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Abstract. Recent work on continuous queries has focused on processing queries
in very large, mobile environments. In this paper, we propose a system leveraging
the computing capacities of mobile devices for continuous range query process-
ing. In our design, continuous range queries are mainly processed on the mobile
device side, which is able to achieve real-time updates with minimum server load.
Our work distinguish itself from previous work with several important contribu-
tions. First, we introduce a distributed server infrastructure to partition the entire
service region into a set of service zones and cooperatively handle requests of
continuous range queries. This feature improves the robustness and flexibility of
the system by adapting to a time-varying set of servers. Second, we propose a
novel query indexing structure, which records the difference of the query distrib-
ution on a grid model. This approach significantly reduce the size and complexity
of the index so that in-memory indexing can be achieved on mobile objects with
constrained memory size. We report on the rigorous evaluation of our design,
which shows substantial improvement in the efficiency of continuous range query
processing in mobile environments.

1 Introduction

With the growing popularity of GPS-enabled mobile devices and the advances in wire-
less technology, the efficient processing of continuous range queries, which is defined
as retrieving the information of moving objects inside a user-defined region and contin-
uously monitoring the change of query results in this region over a certain time period,
has been of increasing interest. Continuous range query processing is very important
due to its broad application base. For instance, the Department of Transportation may
want to monitor the traffic change on a freeway section to develop a traffic control
plan. In a natural disaster, it is highly desirable to locate all fire engines within a cer-
tain area for emergency response. Continuous range queries pose new challenges to
the research community because the movement of objects causes the query results to
change correspondingly. Applying a central server processing solution where moving
objects periodically update their locations is obviously not scalable. On the other hand,
the growing computing capabilities of mobile devices has enabled approaches such as
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MobiEyes [2]] and M @M [1]] that use mobile devices to answer continuous range
queries, where a centralized server acts as a mediator. However, these solutions suffer
from some limitations. First, a centralized server is not robust enough under certain sit-
uations. In the mentioned example of natural disasters, some servers might be down or
only provide limited computational capacity. Therefore, it is highly desirable to have a
fault resilient infrastructure. Second, the communication between the server and mov-
ing objects should be minimized in order to manage data in large mobile environments.
Finally, the memory and computing capabilities of mobile devices are limited so that
the implementation of in-memory processing on moving objects needs to be carefully
considered.

In this paper, we address the problem of processing real-time continuous range
queries by proposing a robust and scalable infrastructure. The goal is to build a system
that supports a large number of moving objects with limited server and communication
resources. In our design, continuous range queries are mainly processed by mobile de-
vices. Our work distinguishes itself from previous work with two contributions. First,
we propose a distributed server infrastructure. We introduce the feature of service zones.
A service zone is a subspace being recursively binary partitioned from the entire service
region. Each server controls a service zone. Our system is able to adaptively allocate
and merge service zones as servers join or leave. In addition, we propose a novel grid
index on continuous range queries. Instead of recording the distribution of queries, our
design of grid index preserves the change of the query distribution and is more com-
pact than other grid index structures. Our experimental results show that our design is
very efficient to support numerous continuous range queries with a very large number
of moving objects under the mobile environments.

The rest of this paper is organized as follows. The related work is described in Sec-
tion2l In Section3 we introduce the design of service zones, grid index, and the support
of continuous range query processing. The experimental validation of our design is pre-
sented in Section[d] Finally, we discuss the conclusions and future work in Section[3

2 Related Work

A number of studies have addressed continuous spatial queries. Related work, such as
presented in [[10]], [L1], and [[14]], addressed the processing of continuous spatial queries
on the server. For the efficient processing of a large number of continuous queries at the
same time, Prabhakar et al. [7]] addressed the issue of stationary continuous queries in
a centralized environment. In addition, Mokbel et al. [S]] proposed SINA that supports
moving queries over moving objects in server-based processing. By contrast, MQM [[1]],
and MobiEyes [2] assume a distributed environment, where the mobile hosts have the
computing capability to process continuous queries. A centralized server is introduced
by both approaches to work as a mediator coordinating the query processing. In MQM,
the concept of resident domain is introduced as a subspace surrounding the moving
object to process continuous queries. Continuous queries are partitioned into a set of
monitor regions, where only the monitor regions covered by the resident domain will
be sent to the moving object. However, partitioning continuous queries is inefficient
because it increases the number of queries in the system.
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On the issue of moving object indexing, the TPR-Tree [9] and its variants have been
proposed to index moving objects with trajectories. However, the support of continuous
queries by these methods is very inefficient. Kalashnikov et al. [4] evaluated the effi-
ciency of indexing moving objects and concluded that using a grid approach for query
indexing results in the best performance. Other methods to process continuous queries
without a specific index can be found such as the usage of validity regions [11], safe
regions [3l, safe periods 5], and No-Action regions [13]]. These approaches have in
common that they return a valid time or region of the answer. Once the result becomes
invalid, the client submits the query for reevaluation.

Our work distinguishes itself from the above approaches, by specifically addressing
the scalability and robustness of the system. We adaptively organize servers to cooper-
atively work in the entire service space. Furthermore, we propose a grid index that is
able to be implemented as an in-memory data structure on mobile devices. There is no
restriction on the movement of objects and the system is extremely efficient to support
continuous range queries with a very large number of moving objects.

3 System Design and Components

3.1 System Infrastructure and Assumptions

Figure [Tl illustrates the system infrastructure of our design. We are considering mobile
hosts with abundant power capacity, such as vehicles, that are equipped with a Global
Positioning System (GPS) for obtaining continuous position information. We assume
that the mobile host has some memory and computing capacity to store the queries and
process range query operations. In our paper, we use the term moving objects to refer
to these mobile hosts participated in the query processing. On the base-station side,
our design has two assumptions. First, the servers and moving objects communicate
via cellular-based wireless network. Moreover, protocols such as GeoCast [6] can be
adopted for sending messages within a certain region. Second, the servers with spatial
databases are connected via the wired Internet infrastructure. Each server is able to
receive query requests from any user and forward them to the appropriate servers.

In our design, moving objects are represented as points and range queries are denoted
as rectangular regions. Given a set of moving objects and continuous range queries, the
challenge is to calculate which objects lie within which query regions at a certain time.
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Fig. 1. The system infrastructure
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In this paper, we focus on range queries, which are widely used in spatial applica-
tions and can be used as preprocessing tools for other queries, such as nearest neighbor
queries. For simplicity, we use the term queries to refer to continuous range queries in
the following sections.

3.2 Server Design

In this section, we describe our design of the server infrastructure. First, we describe
how the system adaptively manages the service region by adapting to a time-varying set
of servers through the concept of the service zone. Next, we present another important
feature, the grid index. By using the grid index, our system avoids excessive query
retrieval from the server and significantly reduces the communication overhead.
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Fig. 2. An example of the system with 7 servers and their service zone identifier (SID) tree

Service Zones. We leverages the design of Content Addressable Network (CAN) [8]]
to dynamically partition the entire service region into a set of subspaces. Each subspace
is controlled by a server. We define the term service zone as the subspace controlled
by a server. Each service zone is addressed with a service zone identifier (SID), which
is calculated from the location of the service zone. Figure Ph shows an example of the
entire service region partitioned into 7 service zones. The service zone partitioning is
a binary partition approach that always equally divides a larger service zone into two
smaller child service zones. Hence the corresponding SID address for service zones
can be represented with a binary tree structure as shown in Figure 2b. Each server
maintains a routing table with tuples (SID, address) storing the routing information
of its neighbor servers. By using the same routing mechanism as CAN, our system
is able to allocate any service zone with complexity of O(nlogn) in a system of n
servers.

When a new query ¢ is submitted, the system first forwards it to all servers covered
by its query region through the M-CAN multicast algorithm from the design of CAN.
When a server receives the query, it is inserted into the query repository. Consequently,
the grid index on the server is updated. We will describe the details of the grid index in
the next section. Finally, the server broadcasts a message GridIndexUpdate(Grndex)
to all moving objects associated with it, where G, 4¢. is the updated grid index.

When a query q is about to be deleted, the server searches through its repository to
delete the corresponding entry. Consequently, the server updates the grid index.
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When a new server joins the system, several steps must be taken to allocate a service
zone for it. First, the new server must find a bootstrap server, which is already a member
of the system. Second, the bootstrap server broadcasts a message that a new server is
about to join the system. Other servers in the system reply back with the information of
its current system load and service zone. Our goal is the balance the system load among
servers. Hence the server with the highest system load (for instance, average used disk
space, average memory usage, or other user identified resources) will be performed
a partition to divide the corresponding service zone into halves. Next, the bootstrap
server sends a message to the partitioned server to forward queries overlapping the new
server’s service zone. The partitioned server also broadcasts the updated service zone
information to moving objects associated with it. Moving objects register with the new
server if their current locations are controlled by the new server. After the new server
receives queries forwarded from the partitioned server, it creates and maintains the grid
index correspondingly. Finally, the neighbors of the partitioned server will be notified
to update their routing tables.

When a server leaves the system, we need to ensure that the corresponding service
zone is taken over by the remaining servers. The departing server explicitly hands over
its repository of moving objects and queries to one of its neighbors whose service zone
can be merged with the departing servers zone to produce a valid single service zone.

Grid Index. The memory capacity of moving objects is limited. On the other hand, it is
highly desirable to have an index structure that helps moving objects to retrieve queries
from the server only when they are very close to the queries. Therefore, the index also
needs to be compact in terms of the size to be used on moving objects. Here we present
a grid index structure fulfilling these requirements.

Previous work of grid-based indexing on continuous queries, such as [4] and [2]],
aims at random data access by recording the distribution of queries. However, objects
move continuously along a trajectory in mobile environments, therefore queries in large
parts of the service region can be pruned and no random access is needed. Based on this
observation, our grid index preserves the difference of the query distribution that can be
efficiently used for continuous query processing.

The basis of our grid index is a set of cells. Each cell is a region of space obtained
by partitioning the entire service region using a uniform order. Figure 3h demonstrates
a system with 7 servers. Figure Bb shows the entire service region divided into 64 grid
cells. Figure Bk shows how these grid cells are distributed on the example servers. By

[ i

(a) A 7 service zone example (b) A 64 grid cell example ~ (¢) Service zones and grid
cells overlapping

Fig. 3. Service zones and grid cells
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Fig. 4. The grid index

using a uniform grid order to partition the service region into grid cells, given the coor-
dinates of an object, it is easy to calculate the cell in which the object resides.

The server maintains the grid index in its service zone. For each cell, the grid index
structure consists of two lists identified as right, and lower that record the change of the
query distribution from the right and lower neighbor cells, respectively. In the example
shown in Figure h, a service zone is divided into 16 grid cells. Cell C'1, C2, and C3
are partially covered by a query Q1. There are queries ()2 and @3 covering the right
and left neighbor cells of C'1, repectively. As shown in Figure[h, the grid index for cell
C1,C2,and C31is {{+Q2}, {—Q1}},{ 0,0 }, and {{—Q3}, {—Q1}}, respectively.

Once a moving object is associated with a server, the
T server will forward the grid index of its service zone to
the moving object. By using the grid index stored in its
local memory the moving object is able to forecast the
setl | setZ l query locations with a refined granularity. As an exam-
e - x> xn ple shown in Figure @b, if there is a moving object o in
the cell C'1 is about to move across the right edge of C'1,
the right list of C'1 is {+@2}. Hence the object submits
a request to retrieve the query Q2 from the server. If the
object is about to cross the lower edge of C'1, since the
lower list of C'1 is {—Q1}. The object could either to re-
Fig. 5. Number of Grid Index  tain the information of query Q1 if there is enough mem-
Entries Analysis ory or remove Q1 if more memory is needed for query
processing. If the object is about to move across the up-
per edge of C'1, the lower list of the upper neighbor cell will be retrieved and the values
in the list will be inversed. In this example, the object retrieves the lower list of C'2 and
calculate the inverse value, which is (). This indicates that there is no query that needs
to be retrieved from the server. When the object is about to move across the left edge of
C1, a similar process will be performed on the right list of the left neighbor cell (i.e.,
(C3). In this example, the inverse value of the list is {—Q3}. Therefore, the moving
object submits a request to retrieve the query (23 from the server.

To study the impact of our design on the index size, let us assume the shape of queries
and grid cells are square and the length of each side of a query @ is g. Let ¢ denote the
side of each grid cell with ¢ > ¢. Then ¢ can be represented as i X ¢+, where = C [0, ¢)
and ¢ is an integer. Without loss of generality let us consider the case where the top-left

Set0 | Setl le x-wl

c

q
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corner of query ¢ is located somewhere within the top-left grid cell of the system as
shown in Fig[3l It can be verified that if the top-left corner of () is inside Set0 it will
resultin 4(i+1) index entries. For Set1 the number of index entries is 2(i+1)42(i+2),
and for Set2 it is 4(¢ 4+ 2). Assuming uniform distribution of queries, on the average
@ results in 4(g + ¢)/c index entries. On the other hand, recording the distribution of
queries requires (q+c)?/c? index entries on each @ [12]]. For all ¢/c > 3, our approach
requires less index entries than recording the distribution of queries on the grid.

3.3 Query Processing on Moving Objects

In this section, we describe the functionality of the moving objects. In our design, the
following information is stored in the memory of moving objects for query processing:

— OID: the unique identifier of the moving object.

current Pos: the current location of the moving object.

Gndes: the grid index of the current service zone covering the moving object.
Queries: the list of queries received from the server.

Table 1. Message types in query processing

| Notation | Definition
RegisterObject(OID) The message to register a moving object on a server.
UnregisterObject(OID) The message to delete a moving object on a server.
UpdateResult(OID,QID, Flag) The message to update a query result.
RequestQueries(OID, Qrist) The message to retrieve a set of queries.
GridIndexUpdate(Grndex) Updating the grid index broadcasted by the server.

In order to implement the query processing mechanism on the mobile object, a set of
messages is defined as shown in Table[Il

A moving object is associated with a server at all times. When a moving object turns
its power on, it broadcasts a message RegisterObject(OID). The server monitoring
the location of the object inserts it into the object repository and replies back with a
GridIndexUpdate(G rnder ) message. The server also sends the set of queries covering
the current grid cell of the moving object.

When a moving object is about to leave its current service zone, it sends a message
UnregisterObject(OID) to the server. The server deletes the moving object from
its repository and sends back a set of tuples(STD, address) from its routing table
identifying adjacent service zones. The moving object sends a RegisterObject(O1D)
message to the server controlling the zone it is entering.

When a moving object is about to move into a new grid cell, it consults the grid
index as described in the previous section. If there are queries in the grid index needing
to be retrieved, the moving object sends a message RequestQueries(OID, Qrist) to
the server, where (J ;s is a list of queries with query identifier Q1 D. Once the server
receives the message, it will send the corresponding queries to the moving object.

At all times, the moving object checks its current location currentPos against the
queries in the Queries list. If the object moves into or moves out of a query, it sends
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a message Update Result(OID,QID, Flag) to the server, where QID is the query
identifier and F'lag indicates whether the object resides in the query region.

Query processing on moving objects enables real time updates to the query result
while reducing the cost of server processing substantially. We study the impact of our
techniques in experiments and show that the results match our analytical expectation.

4 Experimental Evaluation

In this section we describe the experimental verification of our design. There are three
metrics of interest extensively studied in our simulations. First, the number of grid index
entries is measured as the average number of index entries generated on a server and
forwarded to moving objects associated with it. This measure indicates the efficiency of
our grid index design and whether the grid index can be used for in-memory processing
on moving objects. Second, the server communication cost is measured as the average
number of messages transmitted from servers to the moving objects. More specifically,
the server communication cost consists of the registration messages, which are gener-
ated when a moving object enters or leaves a service zone, and the query retrieval mes-
sages, which are generated when a server receives a RequestQueries message from
a moving object. This metric implies whether the server may become a bottleneck in
the system. Finally, the mobile communication cost is measured as the total number of
messages transmitted from moving objects to servers. The mobile communication cost
also consists of registration messages and query retrieval messages. Additionally, query
update messages are generated by moving objects when they enter or leave a query re-
gion. This measure reflects the prime query processing cost and hence is important to
demonstrate the scalability of our system.

4.1 Simulator Implementation

We implemented a prototype simulator that is structured into three main components:
the service zone generator, the object and query loader, and the performance monitor.

The service zone generator creates a virtual square space with a 100km x 100km di-
mension. In the experiments, we partition the space into 64 service zones. Each service
zone is identified by a SID representing a server.

In the next step, the object and query loader generates moving objects and imports
continuous range queries into the system. We use the random walk model to simulate
the movement of objects. Initially 10,000 objects are uniformly distributed in the space.
Each of them moves with a constant velocity, which is randomly selected in the range
from 10m to 20m per second, for a duration that is exponentially distributed with mean
value equal to 100 seconds. We also generated two sets of rectangular regions as con-
tinuous range queries that are uniformly distributed in the space with an average area
size of 1% and 10% of the plane size, respectively.

After the objects and queries are loaded into the system, the performance monitor
generates the grid index for each server with 256 grid cells partitioning the entire ser-
vice space. Each simulation runs for 5,000 seconds and the performance monitor reports
the number of grid index entries, the server communication cost, and the mobile com-
munication cost. Currently, our simulation is focused on the system performance in the
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steady state, i.e., we do not add any more queries when the objects start to move. We
plan to implement a dynamic simulation environment in the future.

4.2 Simulation Results

We were first interested in the efficiency of our grid index in terms of the size. Figure [6h
plots the total number of grid index entries in the system as a function of the number
of queries. The results clearly show that the total number of grid index entries increases
linearly with the number of queries. Additionally, our grid index structure performs
more efficiently with a larger average query size. With an average query size equal to
10% of the entire space, our grid index only doubles the number of entries compared
with the case when the average query size equals 1% of the space. This behavior cor-
roborates our analytical results described in Section[3l Furthurmore, the absolute size of
the grid index is very small. If we use 16 bytes to identify a query, it only takes 3.35 MB
to represent 10,000 queries with an average size of 10% of the space. Figure[6b shows
the benefit of using a distributed infrastructure on the server side that further reduces
the size of the grid index on each server. In the case of 10,000 queries with an average
size of 10% of the space, on average the size of index entries is 54 KB on each server.
This substantially reduces the requirement of memory on moving objects.

Figures[7a illustrates the average communication cost on each server with the set of
queries with an average area size of 10% of the plane. As a general trend, the number

3600+ NN average query size = 1%
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2200004 =5 rage query size = 10% & 3200 [ average query size = 10%
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(a) The total number index entries in the (b) The average number of index entries
system on each server

Fig. 6. The number of grid index entries as a function of the number of queries
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Fig. 7. The server and mobile communication cost as functions of the number of queries
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of query retrieval messages increases with the number of queries. Intuitively, with a
larger number of queries, the possibility for objects to retrieve query information from
the server is larger. More importantly, the server communication cost is small in our
simulation results. With 10,000 queries and 10,000 objects in the system, the server
communication cost is about 1 message per second, which demonstrates that our server
infrastructure is very scalable and suitable for mobile environments. Figure [Zb demon-
strates the mobile communication cost with respect to the number of queries. It shows
that the query update messages are the primary cost of mobile communication cost.
However, with 10,000 queries, the object query update message count on each object is
about 0.7 per second. Assuming the size of query update message is 32 byte, the aver-
age message size transmitted from each object is about 22 bytes/second. Therefore, our
design on the mobile object side is very scalable.

5 Conclusions and Future Directions

Continuous range queries have generated intense interest in the research community
because the advances in GPS devices is enabling new applications. We have presented
a novel system that utilizes the computing capability of moving objects for continuous
range query processing. Our design of service zones and a grid index is able to provide
accurate real time query results for a very large number of moving objects and queries.

In the future, we intend to study the communication costs so that the size of the
grid can be optimized with regard to the query distribution. Moreover, a dynamic grid
index retrieval from the server with respect to the memory capacity on moving objects
is worth exploring.
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