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Abstract. In the paper, a new evolutionary algorithm (EA) for mixed
tree learning is proposed. In non-terminal nodes of a mixed decision tree
different types of tests can be placed, ranging from a typical univariate
inequality test up to a multivariate test based on a splitting hyperplane.
In contrast to classical top-down methods, our system searches for an
optimal tree in a global manner, i.e. it learns a tree structure and tests
in one run of the EA. Specialized genetic operators allow for generating
new sub-trees, pruning existing ones as well as changing the node type
and the tests. The proposed approach was experimentally verified on
both artificial and real-life data and preliminary results are promising.

1 Introduction

Decision trees [18] are one of the most frequently applied data mining approaches.
There exist many induction algorithms which can differ in several more or less
important elements, like for example the way for tree construction (i.e. top-down
versus global) or the way for test selection. From a users point of view, one of the
most important features of a decision tree is a test representation in the internal
nodes. In typical univariate trees two types of tests are usually permitted. For
a nominal attribute, the mutually exclusive sets of feature values are associated
with each branch, whereas for a continuous valued feature inequality tests are
applied. In case of multivariate trees more than one feature can be used to create
a test. Linear (oblique) tests based on a splitting hyper-plane are specific and
the most widely used form of the multivariate test. It should be noticed that
most of the DT-based systems are homogeneous, which means that they take
advantage of only one type of test (i.e. univariate or oblique).

The term mixed decision trees was proposed by Llora and Wilson in [15] to
describe trees in which different types of tests can be exploited. One of the first
and best-known examples of such an approach is the CART system [3]. This
system is able to search for a linear combination of non-nominal features in each
node and it compares the obtained test with the best univariate test. However,
it should be noted that CART has a strong preference to simpler tests and it
results in very rare use of more elaborate splits. Another form of the hybrid
classifier is proposed by Brodley in [4]. Her MCS system combines univariate
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tests, linear machines and instance-based classifiers (k-NN) and during the top-
down generation of a tree classifier it recursively applies automatic bias selection.
Recently, a fine grain parallel model GALE [15] was applied to generate decision
trees which employ inequality and oblique tests.

Evolutionary techniques [16] are known to be useful in many data mining
tasks [9]. They were successfully applied to learning univariate (e.g. [10,19,20])
and linear trees (e.g. [6,2,5]). Regardless of the tree types there are two main
approaches to the induction: top-down and global. The first one is based on a
greedy recursive procedure of test searching and sub-node creation until a stop-
ping condition is met. In contrast to this classical method, the global algorithm
searches for both the tree structure and tests at the same time.

The global approach based on evolutionary algorithms for decision tree in-
duction was investigated in our previous papers. We showed that homogeneous
trees (univariate [12] or oblique [13,14]) can be effectively induced and we demon-
strated that globally generated classifiers are generally less complex with at least
comparable accuracy. In this paper, we want to merge the two developed meth-
ods in one system, which will be able to induce mixed trees.

The rest of the paper is organized as follows. In the next section our global
system for induction of mixed decision trees is presented. Preliminary experi-
mental validation of the approach on both artificial and real-life datasets are
presented in section 3. The paper is concluded in the last section.

2 Global Induction of Mixed Decision Trees

The general structure of the proposed algorithm follows a typical evolutionary
framework [16]. As the presented approach is a continuation and unification of
our work on the global induction of homogeneous decision trees [12,13,14], in
this section we described only these issues that are specific to mixed trees.

Representation and initialization. A mixed decision tree is a complicated
tree structure, in which the number of nodes, test types and even the number
of test outcomes are not known in advance for a given learning set. Moreover
additional information, e.g. about feature vectors associated with each node,
should be accessible during the induction. As a result, decision trees are not
specially encoded in individuals and they are represented in their actual form.

There are three possible test types in internal nodes: two univariate and one
multivariate. In case of univariate tests, a test representation depends on the
considered attribute type. For nominal attributes at least one attribute value is
associated with each branch starting in the node, which means that an internal
disjunction is implemented. For continuous-valued features typical inequality
tests with two outcomes are used. In order to speed up the search process only
boundary thresholds1 as potential splits are considered and they are calculated
1 A boundary threshold for the given attribute is defined as a midpoint between such

a successive pair of examples in the sequence sorted by the increasing value of the
attribute, in which the examples belong to two different classes.
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before starting the EA. Finally, an oblique test with binary outcome can be also
applied as a multivariate test. A splitting hyperplane is represented by a fixed-
size table of real values corresponding to the weight vector and the threshold.
The inner product is calculated to decide where an example is routed.

Before starting the actual evolution, the initial population is created. All
initial trees are homogeneous, but half of the population is initialized with uni-
variate tests and the other part with oblique tests. A simple top-down algorithm
is applied to generate all individuals. In each potential internal node it chooses
randomly a pair of objects from different classes and searches for a test which
separates them to distinct sub-trees. In case of a univariate tree, such a test can
be directly constructed for any feature with different feature values. When an
oblique test is necessary, the splitting hyperplane is perpendicular to the segment
connecting the two drawn objects and placed in a halfway position.

The algorithm terminates when the fitness of the best individual does not
improve during a fixed number of generations (default value is equal 1000) or
the maximum number of generations (default value: 10000) is reached.

Genetic operators. There are two specialized genetic operators corresponding
to the classical mutation and cross-over. Application of both operators can result
in changes of the tree structure and tests in non-terminal nodes.

A mutation-like operator is applied with a given probability to a tree (default
value is 0.5) and it guarantees that at least one node of the selected individual is
mutated [14]. Modifications performed by this operator depend on the node type
(i.e. if the considered node is a leaf node or an internal node). For a non-terminal
node a few possibilities exist:

– a completely new test of the same or different type can be drawn; new tests
are created in the same way as described for the initialization,

– the existing test can be altered by shifting the splitting threshold (continuous-
valued feature), by re-grouping feature values (nominal features) or by shifting
the hyperplane (oblique test); these modifications can be purely random or can
be performed according to the adapted dipolar operator [11],

– the test can be replaced by another test or tests can be interchanged,
– one sub-tree can be replaced by another sub-tree from the same node,
– the node can be transformed into a leaf.

Modifying a leaf makes sense only if it contains objects from different classes.
The leaf is transformed into an internal node and a new test is randomly chosen.
The search for effective tests can be recursively repeated for all descendants.

There are also several variants of cross-over operators (applied with a default
probability 0.2). One node is randomly chosen in each of two affected individuals
and an exchange encompasses sub-trees or is limited only to nodes (their tests).
The order of sub-trees can be also altered during the cross-over.

The application of any genetic operator can result in a necessity for relocation
of the input vectors between parts of the tree rooted in the modified node.
Additionally the local maximization of the fitness is performed by pruning lower
parts of the sub-tree on the condition that it improves the value of the fitness.
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Fitness function. A fitness function drives the evolutionary search process
and is the most important and sensitive component of the algorithm. When
concerning a classification task it is well-known that the direct optimization
of the classifier accuracy measured on the learning set leads to an over-fitting
problem. In a typical top-down induction of decision trees, the over-specialization
problem is mitigated by defining a stopping condition and by applying a post-
pruning [8]. In our approach, the search for an optimal structure is embedded
into the evolutionary algorithm by incorporating a complexity term in the fitness
function. The fitness function is maximized and has the following form:

Fitness(T ) = QReclass(T ) − α · (Comp(T ) − 1.0), (1)

where QReclass(T ) is a reclassification quality and α is the relative importance
of the classifier complexity (default value is 0.005). In the simplest form the
tree complexity Comp(T ) can be defined as the classifier size which is usually
equal to the number of nodes. The penalty associated with the classifier com-
plexity increases proportionally with the tree size and prevents classifier over-
specialization. Subtracting 1.0 eliminates the penalty when the tree is composed
of only one leaf (in majority voting).

This simple complexity definition is surely adequate for a homogeneous tree
composed of only univariate tests. However, when linear tests are also considered,
it seems that a more elaborate solution is necessary. It is rather straightforward
that an oblique split based on a few features is more complex than a univariate
test and that we should apply preference to simpler tests as an inductive bias.
As a consequence the tree complexity should also reflect the complexity of the
tests. However it is not easy to definitely decide how to balance different test
complexities because it depends on the problem solved and user preferences. In
such a situation we decided to define the tree complexity Comp(T ) in a flexible
way and allow the user to tune its final form:

Comp(T ) = |Nleaf (T )| +
∑

n∈Nint(T )

(1 + β · (F (n) − 1)), (2)

where Nleaf (T ) and Nint(T ) are sets of leaves and internal nodes correspond-
ingly, F (n) is the number of features used in the test associated with the node
n and β ∈ [0, 1] is the relative importance of the test complexity (default value
0.2). The complexity of the tree is defined as a sum of the complexities of the
nodes and it is assumed that for leaves and internal nodes with univariate tests
the node complexity is always equal to 1.0. It can be also observed that when
β = 1 the number of features used in a test is applied as the test complexity,
whereas when β = 0 the complexity of a test is completely ignored.

3 Experimental Results

The proposed approach to learning mixed decision trees is assessed on both
artificial and real life datasets and is compared to the well-known top-down
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house chessOBCL norm chessAP

Fig. 1. Examples of artificial datasets

univariate (C4.5 [21]) and oblique (OC1 [17]) decision tree systems. It is also
compared to two homogenous versions of our global GDT system: univariate -
GDT-AP [12] and oblique GDT-OB [14]. All prepared artificial datasets comprise
training and testing parts. In case of data from a UCI repository [1] for which
testing data is not provided, 10-fold stratified cross-validation was employed.
Each experiment on all stochastic algorithms (i.e. all except C4.5) was performed
10 times and the average result of such an evaluation was presented. The OC1
system was run with different values of the seed that initializes the random
number generator. Our system is initialized by the system time.

A statistical analysis of the obtained results was done by the Friedman test
with the corresponding Dunn’s multiple comparison test (significance level equal
to 0.05) as recommended by Demsar [7].

Artificial datasets. A range of artificial datasets suited to axis-parallel or
oblique tests was generated to assess the universality of the proposed approach.
Most of the datasets have two continuous-valued features (see examples in Fig.
1) and only the LS10 (Linearly Separable) dataset has 10 features. The number
of examples was varied and depends on the number of distinct regions. In the
training part it ranged from 1000 (for simple 2-dimensional problems) to 4000
(for LS10). The testing part is twofold larger in each case.

There was also prepared a special dataset (see Fig. 2a) to validate the per-
formance of the proposed mixed decision tree system. This dataset is the three
class problem that contains three descriptive features. Two of them (x and y)
are continuous-valued and the last one (z) is nominal with two binary values.
This experiment was intended to check whether our system can deal with such
a problem in which the best separability of classes can be achieved by incor-
porating all three types of splits. A hyperplane and an inequality test separate
observations on two planes and one nominal test provides additional separa-
tion between those planes. In Fig. 2b the decision tree learned by the GDT-Mix
system is presented. It is the best solution to this problem. The most impor-
tant thing is that the algorithm was able to select correctly different types of
tests and apply them to build the optimal tree structure. This experiment shows
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Table 1. Results on artificial data

C4.5 OC1 GDT-Mix GDT-AP GDT-OB
Dataset size quality size quality size quality size quality size quality
chess2x2 1 50 10.1 89.3 4.0 99.7 4 99.75 4 99.34
chess2x2x2 1 50 23.8 71.0 8.0 98.5 8 99.72 8.2 97.00
chess3x3 9 99.7 21.1 73.7 9.0 98.8 9 99.73 9.9 97.08
chessOB2CL 33 95.6 7 77.3 4.3 98.0 17.9 92.64 4.7 99.05
chessOB4CL 35 94.6 4.3 49.8 4.0 97.9 18 92.14 4.4 98.41
house 21 97.4 8.2 92.8 4.0 96.0 13.3 96.62 4 96.71
ls10 284 77.3 7.3 95.3 2.0 95.7 18.8 70.68 2 97.20
ls2 22 97 2 99.7 2.0 99.8 14 95.68 2 99.93
normal 5 90 7.3 87.9 3.6 89.5 25.7 86.85 4 90.01
norm chessAP 1 50 11.2 85.5 4.0 95.4 4.2 95.53 4 95.42
norm chessOB 19 93 11 83.3 4.0 93.7 9.3 92.59 4 93.58
norm wave 15 94 8.4 90.3 4.0 94.5 9.1 93.45 4 94.87
zebra1 25 95.3 3 83.5 3.3 99.1 15.3 94.64 3 99.28
zebra2 2 59.5 4.8 94.1 4.0 98.5 21.4 91.63 4.4 98.70
zebra3 57 91.2 8.2 24.3 8.8 95.4 31.5 88.80 8.8 96.76

Z

x

y

z

a) b)

Fig. 2. A graphical representation of the dataset which can be optimally separated
only with all three test types and the tree obtained by GDT-Mix system

that when such compound relationships will exist in the real data our algorithm
may tackle them successfully revealing invaluable information for specialists in
a certain domain to which it might have been applied.

The results on the range of datasets designed for this investigation are col-
lected in Table 1. Because we analyze artificial data in this experiment, we know
how, in terms of the type of tests used in the tree, the optimal solution can be
represented. There are certain classification tasks, like for instance the classi-
cal chessboard problem, that suit very well univariate decision trees. There are
also linearly separable datasets (like e.g. LS10) for which splits based on hy-
perplanes are highly recommended to avoid a staircase-like structure. The main
aim of our endeavor in this work is to show that GDT-Mix can easily adjust
to the specific problem. The analysis of Table 1 proved that the GDT-Mix in-
ducer performs better on axis parallel data while compared to oblique systems
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a) b)

c) d)

Fig. 3. Decision trees obtained by GDT-Mix system for chess3x3 and zebra3 datasets
(b) and d)) and the corresponding dataset scatterplots with drawn splits (a) and c))

and on linearly separable data while compared to axis parallel systems. It is
also important that statistical analysis does not show significant differences be-
tween the GDT-Mix algorithm and the systems specialized for certain problems
when a comparison is made on such problems. Our universal system performs
as well as the specialized systems, that is its very strong point. The statistical
test indicates that GDT-OB is significantly better in terms of quality than C4.5,
OC1 and GDT-AP. As for GDT-Mix, it is statistically better than OC1. The
comparisons based on the second measure (the tree size) are also favorable. Sta-
tistical analysis reveals that GDT-Mix produces significantly smaller trees than
C4.5 and GDT-AP. This score is easily justified, because in the case of prob-
lems which require oblique splits our GDT-Mix system takes advantage of such
splits.

Discussed results show that the proposed algorithm is more flexible in terms of
representation which can be modified during the induction. For that reason more
detailed analysis of these results aims at investigating the obtained decision trees.
Such trees for relatively complex axis parallel and linearly separable classification
tasks are presented in Fig. 3. These trees present a promising result because
the GDT-Mix system managed to find the type of tests that suit the data in
the best way and was able to apply them to build trees that perform very
competitively while comparing to results of specialized systems. In Fig. 3a and
3c splits from decision trees are additionally drawn to present how the input
space is partitioned by the global inducer. These splits show that trees obtained
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Table 2. Results on real datasets with only continuous attributes

OC1 GDT-Mix GDT-OB
Dataset size quality size quality size quality
balance-scale 5.4 90.0 2.8 89.3 3.2 89.1
bcw 4.7 91.2 2.0 97.1 2.0 96.9
bupa 5.8 65.6 3.6 69.5 3.0 71.3
glass 4.5 55.7 13.4 69.9 11.6 68.8
page-blocks 15.6 96.6 3.0 94.9 3.0 95.3
pima 6.5 69.6 2.4 75.0 2.1 75.3
sat 58.3 78.9 6.0 83.0 7.0 83.1
vehicle 21.6 66.4 8.8 67.7 7.7 65.7
waveform 10.5 77.4 4.2 81.2 4.2 82.2
wine 3.2 87.0 4.2 89.3 4.8 90.9

Table 3. Results on real datasets with both continuous and nominal attributes

C4.5 GDT-Mix GDT-AP
Dataset size quality size quality size quality
australian 39 87 2.0 86.5 22.8 84.6
cars 31 97.7 3.6 97.9 4.0 98.7
cmc 136.8 52.2 4.0 55.1 13.1 53.8
german 77 73.3 3.8 72.0 16.5 73.4
golf 5 60 4.9 70.5 4.7 72.5
heart 22 77.1 6.1 75.3 44.9 74.2
solar 20 73.1 5.8 70.7 33.7 73.6
vote 5 97 2.0 97.0 13.5 95.6

in this experiment have an optimal structure (the empirical superiority of global
induction).

Real-life data. Results on real-life data are divided into two groups. In the
first one, GDT − Mix is compared with OC1 and GDT − OB systems, which
are designed for applications where the instances have only numeric (continuous)
feature values (Table 2). In the second group, the proposed system is compared
with univariate tree induction algorithms on datasets that have both nominal
and continuous attributes (Table 3).

The analysis of these results shows that there are no statistically significant
differences in the quality between compared algorithms on all datasets. It is very
favorable result. It means that the GDT-Mix system, which is designed to be
universal to different kinds of tasks, performs as good as specialized counterparts.
In the case of the size of the tree the same statistical analysis of the Table
3 indicates that GDT-Mix produces significantly smaller trees than C4.5. A
detailed inspection of this table shows that there are some datasets (e.g. heart)
for which there is evident difference in the tree size which shows the superiority
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Fig. 4. The decision tree for heart data found by GDT-Mix

of the GDT-Mix algorithm. This is a very useful feature of mixed trees. As for
the Table 2 there is a statistical difference in terms of the tree size (p = 0.046)
but Dunn’s test failed to detect it.

More detailed analysis of decision trees obtained for real-life heart data is pre-
sented in Figure 4. This dataset was chosen for investigation because it contains
both nominal and continuous attributes and represents a quite easily understood
problem (at least in terms of outcomes of the classifier). Figure 4 presents one
of decision trees (there were 10 runs of the algorithm on each dataset) that were
gained in our experiment for heart data. In the presented tree all three types of
possible tests are used. This example underlines the advantage of decision trees
of being self explanatory and easy to understand. In mixed decision trees we can
have tests both on nominal and continuous attributes what present interesting
features of this system in terms of practical applications.

4 Conclusion and Future Works

In the paper a new evolutionary algorithm for global induction of mixed decision
trees is proposed. In the unified framework both univariate and oblique tests
are searched and applied in not-terminal nodes for optimal data splitting. The
flexible defined fitness function enables the controlling of the inductive biases.
Even preliminary validation shows that the algorithm is able to adapt to the
problem being solved and to locally choose the most suitable test representation.

The presented approach is still under development and currently we are work-
ing on introducing more specialized mutation variants. They will allow the sys-
tem e.g. to switch from an oblique hyper-plane to the closest axis-parallel test
and analogously to slightly incline an original univariate test. We also consider
introducing additional test types, especially multivariate tests. Furthermore, the
fitness function and especially the impact of the definition of the complexity
term on the resulting decision tree will be studied in more detail.
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