
A Context-Aware Preference Model for Database
Querying in an Ambient Intelligent Environment

Arthur H. van Bunningen, Ling Feng, and Peter M.G. Apers

Centre for Telematics and Information Technology, University of Twente,
P.O. Box 217, 7500 AE Enschede, The Netherlands

{bunninge, ling, apers}@cs.utwente.nl

Abstract. Users’ preferences have traditionally been exploited in query person-
alization to better serve their information needs. With the emerging ubiquitous
computing technologies, users will be situated in an Ambient Intelligent (AmI)
environment, where users’ database access will not occur at a single location in a
single context as in the traditional stationary desktop computing, but rather span a
multitude of contexts like office, home, hotel, plane, etc. To deliver personalized
query answering in this environment, the need for context-aware query prefer-
ences arises accordingly. In this paper, we propose a knowledge-based context-
aware query preference model, which can cater for both pull and push queries.
We analyze requirements and challenges that AmI poses upon such a model and
discuss the interpretation of the model in the domain of relational databases. We
implant the model on top of a traditional DBMS to demonstrate the applicability
and feasibility of our approach.

1 Introduction

With the coming anytime/anywhere ubiquitous data access paradigm in an AmI envi-
ronment, context plays an important role in information delivery and dissemination.
Database and recommendation systems nowadays are more and more aware of the con-
text while serving users’ information needs. In this paper, we investigate user’s query
preferences in an AmI environment, taking their applicable contexts into account. Our
design of the context-aware preference model is influenced and guided by the following
AmI philosophies:

– Smartness requirement. The smartness requirement in an AmI environment implies
reasoning and learning capabilities that the preference model must possess, calling
for an inevitable knowledge ingredient. For example, a user may input a preference
like prefer a nearby restaurant when the weather is bad. With the model, it should
be able to infer the applicability of the preference no matter whether it rains or
snows, since both are bad weather.

– Proactiveness requirement. Following the smartness requirement, the database sys-
tems in an AmI environment should proactively deliver anytime/anywhere useful
information to their users. The designed context-aware query preference model
should therefore provide sufficient flexibility and adaptiveness to the two access
modes, namely pull query where users actively query databases to pull relevant in-
formation, and push query where the systems push proactively possibly relevant

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 33–43, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

34 A.H. van Bunningen, L. Feng, and P.M.G. Apers

information to users (e.g., querying the background information about a person
when s/he enters a room).

– Closure requirement. To support preference propagation and deduction, the model
should preferably possess the closure property so that the output preference can
serve as the input context of some other preferences. For instance, suppose a user
has two preferences: “prefer cheerful TV programs when having a bad mood” and
“prefer channel 5 if looking for cheerful TV programs” As a consequence, when
this user has a bad mood, cheerful TV programs on channel 5 will be the most
preferable program alternatives for him/her.

– Scalability requirement. Performance is highly demanded at data management level
to process real-time queries raised by different users anytime/anywhere in an AmI
environment. The context-aware preference model must be easily interpreted and
executed in a database world to achieve scalability.

– Traceability requirement. The behaviors of database querying systems in an AmI
environment, and thus the preference model should be traceable by the users. In
other words, it should be possible for a human to conveniently enter, view, and edit
context-aware preferences in a way which is close to the world model of the users.
An intuitive user-friendly interface for preference declaration is therefore needed.

In the following sections, we first review some closely related work in Section 2. We
present our knowledge-based context modeling approach, followed by the context-
aware query preference modeling using Description Logics in Section 3. We depict
a framework for implanting this model on top of a traditional DBMS, and interpret the
model in a relational database in Section 4. The implementation of the model in serving
pushing queries is illustrated in Section 5. We conclude the paper in Section 6.

2 Related Work

The notion of preference query was first introduced to the database field in [1]. It
extended the Domain Relational Calculus to express preferences for tuples satisfying
certain logical conditions. Since its introduction, extensive investigation has been con-
ducted, and two main lines of approaches have been formed in the literature to deal
with users’ preferences, namely, quantitative and qualitative [2]. The qualitative ap-
proach intends to directly specify preferences between the tuples in the query answer,
typically using binary preference relations. An example preference relation is “pre-
fer one book tuple to another if and only if their ISBNs are the same and the price
of the first is lower.” These kinds of preference relations can be embedded into re-
lational query languages through relational operators or special preference construc-
tors, which select from their input the set of the most preferred tuples (e.g., winnow
[2], PreferenceSQL BMO [3], and skyline [4]). The quantitative approach expresses
preferences using scoring functions, which associate a numeric score with every tu-
ple of the query. Then tuple t1 is preferred to tuple t2 if and only if the score of t1 is
higher than the score of t2. A framework for expressing and combining such kinds of
preference functions was provided in [5]. [6] presented a more rich preference model
which can associate degrees of interest (like scores) with preferences over a database
schema.

A Context-Aware Preference Model for Database Querying in an AmI Environment 35

Recently, situated and context-aware preferences start to receive attentions due to the
fact that user preferences do not always hold in general but may depend on underlying
situations [7,8]. [7] used the ER model to model different situations. Each situation has
an id and consists of one timestamp and one location. It can also have one or more
influences (e.g., a personal and a surrounding influence). Such situations are linked
with uniquely identified preferences through a m:n relation. An XML-based preference
repository was developed to store and manage the situated preferences. [8] used a com-
bination of context and non-context attribute-value pairs associated with a degree of
interest to define a preference. The work reported in this paper distinguishes from these
two studies in the following three aspects. First, our study targets at the Ambient In-
telligent environment which has high demands on smartness, reasoning, proactiveness,
traceability, etc. Driven by these requirements, we propose a knowledge-based context-
aware preference model, where both contexts and preferences are treated in a uniform
way using Description Logics. Second, we take both pull and push queries into consid-
eration while designing our context-aware query preference model. Third, we interpret
and implant this preference model upon a traditional DBMS.

3 A Knowledge-Based Context-Aware Query Preference Model

A context-aware query preference states, among a set of alternatives, a particular like
or dislike for some of these alternatives under certain contexts, like “prefer sporting TV
programs when the user is dinning”, “prefer TV programs of the human interest genre
when the user is doing some free time activity with some friend(s) around”, etc. The
term context here refers to the situation under which a database access happens. Our
context-aware query preference model tightly couples a preference with its applicable
contexts, and expresses both in a uniform way.

In the following, we describe our approach of modeling context, followed by the
representation of context-aware query preferences.

3.1 Context Categorization and Modeling

We view context from two perspectives: user-centric and environmental [9]. Examples
of user-centric contexts are: user’s background (e.g., working area, friends, etc.), behav-
ior (activity, intention, etc.), physiological state (temperature, heart rate, etc.), and emo-
tional state (happy, sad, fear, etc.). Environmental contexts can be physical environment
(e.g., location, time, humidity, etc.), social environment (e.g., traffic jam, surrounding
people, etc.), and computational environment (e.g., surrounding devices, etc.).

In the literature, there exist several possibilities to model context. Most of them are
surveyed in [10,11], where it is concluded that ontology based languages are prefer-
able for context modeling. Driven by the reasoning/inference requirement as described
in Section 1, we exploit a variant of Description Logics (DL) to represent context for
several reasons. First, DL [12] is a (decidable) fragment of first order logic, and is espe-
cially suited for knowledge representation. It forms the basis of ontological languages
such as OWL, which has been used to model context in [13]. Furthermore, there exist
many tools for dealing with DL knowledge bases such as reasoners and editors. Finally,

36 A.H. van Bunningen, L. Feng, and P.M.G. Apers

extensive research has been conducted to investigate the relationship between databases
and DL, and map a DL knowledge base into database schemas [14].

As known, a DL knowledge base consists of a TBox and an ABox. The TBox
(i.e., the vocabulary) contains assertions about concepts (e.g., Child, Female) and roles
(e.g., hasRoom, hasActivity). The ABox contains assertions about individuals (e.g.,
ROOM3061). Concepts and roles can be either atomic or constructed using concept
and role constructors intersection (�), union (�), and complement (¬) (e.g., Child �
Female, hasRoom � hasActivity). The top concept (�) and bottom concept (⊥) de-
note respectively all individuals and no individuals. A role specific operator is the
role-inverse which defines the inverse of a certain role (e.g., roomOf is the inverse of
hasRoom, denoted as hasRoom ≡ roomOf−1). Moreover, roles can have full and exis-
tential quantification (e.g., ∀ hasChild.Female denotes the individuals of whose children
are all female, and ∃ hasChild.Female denotes the individuals having a female child).
A concept expression contains a set of concepts and/or quantified roles which are con-
nected via concept and role constructors. The basic inference on concept expressions in
DL is subsumption C 	 D, which is to check whether the concept denoted by D (the
subsumer) is more general than the one denoted by C (the subsumee).

We use DL to describe a world model (i.e., ontology) upon which our context-aware
query preferences can be founded. A small ontology example is given in Figure 1, where
concepts are represented in CamelCase (e.g. OfficeActivity) , roles in lowerCamelCase
(e.g. hasRoom), and individuals in all capital letters (e.g. ROOM3061).

We express diverse contexts of query preferences via DL concept expressions. For
example, the DL concept expression {PETER}�(∃hasActivityType.FreeTimeActivity)�
(∃ hasFriend(∃ hasRoom(∃ roomOf .{PETER}))) describes such a context that user PE-
TER is doing some free time activity with at least one friend in the same room.

Person � Thing � ∀ hasRoom.Room ActivityType � Thing

� ∀ hasActivityType.ActivityType FreeTimeActivity � ActivityType

� ∀ hasFriend.Person Relaxing � FreeTimeActivity

� ∀ hasTvInterest.Genre Sporting � FreeTimeActivity

Room � Location Location � Thing

TVProgram � Thing � ∃ hasGenre.Genre Genre � Thing

hasRoom ≡ roomOf −1 hasTvInterest ≡ tvInterestOf −1

Fig. 1. A simplified ontology example using DL

3.2 Context-Aware Query Preference Modeling

Beyond contexts, DL concept expressions also offer a natural way to convey infor-
mation needs. For instance, the DL concept expression TvProgram � (∃ hasGenre.
{HUMAN-INTEREST}) can be viewed as a query which selects all TvProgram in-
dividuals of the HUMAN-INTEREST genre. Therefore, in a similar fashion as context,
we describe users’ preferences through DL concept expressions. Formally, we define a
context-aware query preference as a tuple of the form (Context, Preference), where

A Context-Aware Preference Model for Database Querying in an AmI Environment 37

Context and Preference are DL concept expressions. When a preference is applicable
to any context, Context = �.

As an example, user PETER’s context-aware query preference “prefer TV programs
of the human interest genre while doing some free time activity” can be specified as:

Context :{PETER} � (∃ hasActivityType.FreeTimeActivity)

Preference :TvProgram � (∃ hasGenre.{HUMAN-INTEREST})

In comparison with this preference example, where the preferred genre (HUMAN-
INTEREST) of TV programs is a constant, sometimes, a users preference varies with
the concrete context. For instance, “prefer TV programs of the common genre interests
while with at least one friend in the same room”. In this case, the preferred genres of
TV programs depend on whom the user is with at that moment. In this case, we use a
variable v to denote it:

Context :{PETER} � (∃ hasFriend.((∃ hasRoom.(∃ roomOf .{PETER})) � v)

Preference :TvProgram � (∃ hasGenre.((∃ tvInterestOf .{PETER}) � (∃ tvInterestOf .v)))

We call this kind of preferences variable context-aware query preference, and the
former constant context-aware query preference.

4 Implanting the Context-Aware Query Preference Model on Top
of a DBMS

Context-aware query preferences can assist two kinds database accesses. 1) In the pull
access mode, context-aware preferences can be used for query augmentation (e.g., en-
forcing the query constraint genre=“HUMAN-INTEREST” to the user’s query over
TV programs when s/he is doing some free time activity with some friend(s) in the
same room.) 2) In the push access mode, context-aware preferences can be used as
query triggers (e.g., retrieving the background information about a person when s/he is
nearby).

4.1 The Framework

Figure 2 shows the pull-push query execution framework equipped with the context-
aware query preference model. It contains six major components. 1) The context sup-
plier is responsible for supplying the current query context Contextcur. Some static
contexts like user’s background, friends, TV programs, etc. can be obtained from
context database; while some dynamic contexts like user’s location, emotion, traffic,
surrounded people, etc. can be obtained from sensors or external service providers. 2)
The preference selector selects from the preference repository relevant context-aware
query preferences, if necessary by reasoning. A context-aware preference (Context,
Preference) is related to a database access if (Contextcur 	 Context) and the pref-
erence Preference contains concepts which can be mapped to certain relations in-
cluded in the user’s query quser (pull query) or included in the database (push query).
3) In the pull mode, the query adaptor augments user’s query quser with the rele-
vant preference, and optimizes it further into q′

user. 4) In the push mode, the query

38 A.H. van Bunningen, L. Feng, and P.M.G. Apers

Query adapter
(pull mode)

Environment

Access log

Context supplier

User

Context DB

Preference managerPreferencePreference selector

Query trigger
(push mode)

Preference miner

DBMS

quser

context

r

q’user qtrigger

Fig. 2. The preference aware pull-push query framework

trigger proactively generates a query qtrigger according to the preference, and sends it
to the underlying DBMS for execution. 5) User-system interactions are recorded in
the access log, from which the preference miner can discover users’ context-aware
preferences. Users can also directly input their preferences. 6) The Preference man-
ager is responsible for storing, maintaining, and managing users’ context-aware
preferences.

4.2 Explicating the Context-Aware Query Preferences in a Database World

To integrate context-aware preferences with database queries, we need to provide a way
which can explicate context-aware query preferences (including Context DL concept
expression and Preference DL concept expression) in a database world1.

Since the basic elements of DL are concepts and roles, we propose to view each
concept as a table, which uses the concept name as the table name and has one ID
attribute. The tuples of the table correspond to all the individuals of the concept.
A virtual table TOPTABLE contains all the individuals in the domain. Similarly, we
view each role as a table, with the role name as its table name and containing two at-
tributes SOURCE and DESTINATION. For each tuple of the table, the role relates the
SOURCE individual with the DESTINATION individual. Figure 3 gives examples of
this method.

We adapt the approach of [15] to express DL concept expressions using SQL queries
(Table 1, where C, D, E are DL concepts, R is a DL role, and a is a DL individual).

An important remark here is that we provide a uniform tabular view towards both
static and dynamic contexts, despite the later (e.g., location, surrounding people, etc.)
must be acquired real-time from external sources/services like sensor networks. This
is in line with the efforts of the sensornet community which has embraced declarative

1 We focus on the relational data model in this study.

A Context-Aware Preference Model for Database Querying in an AmI Environment 39

ID
ERIC
PETER
MAARTEN
...

Person
ID
ROOM3061
ROOM4061
...

Room
ID
OPRAH
24
VOYAGER
...

TVProgram
ID
READING
SLEEPING
PLAYPIANO
...

Relaxing

SOURCE
ERIC
PETER
PETER
...

hasFriend
DESTINATION
PETER
ERIC
MAARTEN
...

SOURCE
PETER
ERIC
MAARTEN
...

hasRoom
DESTINATION
ROOM3061
ROOM3061
ROOM4061
...

SOURCE
OPRAH
24
VOYAGER
...

hasGenre
DESTINATION
HUMANINTEREST
THRILLER
SCIFI
...

SOURCE
ERIC
PETER
MAARTEN
...

hasActivityType
DESTINATION
READING
SLEEPING
PLAYPIANO
...

SOURCE
ERIC
PETER
MAARTEN
...

hasTvInterest
DESTINATION
HUMANINTEREST
HUMANINTEREST
SCIFI
...

Fig. 3. Role and concept tables

Table 1. Mapping DL concept expressions to SQL query expressions

DL SQL
C SELECT ID FROM C
a VALUES (’a’)
� (SELECT ID FROM TOPTABLE)
⊥ NULL
¬D (SELECT ID FROM TOPTABLE) EXCEPT (SELECT ID FROM D)
D � E (SELECT ID FROM D) INTERSECT (SELECT ID FROM E)
D 	 E (SELECT ID FROM D) UNION (SELECT ID FROM E)
∃ R.D SELECT R.SOURCE FROM R WHERE R.DESTINATION IN (SELECT ID FROM D)
∀ R.D (SELECT ID FROM TOPTABLE) EXCEPT

(SELECT R.SOURCE FROM R WHERE DESTINATION IN
((SELECT ID FROM TOPTABLE) EXCEPT (SELECT ID FROM D)))

queries as a key programming paradigm for large sets of sensors [16]. Here, we take the
SQL query language as a uniform interface to the contexts. Another reason for doing
this is that AmI imposes the need for storing context histories, which can be explored
later for analysis purpose to achieve smartness [17].

With the mapping mechanism in Table 1, we can construct an SQL query for the DL
concept expression Context in (Context, Preference). A non-empty query result implies
that the current context includes/complies with Context. The associated Preference is
then activated for either query adaptation (when a user’s pull query contains table(s)
which is/are specified in Preference) or query trigger (where Preference is translated
into SQL as a proactive push query).

As an example, suppose a user raises a pull query for TV programs.

SELECT ID FROM TvProgram

The context-aware preference

Context :{PETER} � (∃ hasFriend.(∃ hasRoom.(∃ roomOf .{PETER})))
Preference :TvProgram � (∃ hasGenre.{HUMAN-INTEREST})

40 A.H. van Bunningen, L. Feng, and P.M.G. Apers

contains a concept TvProgram which appears in the query. Its Context expression is
translated straightforward into:

SELECT * FROM ((VALUES (’PETER’))
INTERSECT

(SELECT hasFriend.SOURCE FROM hasFriend
WHERE hasFriend.DESTINATION IN

(SELECT hasRoom.SOURCE FROM hasRoom
WHERE hasRoom.DESTINATION IN

(SELECT roomOf.SOURCE FROM roomOf
WHERE roomOf.DESTINATION IN (VALUES (’PETER’)))

))) AS contexttable

which can then be optimized into:

SELECT *
FROM hasFriend, hasRoom, roomOf
WHERE hasFriend.SOURCE = ’PETER’ AND

hasFriend.DESTINATION = hasRoom.SOURCE AND
hasRoom.DESTINATION = roomOf.SOURCE AND
roomOf.DESTINATION = ’PETER’

Note that to execute the above query, some reasoning is needed based on the knowl-
edge that roomOf is the inverse of hasRoom, and FreeTimeActivity embraces Relaxing,
Sporting, etc.

When the query returns a non-empty result, the original pull query will be augmented
with the additional constraint in the WHERE clause:

SELECT ID FROM TvProgram
WHERE ID IN

(SELECT hasGenre.SOURCE FROM hasGenre WHERE hasGenre.DESTINATION IN
(VALUES (’HUMAN INTEREST’)))

5 Implementation

We implement the context-aware preference model by creating a plugin for Protégé 2 (a
free open source ontology editor and knowledge-base framework) and apply the model
to push queries on top of DB2 DBMS through DB2 triggers.

The plugin enables one to define the world model (ontology), including the context
and preference notions. By combining both context and preference DL concept expres-
sions, context-aware query preferences can then be constructed and further stored in an
OWL-based knowledge base. This plugin can also facilitate the generation of the corre-
sponding relational database schema based on the ontology and preferences. A screen-
shot of inputing a preference’s applicable context DL expression is shown in Figure 4.

A context-aware query preference may trigger a push query proactively. For example,
consider a preference “retrieving the TV interest of the person when s/he enters room
ROOM3061”

Context :{v} � ∃ hasRoom.{ROOM3061}
Preference :∃ tvInterestOf .v

2 http://protege.stanford.edu

A Context-Aware Preference Model for Database Querying in an AmI Environment 41

Fig. 4. Screenshot of inputting a preference’s context expression

A DB2 query trigger can be created as follows (Figure 5):

CREATE TRIGGER queryTvInterest AFTER INSERT ON hasRoom
REFERENCING NEW AS n FOR EACH ROW

WHEN (n.DESTINATION IN VALUES (‘ROOM3061’))
SELECT SOURCE
FROM tvInterestOf
WHERE DESTINATION = n.SOURCE

Fig. 5. The trigger in DB2

42 A.H. van Bunningen, L. Feng, and P.M.G. Apers

According to the example database schema in Figure 3, the query result will include
HUMAN-INTEREST.

6 Conclusion

In this paper, we presented a context-aware query preference model for personalized in-
formation delivery and dissemination in an AmI environment. Revisiting the
challenges raised by AmI, we adopted a knowledge-based approach to facilitate reason-
ing/inference (smartness requirement). The natural correspondence between DL con-
cept expressions and data requests ensures the applicability of the model to both pull
and push queries (proactiveness requirement). Preferences and associated applicable
contexts are treated uniformly through DL concept expressions (closure requirement).
Interpreting the knowledge-based preference model into a database world enables to ad-
dress the scalability requirement. Through user-defined preferences, we can achieve the
traceability requirement. We implanted the model on top of a DB2 DBMS and created a
Protégé plugin was for defining, storing, and managing the context-aware preferences,
and applying them to database queries.

Of course there remains much more to be done. Next to obvious directions, such as
testing the scalability of the approach on realistic data sets and analyzing the expressive
power of the model, we are currently investigating the uncertainty problem due to the
imprecise context measurement and its impact on the context-aware query preference
model.

References

1. Lacroix, M., Lavency, P.: Preferences; putting more knowledge into queries. In: VLDB ’87.
(1987) 217–225

2. Chomicki, J.: Preference formulas in relational queries. ACM Trans. Database Syst. 28(4)
(2003) 427–466

3. Kießling, W.: Foundations of preferences in database systems. In: VLDB ’02. (2002) 311–322
4. Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: ICDE ’01. (2001) 421–430
5. Agrawal, R., Wimmers, E.: A framework for expressing and combining preferences. In:

SIGMOD ’00. (2000) 297–306
6. Koutrika, G., Ioannidis, Y.: Personalized queries under a generalized preference model. In:

ICDE ’05. (2005) 841–852
7. Holland, S., Kießling, W.: Situated preferences and preference repositories for personalized

database applications. In: ER ’04. (2004) 511–523
8. Stefanidis, K., Pitoura, E., Vassiliadis, P.: On supporting context-aware preferences in rela-

tional database systems. In: First International Workshop on Managing Context Information
in Mobile and Pervasive Environments (MCMP’2005). (2005)

9. Feng, L., Apers, P., Jonker, W.: Towards context-aware data management for ambient intel-
ligence. In: DEXA ’04. (2004) 422–431

10. Strang, T., Linnhoff–Popien, C.: A context modeling survey. In: Workshop on Advanced
Context Modelling, Reasoning and Management. (2004)

11. van Bunningen, A.: Context aware querying - challenges for data management in ambient
intelligence. Technical Report TR-CTIT-04-51, University of Twente, P.O. Box 217 (2004)

A Context-Aware Preference Model for Database Querying in an AmI Environment 43

12. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P., eds.: The Descrip-
tion Logic Handbook Cambridge University Press (2003)

13. Chen, H., Finin, T., Joshi, A.: The soupa ontology for pervasive computing. In: Ontologies
for Agents: Theory and Experiences. Springer. (2005)

14. Borgida, A.: Description logics in data management. IEEE TKDE 7(5) (1995) 671–682
15. Borgida, A., Brachman, R.: Loading data into description reasoners. In: SIGMOD ’93.

(1993) 217–226
16. Deshpande, A., Guestrin, C., Madden, S., Hellerstein, J., Hong, W.: Model-driven data ac-

quisition in sensor networks. In: VLDB ’04. (2004) 588–599
17. First international workshop on exploiting context histories in smart environments

(ECHISE). (2005)

	Introduction
	Related Work
	A Knowledge-Based Context-Aware Query Preference Model
	Context Categorization and Modeling
	Context-Aware Query Preference Modeling

	Implanting the Context-Aware Query Preference Model on Top of a DBMS
	The Framework
	Explicating the Context-Aware Query Preferences in a Database World

	Implementation
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

