
HAL Id: hal-04071969
https://hal.science/hal-04071969

Submitted on 17 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Versioning Management Model for Ontology-Based
Data Warehouses

Dung Nguyen Xuan, Ladjel Bellatreche, Guy Pierra

To cite this version:
Dung Nguyen Xuan, Ladjel Bellatreche, Guy Pierra. A Versioning Management Model for Ontology-
Based Data Warehouses. Proc. 8th International Conference on Data Warehousing and Knowledge
Discovery (DaWak ’06), pp. 195-206, Lecture Notes in Computer Science (LNCS) (DAWAK 2006),
Sep 2006, Krakow, Poland. �hal-04071969�

https://hal.science/hal-04071969
https://hal.archives-ouvertes.fr

A Versioning Management Model for

Ontology-Based Data Warehouses

Dung Nguyen Xuan1 and Ladjel Bellatreche1 and Guy Pierra1

LISI/ENSMA - Poitiers University
Futuroscope, FRANCE

E-mail : (nguyenx, bellatreche, pierra)@ensma.fr

Abstract. More and more integration systems use ontologies to solve
the problem of semantic heterogeneities between autonomous databases.
To automate the integration process, a number of these systems sup-
pose the existence of a shared domain ontology a priori referenced by
the local ontologies embedded in the various sources. When the shared
ontology evolves over the time, the evolution may concern (i) the ontol-
ogy level, (2) the local schema level, and/or (3) the contents of sources.
Since sources are autonomous and may evolve independently, managing
the evolution of the integrated system turns to an asynchronous version-
ing problem. In this paper, we propose an approach and a model to deal
with this problem in the context of a materialized integration system.
To manage the changes of contents and schemas of sources, we adapt the
existing solutions proposed in traditional databases. To support ontology
changes, we propose the principle of ontological continuity. It supposes
that an evolution of an ontology should not make false an axiom that
was previously true. This principle allows the management of each old
instance using the new version of ontology. With this assumption, we pro-
pose an approach, called the floating version model, that fully automate
the whole integration process. Our work is motivated by the automatic
integration of catalogs of industrial components in engineering databases.
It has been validated by a prototype using ECCO environment and the
EXPRESS language.

1 Introduction

As digital repositories of information are springing up everywhere and inter-
connectivity between computers around the world is being established, the con-
struction and evolution management of data warehouse over such autonomous,
heterogeneous and distributed data sources becomes a crucial for a number of
modern applications, such as e-commerce, concurrent engineering databases, in-
tegration systems, etc. A data warehouse can be seen as an integration system,
where relevant data of various sources are extracted, transformed and material-
ized (contrary to the mediator architecture) in a warehouse [5]. To facilitate the
construction of a data warehouse, two main issues may be considered: (1) the
resolution of different conflicts (naming conflicts, scaling conflicts, confounding
conflicts and representation conflicts) caused by semantic and schematic hetero-
geneities [8] and (2) the schematic autonomy of sources, known as the receiver

To appear in: 8th International Conference on Data Warehousing and Knowledge Discovery (DaWak '06)

heterogeneity problem [7]. To deal with the first issue, more and more approaches
associated to data an ontology [18]. An ontology is defined as a formal specifica-
tion of a shared conceptualization [9]. The main contribution of these ontologies
is to formally represent the sense of instances of sources. In [3], we showed that
when a shared (e.g., standardized) domain ontology exists, and each local source
a priori references that ontology, an automatic integration becomes possible. In-
deed, the articulation between the local ontologies and the shared one allows
an automatic resolution of the different conflicts. Over the last years, a number
of similar integration systems have been proposed following either mediator or
warehouse architectures. In the mediator approach, we can cite, Picsel2 project
for integrating web services, by using the OTA ontology (Open Travel Alliance)
[19], and COIN project for exchanging financial data [8]. In the materialized
approach, several ontology-based data management systems like RDFsuite [1]
and DLDB [17] have been developed. The main assumption of these systems is
that all the sources use the same shared ontology.

Most of the sources participating in the integration process operate au-
tonomously, they are free to modify their ontologies and/or schemas, remove
some data without any prior ”public” notification, or occasionally block access
to the source for maintenance or other purposes. Moreover, they may not always
be aware of or concerned by other sources referencing them or integration systems
accessing them [11, 21]. Consequently, the relation between the data warehouse
and its sources is slightly coupled which causes anomalies of maintenance [6].

In the traditional databases, changes have two categories [20]: (1) content
changes (insert/update/delete instances) and (2) schema changes (add/modify
/drop attributes or tables). In order to tackle the problem of schema changes,
two different ways are possible: schema evolution and schema versioning. The
first approach consists in updating a schema and transforming data from an
old schema into a new one (only the current version of a schema is present).
In contrast, the second approach keeps track of the history of all versions of
a schema. This approach is suitable for data warehousing environment where
decision makers may need historical data [15]. In ontology-based integration
systems, the evolution management is more difficult. This difficulty is due to the
presence of ontologies (shared and local) that may also (slowly) evolve. In order
to ensure the schematic autonomy of sources, some ontology-based integration
systems allow also each source to refine the shared ontology by adding new
concepts [3].

When the shared ontology evolves over the time and none global clock ex-
its enforcing all the sources and the warehouse to evolve at the same time,
various sources to be integrated may reference the same shared ontology as it
was at various points in time. Therefore, the problem of integration turns to
an asynchronous versioning problem. In this paper, we address this problem by
considering the ontology-based integration system developed in our laboratory
[3]. This system is based on three major assumptions that reflect our point of
view on a large-scale integration: an automatic and a reliable integration of au-
tonomous data sources is only possible if the source owners a priori agree on a

common shared vocabulary. The only challenge is to define a mechanism that
leaves as much as possible schematic autonomy of each source [3]. These as-
sumptions are as follows: (1) Each data source participating in the integration
process shall contain its own ontology. We call such a source an ontology-based

database (OBDB) [3]. (2) Each local source a priori references a shared ontol-
ogy by subsumption relationships ”as much as possible” (i.e., each local class
must reference its smallest subsuming class in the shared ontology). (3) A local
ontology may restrict and extend the shared ontology as much as needed. The
work proposed in this paper can be extended to others ontology-based integra-
tion systems. Although the evolution was largely studied [16], to the best of
our knowledge, none of these systems considered the problem of asynchronous
evolution of ontologies.

1.1 An Example of Changes in an Ontology-based Data Warehouse

Let’s assume that we have a shared ontology representing Hard Disks. This
ontology has one class having a set of properties (Interface, Transfer, Access
time, Model, Capacity and Cache Memory). This ontology is referenced by a
local ontology of source S1. This ontology represents External Disks. It has also
one class with a set of properties (Interface, Transfer, Model, Capacity, Codes).
We assume that this class is stored in the source as a relational view. Initially,
the shared and local ontologies have the version 1. Suppose that the shared and
local ontologies evolve independently as follows: Concerning the shared ontology
(1) the domain of the property ”Interface” is extended, and (2) addition of a
new property ”Dimension”. The source S1 has the following changes: (1) the
addition of a new property ”Guaranteed” in the local ontology, (2) the renaming
of the property ”Codes” by ”Series”, (3) the deletion and the addition in the
view of the source of the properties ”Transfer” and ”Guaranteed”, respectively,
and (4) the insertion/deletion of instances of the view.

In order to manage asynchronous evolution, the following issues need to
be addressed: (1) the management of the evolutions of ontologies in order to
maintain the relations between ontologies and the data originating from vari-
ous sources [11], (2) the management of the life cycle of the instances (periods
where an instance was alive), and (3) the capability to interpret each instance
of the data warehouse, even if it is described using a different set of properties
than those defined in the current version of the ontology (some properties are
added/removed).

1.2 Contribution and Outline of the Paper

This paper is divided in six sections: Section 2 proposes our semantic integration
approach based on a priori articulation between the shared ontology and local
ontologies. Section 3 presents our approach to manage evolution of contents
and schemas of data sources. Section 4 describes our mechanism of managing
ontology changes using the principle of ontological continuity, and presents our
floating version model. Section 5 presents an implementation of our approach

using the Express language and ECCO environment. Section 6 concludes the
paper by summarizing the main results and suggesting future work.

Data structure
 (meta-base)

DB content
(data)

Data meaning
(ontology)

Ontology structure
(meta-schema)

OBDB
structure

Usual content of DB
structure

M�Shared
ontology O

O�
I�Sch�

Fig. 1. The Structure of an Ontology-based Source

2 An a Priori Integration Approach

In this section, we formalize the ontology-based integration process in order to
facilitate the presentation of our proposed solution. Let S = {S, ..., Sn} be a set
of sources participating in the integration process. Note that each source Si has
a local ontology Oi that references/extends the shared ontology O. Formally, the
ontology O can be defined as the 4-tuples < C,P,Applic, Sub >, where:

– C is the set of the classes used to describe the concepts of a given domain,
– P is the set of all properties used to describe the instances of the classes of

C. Note that only a subset of P might be selected by any particular database
1.

– Applic is a function defined as Applic : C → 2P . It associates to each class
of the ontology, the properties that are rigid (applicable) for each instance of
this class and that may be used, in the database, for describing its instances.
Note that for each ci ∈ C, only a subset of Applic(ci) may be used in any
particular database, for describing ci instances.

– Sub is the subsumption function defined as Sub : C → 2C 2, where for a class
ci of the ontology, it associates its direct subsumed classes 3. Sub defines a
partial order over C. In our model, there exists two kinds of subsumption
relationships: Sub = OOSub ∪ OntoSub, where:
• OOSub is the usual object-oriented subsumption with the inheritance re-

lationship. Through OOSub, applicable properties are inherited. OOSub

must define a single hierarchy.

1 In our approach, each local ontology may also extend P .
2 2C denotes the power set of C.
3 C1 subsumes C2 iff ∀x ∈ C2, x ∈ C1.

• OntoSub is a subsumption relationship without the inheritance. Through
OntoSub (also called case-of in the PLIB ontology model [18]), properties
of a subsuming class may be imported by a subsumed class.
OntoSub is also used as an articulation operator allowing to connect local
ontologies into a shared ontology. Through this relationship, a local class
may import or map all or any of the properties that are defined in the
referenced class(es). In order to ensure the autonomy of sources, it may
also define additional properties.

Now, we have all ingredients to define formally each source Si as 5-tuples :
< Oi, Schi, Ii, Popi,Mi > (Figure 1), where:
(i) Oi is an ontology (Oi :< Ci, Pi, Applici, Subi >). (ii) Schi : Ci → 2Pi asso-
ciates to each ontology class ci,j of Ci the properties which are effectively used to
describe the instances of the class ci,j . This set may be any subset of Appli(cij)
(as the role of an ontology is to conceptualize a domain, the role of a database
schema is to select only those properties that are relevant for its target applica-
tion). (iii) Ii is the set of instances of the source Si. (iv) Popi : Ci → 2Ii is the
set of instances of each class. Finally, (v) the mapping Mi represents the articu-

lation between the shared ontology O and the local ontology Oi. It is defined as
a function: Mi : C → 2Ci , that defines the subsumption relationships without
inheritance holding between C and Ci.

Several automatic integration scenarios may be defined in the above context
[3]. For simplicity reason, we just outline below the ExtendOnto integration
scenario, where the warehouse ontology consists of the shared ontology extended
by the local ontologies of all the sources that have been added in the warehouse.
Thanks to the articulation mappings (Mi), we note that all warehouse data that
may be interpreted by the shared ontology (i.e., of which the class is subsumed
by a shared ontology class) may be accessed through this ontology, whatever
source they came from 4.

The ontology-based data warehouse DW has the same source structure (Fig-
ure 2): DW :< ODW , SchDW , IDW , PopDW , φ >, where

1. ODW is the warehouse ontology. It is computed by integrating local ontolo-
gies into the shared one. Its components are computed as follows:
– CDW = C ∪ (∪1≤i≤nCi).
– PDW = P ∪ (∪1≤i≤nPi).

– ApplicDW (c) =

{

Applic(c), if c ∈ C

Applici(c), if c ∈ Ci

– SubDW (c) =

{

Sub(c) ∪ Mi(c), if c ∈ C

Subi(c), if c ∈ Ci

2. IDW = ∪1≤i≤nIi.
3. The instances are stored in tables as in their sources.

– ∀ci ∈ CDW ∧ ci ∈ Ci(1 ≤ i ≤ n):

4 another integration scenario, called ProjOnto, assumes that source instances are
extracted after a projection operation on the shared ontology

� � � � �� � � � � � � � � 	
�
 �
 �
 � � � � � �� �
 � �� � � � � � � �

Fig. 2. The Structure of our Data Warehouse

(a) SchDW (ci) = Schi(ci),
(b) PopDW (ci) = Popi(ci)

– ∀c ∈ C

(a) SchDW (c) = Applic(c) ∩ (Sch(c) ∪ (∪cj∈SubDW (c)Sch(cj))).
(b) PopDW (c) = ∪cj∈Sub(c)Pop(cj)

3 Evolution Management of Contents and Schemas

In this section, we present a mechanism to identify classes, properties and in-
stances and the life cycle of instances.

To identify classes and properties, we use the universal identifiers (UI) defined
in the ontology [3]. We assume that the identifiers contain two parts separated
by ”:”. The first and second parts represent, an UI and a version number, respec-
tively. In order to recognize instances of the data warehouse, any source must
define for each class having a population a semantic key. It is composed by the
representation (in character string form) of values of one or several applicable
properties of this class.

3.1 The Life Cycle of Instances

In some situations, it may be useful to know the existence of instances in the
warehouse at any previous point in time. To do so, we do not need to archive also
the versions of ontologies since the current version always allows to interpret old
instances (see Section 4). This problem is known by ”schema versioning” [24],
where all versioned data of a table are saved. Two solutions are possible to satisfy
this requirement:

– In the explicit storage approach [2, 24], all the versions of each table are
explicitly stored. This solution has two advantages: (i) it is easy to implement

and allows an automation of the process of updating of data, and (ii) query
processing is straightforward in cases where we precise the version on which
the search will be done. On the other hand, the query processing cost can be
very important if the query needs an exploration of all versioned data of the
warehouse. Another drawback is due to the storage of the replicated data.

– In the implicit storage approach [24]: only one version of each table T is
stored. This schema is obtained by making the union of all properties ap-
pearing in the various versions. On each data warehouse updating, one adds
all existing instances of each source tables. Instances are supplemented by
null values. This solution avoid the exploration of several versions of a given
table. The major drawbacks of this solution are: (i) the problem of repli-
cated data is still present, (ii) the implementation is more difficult than the
previous one concerning the automatic computation of the schema of stored
tables (the names of columns may have changed in the sources); (iii) the
layout of the life cycle of data is difficult to implement (”valid time” [24])
and (iv) the semantics ambiguity of the null values.

Our solution follows the second approach and solves the problems in the
following way:

1. the problem of replicated data is solved thanks to the single semantic iden-
tification (value of the semantic key) of each instance of data,

2. the problem of the updating process of table schemata is solved through the
use of universal identifiers (UI) for all the properties.

3. the problem of the representation of the instances life cycle is solved by
a pair of properties: (V ersionmin, V ersionmax). It enables us to know the
validation period of a given instance.

4. the problem of the semantic ambiguity of the null values is handled by archiv-
ing the functions Sch of the various versions of each class. This archive en-
ables us to determine the true schema of version of a table at any point in
time, and thus the initial representation of each instance.

4 Ontology Evolution Management

4.1 Principle of Ontological Continuity

The constraints that may be defined in order to handle evolution of versioned
ontology-based data sources result from the fundamental differences existing
between the evolution of conceptual models and ontologies. A conceptual model
is a model of a domain. This means, following the Minsky definition of a model
[14], that it is an object allowing to respond to some particular questions on
another object, namely, the target domain. When the questions change (when the
organizational objectives of the target system are modified), its conceptual model
is modified too, despite the fact that the target domain is in fact unchanged.
Therefore, conceptual models are heavily depending upon the objectives assigned
to the databases they are used to design. They evolve each time these objectives

change. Contrary to conceptual models, an ontology is a conceptualization that
is not linked with any particular objective of any particular computer system.
It only aims to represent all the entities of a particular domain in a form that is
consensual for a rather broad community having in mind a rather broad kind of
problems. It is a logic theory of a part of the world, shared by a whole community,
and allowing their members to understand each others. That can be, for example,
the set theory (for mathematicians), mechanic (for mechanical engineers) or
analytical counting (for accountants). For this type of conceptualizations, two
changes may be identified: normal evolution, and revolution. A normal evolution
of a theory is its deepening. New truths, more detailed are added to the old
truths. But what was true yesterday remains true today. Concepts are never
deleted contrary to [13].

It is also possible that axioms of a theory become false. In this case, it is not
any more an evolution. It is a revolution, where two different logical systems will
coexist or be opposed.

The ontologies that we are considered in our approach follow this philosophy.
These ontologies are either standardized, for example at the international level,
or defined by large size consortium which formalize in a stable way the knowledge
of a technical domain. The changes in which we are interested are not those
changes where all the shared knowledge of a domain is challenged by a new
theory: we only address changes representing an evolution of the axioms of an
ontology and not a revolution.

Therefore, we propose to impose to all manipulated ontologies (local and
shared) to respect the following principle for ontology evolution:

Principle of ontological continuity: if we consider an ontology as a set of axioms,

then ontology evolution must ensure that any true axiom for a certain version of

an ontology will remain true for all its later versions. Changes that do not fulfill

this requirement are called ontology revolution.

In the remaining paper, we only consider ontology evolution.

4.2 Constraints on the Evolution of Ontologies

In this section, we discuss the constraints for each kind of concept (classes,
relation between classes, properties and instances) during ontology evolution.
Let Ok =< Ck, P k, Subk, Applick > be the ontology in version k.

Permanence of the classes Existence of a class could not be denied across
evolution: Ck ⊂ Ck+1. To make the model more flexible, as it is the case non
computerized ontology, a class may become obsolete. It will then be marked as
”deprecated”, but it will continues belong to the newer versions of the ontology.
In addition, the definition of a class could be refined, but this should not exclude
any instance that was member of the class in the previous version. This means:

– the definition of a class may evolve,
– each class definition is to be associated with a version number.
– for any instance i, i ∈ Ck ⇒ i ∈ Ck+1.

Permanence of properties Similarly P k ⊂ P k+1. A property may become
obsolete but neither its existence, nor its value for a particular instance may
be modified. Similarly, a definition or value domain of a property may evolve.
Taking into account the ontological principle of continuity, a value domain could
be only increasing, certain values being eventually marked as obsolete.

Permanence of the Subsumption Subsumption is also an ontological concept
which could not be infirmed. Let Sub∗ : C → 2C be the transitive closure of the
direct subsumption relation Sub. We have then:

∀ C ∈ Ck, Sub∗k(c) ⊂ Sub∗k+1(c).
This constraint allows obviously an evolution of the subsumption hierarchy, for
example by intercalating intermediate classes between two classes linked by a
subsumption relation.

Description of instances The fact that a property p ∈ Applic(c) means that
this property is rigid [10] for each instance of c. This is an axiom that cannot be
infirmed: ∀c ∈ Ck, Applic∗k(c) ⊂ Applic∗k+1(c).

Note that this does not require that same properties are always used to
describe the instances of the same class. As described in section 4.1, schematic
evolution does not depend only on ontology evolutions. It depends also, and
mainly, on the organizational objectives of each particular database version.

5 Floating Version Model: A Global Access to Current

Instances

Before presenting our floating version model, we indicate the updating scenario
of our data warehouse: at given moments, chosen by the data warehouse adminis-
trator, the current version of a source Si is loaded in the warehouse. This version
includes its local ontology, the mapping Mi between local ontology Oi and the
shared ontology O, and its current content (certain instances eventually already

exist in the warehouse, others are new, others are removed). This scenario is
common in the engineering domain, where an engineering data warehouse con-
solidates descriptions (i.e., electronic catalogues) of industrial components of a
whole of suppliers. Therefore, in this scenario, the maintenance process is car-
ried out each time that a new version of an electronic catalogue of a supplier is
received.

Our floating version model is able to support two kind of user services: (i) it
allows to provide an access via a single ontology to the set of all instances that
have been recorded in the data warehouse over the time its ontology and/or (ii)
it also allows to record the various versions of the ontologies (shared and local)
and to trace the life cycle of instances (full multi-version management). In this
section we discuss how these objectives will be achieved.

The principal difficulty due to source autonomy is that in some situations,
when two different sources are loaded, let’s say Si and Sj , a same class c of shared

ontology O can be referred by an articulation mapping (i.e., subsumption) in
different versions. For example, classes cn

i of Si and c
p
j of Sj may refer to ck (class

c with version k) and ck+j (class c with version k + j), respectively. According
to the principle of ontological continuity, it is advisable to note that:

1. all applicable properties in ck are also applicable in ck+j ,
2. all subsumed classes by ck are also subsumed by ck+j ,

Thus, the subsumption relation between ck and cn
i could be replaced by a sub-

sumption relation between ck+j and cn
i . Moreover, all the properties that were

imported from ck may also be imported from ck+j . Therefore, the class ck is not
necessary to reach (as a subsuming class) instances of cn

i .
This remark leads us to propose a model, called the floating version model,

which enables to reach all the data in the data warehouse via only one version
of each class of the warehouse ontology. This set of versioned classes, called the
”current version” of the warehouse ontology is such that the current version of
each class cf is higher or equal to the largest version of that class referenced
by a subsumption relationship at the time of any maintenance. In practice, this
condition is satisfied as follows:

– if an articulation Mi references a class cf with a version lower than f , then
Mi is updated in order to reference cf ,

– if an articulation Mi references a class cf with a version greater than f , then
the warehouse connect itself to the shared ontology server, loads the last
version of the shared ontology and migrates all references Mi (i = 1..n) to
new current versions.

Example 1. During the maintenance process of a class C1 ((Figure 3)) that refer-
ences the shared ontology class C with version 2 (1), the version of C in current
ontology is 1 (2). In this case, the warehouse downloads the current version
of the shared ontology (3). This one being 3, class C1 is modified to reference
version 3 (4).

Current Version

Warehouse

Result
C

(version 1)

C1
(version 1)

Warehouse

Current Version

C
(version 3)

C1
(version 2)

C1
(version 2)

C
(version 2)

Source

C
(version 3)

Shared
Ontology

1 2

3

4

Legend

Subsomption
 relationship

Loading of
 information

Fig. 3. A Model of the floating versions

We described below the two automatic maintenance processes that our floating
version model makes possible.

5.1 Simplified Version Management

If the only requirements of users is to be able to browse the current instances
of the data warehouse then, at each maintenance step: (1) ontology description
of the various classes of the data warehouse ontology are possibly replaced by
newer versions, and (2) the table associated to each class coming from a local
ontology in the data warehouse is simply replaced by the corresponding current
table in the local source.

5.2 A Full Multi-version Management

Note that in the previous case (Section 5.1), the articulation between a local
ontology class and a shared ontology class stored in the current version of the
data warehouse may not be its original definition (see the Figure 3). If the data
warehouse user also wants to browse instances through the ontological definitions
that existed when these instances were loaded, it is necessary to archive also
all the versions of the warehouse ontology. This scenario may be useful, for
example, to know the exact domain of an enumeration-valued property when the
instance was defined. By implementing this possibility, we get a multi-version

data warehouse which archives also all versions of classes having existed in the
data warehouse life, and all the relations in their original forms. Note that the
principle of ontological continuity seems to make seldom necessary this complex
archive.

The multi-version data warehouse has three parts (see Figure 4):

1. current ontology. It contains the current version of the warehouse ontology. It
represents also a generic data access interface to all instance data, whenever
they were introduced in the warehouse.

2. Ontology archive. It contains all versions of each class and property of the
warehouse ontology. This part gives to users the true definitions of versions
of each concept. Versions of table schema Ti are also historized by archiving
the function Schk(ci) of each version k of ci, where Ti corresponds to the
class ci.

3. multi-versioned tables. It contains all instances and their version min and
version max.

6 Implementation of our Approach

In order to validate our work, we have developed a prototype integrating several
OBDSs (Figure 5), where ontologies and sources are described using the PLIB
ontology model [18] specified by the Express language [22] . Such ontologies and
instance data are exchangeable as instances of EXPRESS files (”physical file”).

Historized warehouse�������� !"�#������� $" �%������� &"�������� &"�#������� &" archive of Sch

Archive
of ontologies

Current
ontologies

Multiversionned
tables

Version_min/
Version_max

Fig. 4. Structure of warehouse integrated system

To process EXPRESS files, we used the ECCO Toolkit of PDTec which offers
the following main functions [23]:

1. Edition, syntax and semantic checker of EXPRESS models;

2. Generation of functions (Java and C++) for reading, writing and checking
integrity constraints of a physical file representing population of instances of
an EXPRESS schema;

3. Manipulation of the population (physical file) of EXPRESS models using a
graphical user interface;

4. Access to the description of a schema in the form of objects of a meta-model
of EXPRESS;

5. Support of a programming language called EXPRESS-C. EXPRESS-C al-
lows managing an Express schema and its instance objects.

PLIB Editor

API PLIB (Java)

ECCO Toolkit

Edition/Evolve/Visualize
API

Data Layer

User Interface Layer
(Visualize/querying)

In
te

g
ra

tio
n
/E

xc
h
a
n
g
e

A

P
I

Ontology

Read / Write

'()(
Ontology

'()('()(
Fig. 5. Architecture of our Prototype

An ontology and an OBDS may be created via an editor called PLIBEditor.
It is used also to visualize, edit and update ontologies (both shared and local)
and sources. It uses a set of PLIB API developed under ECCO. PLIBEditor
proposes a QBE-like graphical interface to query the data from the ontologies.
This interface relies on the OntoQL query language [12] to retrieve the result of
interactively constructed queries.

We have developed a set of integration API allowing the automatic integra-
tion both in the simplified version management scenario, and in the full multi-
version management scenario.

This symbol indicates
the OOSub relationship

This symbol indicates
the OntoSub relationship

Fig. 6. Integrated hierarchical access and integrated querying over the data warehouse

Figure 6 shows the view offered to users over the content of the data ware-
house after integration. The shared ontology (left side) provides for hierarchical
access and query over the data warehouse content:

– a query over a shared ontology class allows to query all the classes subsumed
either by the OOSub or by the OntoSub relationships, thus integrating in-
stance data from all the integrated sources (see left side of Figure 6).

– hierarchical access allows also to go down until classes that came from any
particular ontology (see right side of Figure 6).

7 Conclusion

In this paper, we presented the asynchronous versioning problem where au-
tonomous ontology-based data sources are integrated in a ontology-based data
warehouse. The sources that we considered are those containing local ontolo-
gies referencing in an a priori manner a shared one by subsumption relation-
ships. These sources are autonomous and heterogeneous, and we assume that

ontologies, schemas, and data may evolve over the time. Our integration pro-
cess integrates first ontologies and then the data. The presence of ontologies
allows an automation of the integration process, but it makes the management
of autonomous sources more difficult.

Concerning ontology evolution, we described the difference between ontolo-
gies and database schemata and we suggested to distinguish ontology evolution
and ontology revolution. Ontology evolution must respect the principle of on-
tological continuity that ensures that an axiom that was true for a particular
version will remain true over all successive evolutions. This assumption allows
the management of each old instance using a new version of the ontology.

Following this assumption, we have proposed two scenarios for the automatic
integration of autonomous ontology-based data sources into an ontology-based
data warehouse. Both scenarios are based on the floating version model, where
the integration process always maintain a single version of the data warehouse
ontology. This version, called the current ontology allows to interpret all the
instance data in the data warehouse. The first scenario just updates the data
warehouse ontology and data and provides automatically an integrated view of
the current state of all the integrated sources. The data warehouse corresponding
to the second scenario consists of three parts: (1) The current ontology contains
the current version of the warehouse ontology. (2) The ontology archive contains
all the versions of each class and property of the warehouse ontology. (3) The
multi-versioned tables contain all instances and their first and last version of
activities. This structure allows the tracing instances life cycle and the data
access is done in a transparent manner. Note that for each source class, the
set of properties identifying its instances is known, therefore it is possible to
recognize the same instance when it is described by different properties. Our
model was validated under ECCO by considering several local ontologies, where
for each ontology, a set of sources instance data defined. This approach allows,
in particular, an automatic integration of electronic component catalogues in
engineering [4].

Concerning the perspectives, it would be interesting to consider (1) a media-
tor architecture of our proposed model and (2) the problem of view maintenance
in our ontology-based warehouse.

References

1. S. Alexaki, V. Christophides, G. karvounarakis, D. Plexousakis, and K. Tolle. The
ics-forth rdfsuite: Managing voluminous rdf description bases. Proceedings of the
Second International Workshop on the Semantic Web (SemWeb01), May 2001.

2. Bartosz Bebel, Johann Eder, Christian Koncilia, Tadeusz Morzy, and Robert
Wrembel. Creation and management of versions in multiversion data warehouse.
Proceedings of the 2004 ACM symposium on Applied computing, pages 717–723,
June 2004.

3. L. Bellatreche, G. Pierra, D. Nguyen Xuan, H. Dehainsala, and Y. Ait Ameur. An
a priori approach for automatic integration of heterogeneous and autonomous

databases. International Conference on Database and Expert Systems Applications
(DEXA’04), (475-485), September 2004.

4. L. Bellatreche, Xuan, G. Pierra, D. N., and H. Dehainsala. Contribution of
ontology-based data modeling to automatic integration of electronic catalogues
within engineering databases. To appear in Computers in Industry Journal, 2006.

5. S. Chaudhuri and U. Dayal. An overview of data warehousing and olap technology.
Sigmod Record, 26(1):65–74, March 1997.

6. S. Chen, B. Liu, and E. A. Rundensteiner. Multiversion-based view maintenance
over distributed data sources. ACM Transactions on Database Systems, 4(29):675–
709, December 2004.

7. C. H. Goh, S. E. Madnick, and M. Siegel. Context interchange: Overcoming the
challenges of large-scale interoperable database systems in a dynamic environment.
in Proceedings of the Third International Conference on Information and Knowl-
edge Management (CIKM’94), pages 337–346, December 1994.

8. C.H. Goh, S. Bressan, E. Madnick, and M. D. Siegel. Context interchange: New
features and formalisms for the intelligent integration of information. ACM Trans-
actions on Information Systems, 17(3):270–293, 1999.

9. T. Gruber. A translation approach to portable ontology specification. Knowledge
Acquisition, 5(2):199–220, 1995.

10. N. Guarino and C. A. Welty. Ontological analysis of taxonomic relationships. in
Proceedings of 19th International Conference on Conceptual Modeling (ER’00),
pages 210–224, October 2000.

11. Jeff Heflin and James Hendler. Dynamic ontologies on the web. Proceedings of
the Seventeenth National Conference on Artificial Intelligence (AAAI/MIT Press),
pages 443–449, 2000.

12. S. Jean, G. Pierra, and Y. Ait-Ameur. Ontoql: an exploitation language for obdbs.
VLDB Ph.D. Workshop, pages 41–45, september 2005.

13. A. Maedche, B. Motik, L. Stojanovic, R. Studer, and R. Volz. Managing multiple
ontologies and ontology evolution in ontologging. Intelligent Information Process-
ing, pages 51–63, August 2002.

14. M. Minsky. Computer science and the representation of knowledge. in The Com-
puter Age: A Twenty-Year View, Michael Dertouzos and Joel Moses, MIT Press,
pages 392–421, 1979.

15. T. Morzy and R. Wrembel. Modeling a multiversion data warehouse : A formel ap-
proach. International Conference on Entreprise Information Systems(ICESI’03),
2003.

16. Natalya F. Noy and Michel Klein. Semantic integration: a survey of ontology-based
approaches. SIGMOD Record, 33(4), December 2004.

17. Z. Pan and J. Heflin. Dldb: Extending relational databases to support semantic
web queries. Technical report, Dept. of Computer Science and Engineering, Lehigh
University, USA, 2004.

18. G. Pierra, J. C. Potier, and E. Sardet. From digital libraries to electronic cat-
alogues for engineering and manufacturing. International Journal of Computer
Applications in Technology (IJCAT), 18:27–42, 2003.

19. C. Reynaud and G. Giraldo. An application of the mediator approach to ser-
vices over the web. Special track ”Data Integration in Engineering, Concurrent
Engineering (CE’2003) - the vision for the Future Generation in Research and
Applications, pages 209–216, July 2003.

20. J. F. Roddick. A survey of schema versioning issues for database systems. Infor-
mation and Software Technology, 37(7):383–393, 1995.

21. Elke A. Rundensteiner, Andreas Koealler, and Xin Zhang. Maintaining data
warehouses over changing information sources. Communications Of The ACM,
43(6):57–62, June 2000.

22. D. Schenk and P. Wilson. Information Modelling The EXPRESS Way. Oxford
University Press, 1994.

23. G. Staub and M. Maier. Ecco tool kit - an environnement for the evaluation of
express models and the development of step based it applications. User Manual,
1997.

24. Han-Chieh Wei and Ramez Elmasri. Study and comparison of schema versioning
and database conversion techniques for bi-temporal databases. Proceedings of the
Sixth International Workshop on Temporal Representation and Reasoning (IEEE
Computer), May 1999.

This article was processed using the LATEX macro package with LLNCS style

