
S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 114 – 122, 2006.
© Springer-Verlag Berlin Heidelberg 2006

DCF: An Efficient Data Stream Clustering Framework
for Streaming Applications

Kyungmin Cho, Sungjae Jo, Hyukjae Jang, Su Myeon Kim, and Junehwa Song

Department of Electrical Engineering and Computer Science
Korea Advanced Institute of Science and Technology (KAIST)

{kmcho, sjjo, hjjang, smkim, junesong}@nclab.kaist.ac.kr

Abstract. Streaming applications, such as environment monitoring and vehicle
location tracking require handling high volumes of continuously arriving data
and sudden fluctuations in these volumes while efficiently supporting multi-
dimensional historical queries. The use of the traditional database management
systems is inappropriate because they require excessive number of disk I/O in
continuously updating massive data streams. In this paper, we propose DCF
(Data Stream Clustering Framework), a novel framework that supports efficient
data stream archiving for streaming applications. DCF can reduce a great
amount of disk I/O in the storage system by grouping incoming data into
clusters and storing them instead of raw data elements. In addition, even when
there is a temporary fluctuation in the amount of incoming data, it can stably
support storing all incoming raw data by controlling the cluster size. Our
experimental results show that our approach significantly reduces the number of
disk accesses in terms of both inserting and retrieving data.

Keywords: Data Archiving, OLAP, Clustering, R-tree, Fast Insertion, Query
Performance.

1 Introduction

Rapid and continued advances in sensor and wireless communication technologies
have fueled a new type of application called streaming applications [16] such as
habitat and environment monitoring, RFID-enabled supply chain networks, vehicle
location tracking, and transaction log analysis. Such applications have different
workload characteristics from traditional applications. Extremely high volumes of
data are continuously generated from a lot of data sources. These data need to be
stored in permanent storage systems in order to apply analysis tools such as online
analytical processing (OLAP) and data mining. These analytical operations are
complex and require quite high processing costs. Additionally, in some special
situations such as a forest fire, the application monitoring those events must face a
sudden rise in data updates.

In such streaming applications, the high costs of disk accesses overload the storage
system. Processing a high volume of continuous data requires numerous disk accesses
in the storage system in order to write new incoming data into disk and update the
index structure. Processing retrieval queries also causes many disk accesses to look up
the index structure and retrieve the corresponding data from disk. In the case of

 DCF: An Efficient Data Stream Clustering Framework for Streaming Applications 115

temporary load peaks, the situation would become much more severe. Considering
these challenges, for streaming applications, exploiting traditional data management
systems, which are designed to support applications over static data sets, is
inappropriate.

In this paper, we propose DCF (Data Stream Clustering Framework), a novel
framework that supports efficient data stream archiving for streaming applications. It
can handle high rates of data insertion and adapt to sudden spikes in the input rate while
not degrading retrieval performance. DCF can reduce a great amount of disk I/O for
both index updates and look-ups. The key idea of DCF is adopting the scheme of cluster
indexing, in which the storage system stores data in units of clusters and leaf nodes in
the index structure point to clusters instead of individual data. In the case of an insertion,
a set of data is grouped into a cluster based on a clustering policy and inserted the
cluster via a single insertion operation. Hence, the total number of insertion operations,
each of which causes multiple disk accesses, can be considerably reduced. In addition,
DCF constructs the resulting index structure with fewer indexing nodes, thereby
reducing the index lookup time. DCF also provides the ability to adapt to load
fluctuations by monitoring the rate of incoming data and controlling cluster size.

The cluster indexing scheme could cause two additional overheads in retrieving
data from disk, since the retrieval operation returns data in units of clusters, not as
individual data items. Depending on the cluster size, a cluster could occupy more than
one disk block and thus may require multiple disk block accesses to get a cluster from
disk. Thus, although the larger cluster size yields the better insertion performance, the
retrieval performance is decreased as the cluster size increases. However, typically
retrieving a data item from disk requires at least one disk block access. A good
compromise is confining the cluster size less than one block, thereby avoiding this
overhead. There is another overhead in filtering out unwanted data from a retrieved
cluster, but this computation cost of post-processing can be ignored. Typically, the
dominant cost of processing a query is the time that it takes to bring a block from disk
into main memory. Once we have fetched the block, the time to scan the entire block
is negligible.

The rest of the paper is organized as follows. Section 2 describes the proposed DCF.
In Section 3, we discuss the scheme of cluster indexing. Section 4 presents experimental
results. Section 5 reviews related work. Finally, Section 6 concludes our work.

2 DCF Framework

This section details how our DCF framework is constructed and how it handles a
large number of data streams and queries. As shown in Figure 1, DCF is composed of
three components: the Clusterer, Load Monitor, and Query Handler. The back-end
storage system is responsible for indexing, storing and retrieving stream clusters.

Our framework processes two types of queries: insertion and retrieval queries. For
insertion requests, which are stream data elements, the Clusterer first receives and
clusters them according to the clustering policy. The clustering policy is a system
parameter set by the system administrator. Then, data elements are stored in the
internal buffer and periodically sent to the back-end storage system.

116 K. Cho et al.

Fig. 1. Overall Architecture of DCF

In the case of a retrieval queries, the Query Handler (QH) temporarily stores the
query information for post-processing, then forwards the query to the storage system.
The QH has to delay the forwarding of the query until all the corresponding data are
processed and stored in the storage system. Since the result is in the form of clusters,
the QH needs to do post-processing on the result. Next, we will describe each
component in detail.

Clusterer
The Clusterer receives data streams from data stream sources. Its primary role is
making incoming data into a set of clusters. When receiving a data element, the
Clusterer assigns it to the proper cluster, and then loads the data into the buffer. In
order to prevent the storage system from being overloaded, the Clusterer should
bound the total number of generated clusters to the maximum available update rate
that the storage system can hold. The Clusterer receives the data arrival rate from the
Load Monitor and uses this information for load adaptation. Depending on the data
input rate, more data elements are included in one cluster. Also, note that the
Clusterer could use multiple threads to manage multiple requests efficiently.

Load Monitor (LM)
The Load Monitor is in charge of monitoring the data input rate and notifying the
Clusterer. Once the input rate of stream data reaches a threshold, the LM warns the
Clusterer.

Query Handler (QH)
The Query Handler is mainly responsible for processing retrieval queries. Since the
query result is a series of clusters, it could contain a set of data not matching the range
of user’s query. Thus, the QH unpacks the clusters and filters out unnecessary data
elements in order to return the exact query results. For this filtering process, the QH
stores and maintains a list of user queries, which are registered in the Query
Repository when receiving them. In the context of streaming applications, it is
common for a number of users to show similar interests. Thus, with the aid of more
intelligent refinement or buffering scheme, the query processing could be further
optimized by reusing the pre-fetched clusters.

Query Handler

Storage System

Clusters

Query Result

Data Stream

Query

Retrieved
Clusters

Load
Monitor

Clusterer

Buffer
Query

Repository
Buffer

 DCF: An Efficient Data Stream Clustering Framework for Streaming Applications 117

3 Cluster Indexing

This section describes the difference between cluster indexing and data indexing, and
several advantages of cluster indexing.

Index StructureData Stream Index StructureData Stream

(a) Data Indexing

Index StructureClustererData Stream Index StructureClustererData Stream

(b) Cluster Indexing

Fig. 2. Brief scheme of data indexing and cluster indexing

Figure 2-(a) shows data indexing, the existing indexing process where leaf nodes in
the index structure point to individual data. On the other hand, Figure 2-(b) shows
cluster indexing where the storage system stores data in units of clusters grouped by
the Clusterer. Leaf nodes in the index structure point to clusters instead of individual
data. Hence, cluster indexing leads to an index structure with fewer nodes as
compared to data indexing and thus reduce the tree height of the index structure.
Given N number of data and fanout f, the height of index structure can be described as

1log −= Nh f
. Since cluster indexing reduces the total number of indexed objects N

to N’=N/C, where C is average cluster size, the height of resulting index structure is
likely to be reduced.

Cluster indexing, which has the reduced number of the indexed objects, provides
several advantages in both insertion and retrieval operations. It can reduce the number
of disk I/O occurred in insertion operations by reducing the frequency of updating
index structure. Due to the shortened height of the resulting index structure, the
number of nodes visited by a retrieval query is decreased. Cluster indexing is also
beneficial in supporting complex queries such as region query or k-nearest-neighbor
query. As noted, cluster indexing groups individual data based on its proximity and
stores them in one cluster. Thus, for collecting a number of data belonging to the
queried area, cluster indexing only need to search a small number of clusters.

118 K. Cho et al.

We use R-tree (an R-tree [1] or one of its variants) as an index structure for cluster
indexing. We assume that the main purpose of data stream archiving is online
analytical processing and data mining operations, so the most prevalent query type is
the multi-attribute range query. R-tree is the most common index structure for such
query type. Also, R-tree doesn’t need to be modified for cluster indexing, since R-tree
and our cluster indexing scheme use the same data representation type. Every object
is abstracted as Minimum Bounding Rectangle (MBR) in R-tree and the Clusterer
represent clusters as MBR.

4 Experiment

In this section, we demonstrate the performance benefit of DCF compared with the
existing approach. For evaluation, we made DCF prototype in GNU C/C++ and we
ran performance comparisons on the Linux platform. For rapid DCF prototyping,
existing library package including the R-tree and the storage manager [15] was used
for the storage system. The fill factor of the R-tree is set to 40% and the maximum
number of entries each node can hold in the R-tree index structure is set to 100.

As an experimental scenario, we suppose that DCF is used for a taxi location
tracking application. It receives and manages all the position data of taxis in a
downtown area. Our experimental scenario is modeled with the following parameters:
(1) the size of the area is 30Km x 30Km, (2) the total number of taxis varies from
1,000 to 8,000, (3) every taxi reports its new position – longitude, altitude, and time -
every three seconds, (4) all the taxis move at an average speed of 60Km/h, (5) initially
all vehicles are uniformly distributed over the whole area and continue to move to the
top-right direction. According to the above scenario, we synthetically generate position data
of vehicles using the “Generate_Spatio_Temporal_Data” (GSTD) [14], which is a well-
known spatiotemporal data generator.

Clustering policies affect the retrieval performance of the index structure. To show
this effect, we present three different clustering algorithms, which are a well-known
K-means clustering algorithm, a 3D R-tree clustering algorithm which is used for
spatiotemporal databases, and a Hash-based clustering algorithm.

The Hash-based clustering is the simplest way to group data streams into clusters.
Each data consists of several attributes. Entire attributes’ value ranges are divided into
equal sized grids in the Hash algorithm. Incoming data stream’s attribute values are
hashed into a specific grid. Data in the same grid are periodically grouped into a
cluster. In this scheme, there is no overlap between clusters.

The K-means clustering [17] is the most popular clustering algorithm. We give
parameter values; the number of clusters k, the coarsening value C, and the refining
value R, and the flush values fmin and fmax. Initially, the first k data become a cluster
of size one, and the next data elements are assigned to the closest cluster. After
finishing the first assignment, the K-means algorithm repeats the calculation of the
centroid for each cluster and reassigns all data to the closest cluster.

The 3D R-tree clustering periodically builds a small in-memory 3D R-tree [18]
with incoming data stream. Data elements pointed to by the same leaf-node of the in-
memory R-tree are grouped as one cluster. Because the tree algorithm is a one-pass
algorithm, overlaps between clusters are much larger than other two clustering
algorithms.

 DCF: An Efficient Data Stream Clustering Framework for Streaming Applications 119

1.E+06

1.E+07

1.E+08

1.E+09

0 2,000 4,000 6,000 8,000

of objects

 #
 o
f
 d
is
k
 I
/
O

Hash

K-mean

3D R-tree

OBO

Fig. 3. Insertion performance with varying number of objects

In order to examine the insertion performance of DCF, we measure the total number
of disk I/O for updating the index structure. The two hours of position data generated
from 1,000, 2,000, 4,000, and 8,000 cars are inserted into the index structure. As
shown in Figure 3, in the case of OBO insertion, the total number of disk I/O increases
with the number of objects. However, in the case of the clustering schemes, the total
number of disk I/O remains stable since our cluster indexing scheme generates equal or
fewer clusters than the maximum number of data which can be handled by the storage
system, which is assumed to be 200 insertions per second in our experiment.

The total number of nodes at each level after finishing the whole insertion process
is shown in Table 1. We can see that DCF has a smaller space requirement than OBO
insertion.

Table 1. Total number of nodes and height of the resulting R-tree index structure

Hash-based K-mean 3D R-tree OBO
of objects

of nodes Height # of nodes Height # of nodes Height # of nodes Height
1,000 19,370 4 16,370 4 21,246 4 63,779 4
2,000 22,612 4 19,591 4 22,562 4 120,846 4
4,000 23,168 4 21,553 4 22,774 4 233,901 5
8,000 24,429 4 22,755 4 22,800 4 394,652 5

We also investigate the retrieval performance of our approach. The query type is the
window query, which is “find all objects that exists in a certain area during a certain time
range.” The ranges of queries are 0.05%, 0.1%, 0.5%, and 1% of the total range with
respect to each dimension. Each query set includes 1,000 queries. We measure the total
number of disk I/O caused by index lookup operations to process each query set when
the R-tree is populated with data generated from 1,000, 2,000, 4,000, and 8,000 objects.

As seen in Figure 4, DCF using the Hash-based and the K-mean clustering
algorithms outperforms the existing OBO approach. However, DCF using the 3D R-
tree clustering algorithm shows that its retrieval performance decreases more severely
as the query range increases. From 0.1% of the query range, the 3D R-tree clustering
algorithm generates a resulting R-tree having worse retrieval performance than OBO
insertion. This indicates that DCF does not always provide better retrieval
performance than OBO insertion. We measure the MBR overlap between clusters

120 K. Cho et al.

0

5,000

10,000

15,000

20,000

25,000

0 2,000 4,000 6,000 8,000

of objects

#
 o
f
d
is
k
 I
/
O

Hash

K-mean

3D R-tree

OBO

(a) query range: 0.05%

0

5,000

10,000

15,000

20,000

25,000

0 2,000 4,000 6,000 8,000

of objects

#
 o
f
d
is
k
 I
/
O

Hash

K-mean

3D R-tree

OBO

(b) query range: 0.1%

0

20,000

40,000

60,000

80,000

0 2,000 4,000 6,000 8,000

of objects

#

o
f
 d
is
k

I/
O

Hash

K-mean

3D R-tree

OBO

(c) query range: 0.5%

0

50,000

100,000

150,000

0 2,000 4,000 6,000 8,000

of objects

#
 o
f
d
is
k
 I
/
O

Hash

K-mean

3D R-tree

OBO

(d) query range: 1%

Fig. 4. Retrieval Performance with varying number of objects at different query ranges

Table 2. MBR overlap of clusters generated over the same period

of objects Hash-based K-mean 3D R-tree
1,000 0.00E+00 3.88E-11 1.94E-10
2,000 0.00E+00 5.54E-10 1.23E-08
4,000 0.00E+00 5.56E-09 3.69E-07
8,000 0.00E+00 3.12E-08 1.27E-06

generated over the same period as shown in Table 2. The larger overlap increases the
number of nodes to be traversed and results in an inefficient index structure. The
clusters generated by the 3D R-tree clustering algorithm show the largest overlap
between clusters such that its overlap is almost two orders of magnitude larger. Thus,
although cluster indexing generates fewer objects to be indexed and allows the
resulting R-tree to be more compact, a poor clustering algorithm like the 3D R-tree
clustering algorithm results in an index structure with poor retrieval performance.

5 Related Work

Many researchers have studied indexing overhead reduction, since indexing is the
most serious bottleneck in handling large amounts of data. [2][3] try to mitigate
indexing overhead by dropping those updates which do not affect the current
structure. They are very effective in handling position data of moving objects.
However, they are not suitable for data archiving where every update should be

 DCF: An Efficient Data Stream Clustering Framework for Streaming Applications 121

recorded without any loss of data. a bottom-up R-tree [4] speeds up index updates by
utilizing locality among incoming data.

Bulk loading approaches [5][6][7][8][9][10] have been proposed to efficiently
build multidimensional index structures such as R-trees on massive amounts of data.
In these approaches, input data are first sorted according to a certain criteria such as
proximity. Then, a number of sorted data are grouped together and the index tree is
built upon the data groups. The indexing overhead is reduced by about a factor of the
average size of the groups. However, since all the data should be known before using
bulk loading, this approach can not be used directly for streaming applications, where
data are continuously coming from data sources.

Bulk updating, a.k.a. bulk insertion, [11][12][13] is an approach to efficiently load
a bulk of data into an already existing index tree. [11] achieves this goal by creating
new index trees on partitions of incoming data, then the index trees are merged with a
pre-existing big tree. [12] further improves the performance of index merging by
exploiting the characteristics of an existing index tree while constructing a new small
index tree. However, there still remains the problem of how to efficiently build the
small tree when updates occur very frequently. [13] reduces the frequency of index
updates by delaying the propagation of insertions to other tree nodes until a threshold
number of data are collected. But this approach requires too much main memory for
buffering. Especially, this problem becomes very serious in historical data archiving
since the indexing tree grows endlessly. In addition, bulk updating techniques do not
address the problem of adapting to load fluctuations, which happens frequently when
dealing with stream-based applications.

6 Conclusion

In this paper, we describe DCF, a novel framework that supports data stream
archiving for streaming applications. High volumes of continuously arriving data
cause a lot of disk I/O, overloading the storage system. The proposed framework,
DCF can reduce a great amount of disk I/O in both updating and looking up index
structure. The basic idea of DCF is indexing a group of data, namely a cluster, instead
of individual data. Our experimental studies show that DCF is very effective in
reducing disk I/O resulting from updating index structures, and it is beneficial in
reducing the number of disk accesses required to process queries due to the
compactness of the index structure.

Possible future works include thorough cost analysis in order to reveal influential
factors to retrieval performance, exploration about standard criterion for developing a
clustering algorithm, and an adaptive load management mechanism for DCF.

References

1. Antonin Guttman, R-Trees: A Dynamic Index Structure for Spatial Searching, In
Proceedings of ACM SIGMOD, pages 47-57, 1984

2. Ouri Wolfson, A. Prasad Sistla, Sam Chamberlain, and Yelena Yesha, Updating and
Querying Databases that Track Mobile Units, Special issue on mobile data management and
applications of distributed and parallel databases, Vol. 7, Issue 3, July, 1999, pp 257-387

122 K. Cho et al.

3. Dongseop Kwon, Sangjun Lee, and Sukho Lee, Indexing the Current Positions of Moving
Objects Using the Lazy Update R-tree, Proceeding of the Third International Conference
on Mobile Data Management, Singapore, January, 2002

4. Mong Li Lee, Wynne Hsu, Christian S. Jensen, Bin Cui, and Keng Lik Teo, Supporting
Frequent Updates in R-Trees: A Bottom-Up Approach, In Proceedings of the 29th VLDB
Conferences, Berlin, Germany, pages 608-619, 2003

5. Christos Faloutsos, M. Ranganathan, and Yannis Manolopoulos, Fast Subsequence
Matching in Time-Series Databases, Proceeding of ACM SIGMOD Conference,
Mineapolis, MN, 1994.

6. Ibrahim Kamel, and Christos Faloutsos, On Packing R–trees, Proceedings of the second
international conference on Information and Knowledge Management, Washington D.C.,
US., pp 490-499, 1993

7. D. J. Dewitt, N. Kabra, J. Luo, J. M. Patel, and J.-B. Yu. Client-server Paradise, In
Proceedings of the 20th International Conference on Very Large Data Base (VLDB ’94),
pages 558-569, Morgan Kaufmann, 1994

8. Kamel, M. Khalil, and V. Kouramajian, Bulk insertion in dynamic R-trees. In Proceedings
of the 4th International Symposium on Spatial Data Handling (SDH ’96), pages 3B.31-
3B.42, 1996

9. S. T. Leutenegger, M.A. Lopez, and J. Edgington. STR: A simple and efficient algorithm
for R-tree packing. Proceedings of the Thirteenth International Conference on Data
Engineering, pages 497-506, 1997

10. N. Roussopoulos and D. Leifker, Direct spatial search on pictorial databases using packed
R-trees, In Proceedings ACM-SIGMOD International Conference on Management of
Data, SIGMOD Record, Vol 14.4, pages 17-31

11. Li Chen, Rupesh Choubey, and Elke A. Rundensteiner, Bulk-insertions into R-trees using
the samll-tree-large-tree approach. In Proceedings of the sixth ACM international
symposium on Advances in geographic information systems, pages 161-162, 1998.

12. Taewon Lee, Bongki Moon, and Sukho Lee, Bulk Insertion for R-tree by Seeded
Clustering, Proceeding of the DEXA 2003, pp. 129-138

13. L. Arge, K. H. Hinrichs, J. Vahrenhold, and J. S. Vitter, Efficient Bulk Operations on
Dynamic R-trees. Algorithmica, 33 (1), pages 104-128, 2002

14. Yannis Theodoridis, and Mario A. Nascimento, Generating Spatiotemporal Datasets on
the WWW, SIGMOD Record, Vol 29., No 3., pp 39-43, 2000

15. http://www.cs.ucr.edu/~marioh/spatialindex/index.html
16. Lukasz Golab, M. Tamer Ozsu, Data Stream Management Issues – A Survey, Technical

Report CS 2003-08, University of Waterloo, April 2003
17. M. R. Anderberg, Probability and Mathematical Statistics, Academic Press, New York,

San Francisco, London, 1973
18. M. Vazirgiannis, Y. Theodoridis, and T. Sellis, Spatio-temporal composition and indexing

for large multimedia applications, Multimedia Systems, 6(4):284-298, 1998

	Introduction
	DCF Framework
	Cluster Indexing
	Experiment
	Related Work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

