[9]. This implements multiple virtually disjunct local area net-
works (LAN) on top of a common Ethernet hardware layer. In order to realize
this feature a new level of indirection is introduced by explicitely tagging ev-
ery native Ethernet packet – including broadcasts – as a member of a distinct
VLAN.

This creates a twofold benefit: The topology of the network fabric can be
rearranged remotely just by reconfiguration of the switches without physically
touching any hardware at all. Additionally – if supported by the operating system
– it is possible to assign a given computer to different VLANs at the same time
without the need of extra communication hardware.

This technology is widely used in order to map a company’s organization
virtually onto an uniform physical network fabric in a very flexible way. Thus, it
is not surprising that many so-called department switches support this feature.

In this context the idea of spanning trees has to be extended. The reason for
providing each VLAN with its own spanning tree is threefold:

– For security reasons broadcast messages have to be restricted to the VLAN
they were created in. Otherwise, depending on the high-level protocol2 the
possibility is given to spoof data between different VLANs.

– Within each VLAN there might be loops. These loops would compromise
the functionality of the fabric as a whole if they are not eliminated.

– As long as a physical connection is available, the connectivity within each
VLAN has to be guaranteed, even if the different VLANs as a whole would
build loops. Configurations with physical connections inevitable for the cor-
rect functioning of one VLAN but closing a loop within another can easily be
constructed. Such dichotomy can only be cured by spanning trees assigned
to each VLAN separately.

In order to meet this constraints the STA discussed above was extended to
the concept of multiple spanning trees (MST)[10].

1 Actually, loops already appear in 2×2 setups. Since figure 2 also sketches the effects
of STAs, the 2 × 4 setup was chosen.

2 Here everything above Ethernet protocol level is seen as high-level.
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Fig. 3. Crossbar configuration with virtual switches. Each VLAN is depicted with a
different line-mode. Lines connecting nodes and L1 switches are only in node → switch
direction exclusively used by one VLAN; in switch → node direction each link is used
by any VLAN.

5 Configuration Setup

Putting together the technologies described in the last sections the problem of
loops can be eliminated without loosing the additional bandwidth of the Clos-
topology at the same time. We proceed as follows:

– Setup various VLANs, each forming a spanning tree.
– As many VLANs as nodes attached to a single L1 switch are needed. This

fixes the number of VLANs to half the number of ports a switch provides.
– Configure node-ports (i.e. ports with nodes attached) to use – depending

on the port – a specific VLAN whenever receiving inbound traffic. This
implements the required traffic shaping.

– Configure all the node-ports to send outbound traffic from every VLAN3.
I.e. data from every VLAN (and thus from every node) can be sent to any
other node, irrespective of the VLAN the sending node is mapped to.

It is essential that all traffic sent from switches directly to a node is not spoiled
by any VLAN information4. Hence, from the nodes’ point of view the complex
network topology is completely transparent and no modification has to be done
to the nodes’ configuration. Even nodes not supporting the VLAN technology
at all can be used within this setup.

Figure 3 sketches the typical setup of the crossbar configuration. Here VLANs
are depicted by line styles, i.e. L2 switches with a distinct border only carry

3 This “port overlapping” is a feature marked as optional in the VLAN standard[9].
4 This might introduce additional overhead on the L1 switches; in practice this proved

to be negligible.
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traffic sent by nodes with the same border into the corresponding VLAN. On
the other hand, nodes receive data irrespectively of the sending node’s VLAN.
Traffic shaping is implemented as follows:

– Traffic sent from one node to another connected to the same L1 switch does
not touch any other switch. E.g. node6 will talk directly to node4.

– The sending node’s switch port chooses the L2 switch used to emit data to
other L1 switches. This ensures efficient use of the whole fabric.

Assuming node0 to node3 try to send data to the nodes connected to switch2
concurrently, node0 will send via switch4, node1 via switch5, etc. Hence, there
are 4 independent routes between any two L1 switches in the example. This
assures the bisectional bandwidth of the setup.

Figure 3 shows an additional detail. switch4 and switch5 are only logical and
assumed to share the same hardware. Because of 4 L1 switches only 4 ports of a
logical L2 switch are occupied. Thus, another logical switch can use the remaining
4 ports. Again, the configuration is realized via the VLAN mechanism. This
guarantees the absence of data-exchange between ports of a physical L2 switch
dedicated to different VLANs. Since both – logical and physical L2 switches –
have to handle the VLANs anyhow no further effort is introduced.

5.1 The ALiCEnext Testbed

Our testbed used to implement this configuration consists of 144 dual-Opteron
nodes of the ALiCEnext[15] Cluster located at Wuppertal University. They are
connected via 10 SMC 8648T Gigabit-Ethernet switches[16]. Providing 48 port,
each L1 switch serves 24 nodes leading to 24 VLANs. Thus, 6 L1 switches are
needed. The other 24 ports are connected to the 4 remaining switches. Every L1
switch is connected via 6 lines to each of the 4 L2 switches. Thus, each physical
L2 switch hosts 6 virtual L2 switches leading to a total of 24 logical ones as
implied by the number of VLANs and the number of nodes connected to each
L1 switch5.

Unfortunately, at least the implementation of the MST algorithm the SMC
8648T provides is not robust enough to detect the – admittedly very special
– setup of our Clos-switch topology correctly. In fact, the switches locked up
and the network was unusable6. Consequently, automatic loop detection and
elimination provided by the MST mechanism was switched off explicitely. This
enforces special care when setting up VLANs and cabling. In particular, the
default VLAN which includes all ports of the different switches and thus contains
countless loops has to be eliminated from the fabric.

5 In principle 3 L2 switches are sufficient to build a 144 port crossbar fabric. The extra
ports in our setup were used to implement a connection to the outside world.

6 Interestingly, plugging the 144 cables between L1 and L2 switches one after the other
worked out. This leads to the assumption that switches cannot handle the flood of
Hello BPDUs. Of course, plugging all cables whenever a switch restarts is no viable
solution.
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With this a first prove of concept was obtained by assuring that complete
connectivity between the nodes is seen: pings were send from every node to
any other node. Furthermore services like ARP7 and multicasts work out of the
box.

Nevertheless, a detailed investigation of the fabric unveiled a problem buried
deeper in this setup. In fact, communication between nodes attached to the same
VLAN, i.e. connected to the same port number of different switches, worked as
expected. Communication from one VLAN to another worked in principle, too,
but we observed significantly reduced performance.

5.2 Routing Tables

Investigating the dynamic routing tables of the L2 switches the problem was
disclosed. These are created on the fly while listening to network traffic between
the nodes. Since all inbound traffic is sent via specific VLANs, a L2 switch
will never see traffic of nodes sending into different VLANs. In figure 3 e.g.
switch5 will never see any traffic from node0. On receiving traffic addressed to
yet unknown nodes, switches will start to broadcast to all ports. This introduces
a plethora of useless traffic. Due to congestion this leads to packet loss and
significantly reduced throughput.

To prevent congestion one has to harness the switches with static routing
tables. They will shape the traffic addressed to a distinct node in a given VLAN
to a specific port. One has to keep in mind that the size of such routing tables is
proportional to both, the number of VLANs and the number of nodes connected
to the fabric. Thus the tables needed for the testbed will have 24 × 144 = 3456
entries. Correspondingly, the routing tables of the entire ALiCEnext machine
(528 ports) will contain 12672 entries. Switches providing such numbers of static
entries are available; e.g. the SMC 8648T allows up to 16k entries8.

The sheer number of routing entries entail that programming the switches
cannot be done in a manual way. Instead, we wrote programs that collect the
required data and create the corresponding configuration files. Furthermore, the
collected data allow some automatic debugging of the cabling between the nodes
and the L1 switches as well. The deployment of configuration files to the switches
is automated, too.

6 Results

First we determined the basic parameters of the involved building-blocks. The
measurements were carried out on two nodes of the ALiCEnext Cluster with
their Gigabit-Ethernet ports directly connected, i.e. no switch in between. The
very efficient ParaStation protocol was used in order to reduce the message

7 Since ARP is based upon Ethernet broadcasts these work, too. Interestingly, request
and response might use different VLANs and, thus, different spanning trees.

8 This limits scalability for this building-blocks to actually ∼ 680 nodes.
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Table 1. Performance results

Back-to-back single switch 3-stage crossbar

Throughput / node [MB/s] 214.3 210.2 210.4

Latency [µsec] 18.6 21.5 28.0

latencies as much as possible9. As a high-level benchmark the Pallas MPI Bench-
mark suite (PMB)[17] was employed. We applied two tests, pingpong for latency
determination and sendrecv for bandwidth measurements.

Performance numbers for directly connected ports are in the left column of
table 1. Latency is half-round-trip time of 0 byte messages as determined by
pingpong. The low latency found is due to the ParaStation protocol10. Through-
put is for 512 kByte messages. Larger messages give slightly less throughput
(∼ 200MB/sec) due to cache effects when accessing the main memory. The mes-
sage size for half-throughput was found to be 4096 Byte for all tests.

To determine the influence of a single switch stage the benchmark was re-
peated using two nodes connected to the same switch. The corresponding results
are marked as “single switch” in table 1. Obviously, there is almost no influence
of the switch on the throughput. Since the total latency rises from 18.6µsec
to 21.5µsec, each switch stage is expected to introduce an additional latency
of 2.9µsec. We anticipate a total latency of ∼ 27.5µsec when sending messages
through all three stages of the testbed. This corresponds to a latency of ∼ 9µsec
from the switch alone. Throughput is expected to be unaffected.

The above tests were done using a single pair of processes. In order to show
bisectional bandwidth we have to concurrently employ as many pairs as possible.
Furthermore, the processes have to be distributed in a way that communicating
partners are connected to disjoint L1 switches, forcing all traffic to go via the
L2 switches and stress the fabric to the hilt. At the time we ran our benchmarks
140 processors were accessible to us, leading to 70 pairs.

The numbers for the 3-stage crossbar presented in table 1 are worst case
number. I.e. the result for the pair showing the least throughput is displayed
there. Looking at the average value of all pairs, throughput is ∼ 5% bigger. The
best performing pair even gives a result of ∼ 218MB/sec. The total throughput
observed is larger than 15 GB/s.

Based on an observed latency of 28.0µsec the latency actually introduced by
the crossbar-switch was found to be 9.4µsec, i.e. in the expected range. This
is well below the numbers available for many big, monolithic Gigabit-Ethernet
switches with full bisectional bandwidth – at a much lower price! We expect this
number to be constant up to 1152 ports11.

9 ParaStation uses a fine-tuned high-performance protocol in order to reduce the over-
head of general-purpose protocols like TCP.

10 On the same hardware a fine-tuned TCP-setup will reach about 28µsec on MPI-level;
out of the box the MPI latency over TCP is often in the range of 60 − 100µsec.

11 Which is a theoretical limit since size of routing tables restricts us to ∼ 680 ports.
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7 Conclusion and Outlook

We presented a new way to set up a scalable crossbar switch based on of-the-
shelf Gigabit-Ethernet technology. The switch itself is completely transparent to
the node-machines. Using the ALiCEnext Cluster at Wuppertal University we
showed the concept to work as expected. Full bisectional bandwidth could be
achieved at a price of less than e125 per port12 even with more expensive level
2 manageable switches13. In this work we demonstrated our concept to actually
work for 144 ports14.

We submitted an international patent for our approach which is pending[18].

Acknowledgments. We thank the ALiCEnext team in Wuppertal for patience
and kind support.
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