
ar
X

iv
:0

81
2.

01
47

v1
 [

m
at

h.
PR

]
 3

0
N

ov
 2

00
8

Complete convergence of message passing algorithms for some

satisfiability problems

Uriel Feige∗ Elchanan Mossel† Dan Vilenchik‡

March 3, 2019

Abstract

Experimental results show that certain message passing algorithms, namely, Survey Propa-
gation, are very effective in finding satisfying assignments for random satisfiable 3CNF formulas
which are considered hard for other SAT heuristics. Unfortunately, rigorous understanding of
this phenomena is still lacking. In this paper we make a modest step towards providing rigorous
explanation for the effectiveness of message passing algorithms. We analyze the performance of
Warning Propagation, a popular message passing algorithm that is simpler than Survey Propaga-
tion. We show that for 3CNF formulas drawn from a certain distribution over random satisfiable
3CNF formulas, commonly referred to as the planted-assignment distribution, running Warning
Propagation in the standard way (run message passing until convergence, simplify the formula
according to the resulting assignment, and satisfy the remaining subformula, if necessary, using
a simple “off the shelf” heuristic) works when the clause-variable ratio is a sufficiently large
constant. We are not aware of previous rigorous analysis of message passing algorithms for
satisfiability instances, though such analysis was performed for decoding of Low Density Parity
Check (LDPC) Codes. We discuss some of the differences between results for the LDPC setting
and our results.

∗The Weizmann Institute. uriel.feige@weizmann.ac.il.
†U.C. Berkeley. E-mail: mossel@stat.berkeley.edu. Supported by a Sloan fellowship in Mathematics, by NSF

Career award DMS-0548249 and NSF grants DMS-0528488 and DMS-0504245
‡Tel-Aviv University. E-mail: vilenchi@post.tau.ac.il.

1

http://arxiv.org/abs/0812.0147v1

1 Introduction

A CNF formula over the variables x1, x2, ..., xn is a conjunction of clauses C1, C2, ..., Cm where each
clause is a disjunction of one or more literals. Each literal is either a variable or its negation. A
formula is said to be in k-CNF form if every clause contains exactly k literals. A CNF formula is
satisfiable if there is a boolean assignment to the variables such that every clause contains at least
one literal which evaluates to true. 3SAT, the language of all satisfiable 3CNF formulas, is well
known to be NP-complete [11]. H̊astad [20] proves that it is NP-hard to approximate MAX-3SAT
(the problem of finding an assignment that satisfies as many clauses as possible) within a ratio
better than 7/8 (which is the expected number of clauses satisfied by a random assignment).

The plethora of worst-case NP-hardness results for many interesting optimization problems
motivates the study of heuristics that give “useful” answers for “typical” subset of the problem
instances, where “useful” and “typical” are usually not well defined. One way of evaluating and
comparing heuristics is by running them on a collection of input instances (“benchmarks”), and
checking which heuristic usually gives better results. Though empirical results are sometimes
informative, we seek more rigorous measures of evaluating heuristics. One possibility of rigourously
modeling such “average” instances is to use random models.

In this paper we analyze the performance of Warning Propagation (WP for brevity), a popular
message passing algorithm, when applied to satisfiable formulas drawn from a certain random dis-
tribution over satisfiable 3CNF formulas, commonly called the planted distribution. We show that
the standard way of running message passing algorithms – run message passing until convergence,
simplify the formula according to the resulting assignment, and satisfy the remaining subformula, if
possible, using a simple “off the shelf” heuristic – works for planted random satisfiable formulas with
a sufficiently large yet constant clause-variable ratio. The effectiveness of message passing algo-
rithms was experimentally shown for “hard” formulas [8], for which other heuristics fail; however no
rigorous analysis backs up these results. Our result is the first to rigorously prove the effectiveness
of a message passing algorithm for the solution of a non-trivial random SAT distribution.

1.1 Average case analysis

Algorithmic theory of random structures has been the focus of extensive research in recent years
(see [18] for a survey). As part of this trend, uniformly random 3CNFs (generated by select-
ing at random m = m(n) clauses over the variables {x1, ..., xn}) have attracted much attention.
Random 3CNFs are known to have a sharp satisfiability threshold in the clause-variable ratio [17].
Namely, a random 3CNF with clause-variable ratio below the threshold is satisfiable whp (with
high probability, meaning with probability tending to 1 as n goes to infinity) and one with ratio
above the threshold is unsatisfiable whp. This threshold is not known exactly (and not even known
to be independent of n). The threshold is known to be at least 3.52 [23] and at most 4.506 [13].
Experimental results indicate that the threshold is closer to the higher end of the interval [12].

In this work we mainly consider formulas with large clause-variable ratio. At such ratios almost
all 3CNF formulas are not satisfiable, therefore more refined definitions are due. We consider
the planted distribution, denoted throughout by Pplant

n,p . A random 3CNF in this distribution
is obtained by first picking an assignment ϕ to the variables, and then including every clause
satisfied by ϕ with probability p = p(n), thus guaranteeing that the resulting instance is satisfiable.
Throughout, we use ϕ to denote the planted assignment when the relevant instance is clear from
context.

2

Planted-solution distributions are favored by many researchers, e.g. [16, 6, 24, 25] in the context
of 3SAT, and also for other graph problems such as the of planted clique, planted bisection, planted
coloring, and planted bipartite hypergraphs studied e.g. in [3, 4, 7, 22, 14].

2 Warning Propagation

Warning Propagation (WP) is a simple iterative message passing algorithm, and serves as an excellent
intuitive introduction to more involved message passing algorithms such as Belief Propagation [?]
and Survey Propagation [8]. These algorithms are based on the cavity method in which the messages
that a clause (or a variable) receives are meant to reflect a situation in which a ”cavity” is formed,
namely, the receiving clause (or variable) is no longer part of the formula. Messages in the WP
algorithm can be interpreted as ”warnings”, telling a clause the values that variables will have if
the clause ”keeps quite” and does not announce its wishes, and telling a variable which clauses will
not be satisfied if the variable does not commit to satisfying them. We now present the algorithm
in a formal way.

Let F be a CNF formula. For a variable x, letN+(x) be the set of clauses in F in which x appears
positively (namely, as the literal x), and N−(x) be the set of clauses in which x appears negatively.
For a clause C, let N+(C) be the set of variables that appear positively in C, and respectively
N−(C) for negative ones. There are two types of messages involved in the WP algorithm. Messages
sent from a variable xi to a clause Cj in which it appears:

xi → Cj =
∑

Ck∈N+(xi),k 6=j

Ck → xi −
∑

Ck∈N−(xi),k 6=j

Ck → xi.

If xi appears only in Cj then we set the message to 0. The intuitive interpretation of this message
should be xi signals Cj what is currently its favorable assignment by the other clauses it appears in (a
positive message means TRUE, negative one means FALSE and a 0 message means UNASSIGNED).
The second type are messages sent from a clause Cj to a variable xi appearing in Cj:

Cj → xi =
∏

xk∈N+(Cj),k 6=i

I<0(xk → Cj)
∏

xk∈N−(Cj),k 6=i

I>0(xk → Cj),

where I<0(b) is an indicator function which is ’1’ iff b < 0 (respectively I>0). If Cj contains only
xi (which cannot be the case in 3CNF formulas) then the message is set to 1. Cj → xi = 1 can
be intuitively interpreted as Cj sending a warning to xi asking it to commit to satisfying Cj (as
all other literals signaled Cj that currently they evaluate to FALSE). Lastly, we define the current
assignment of a variable xi to be

Bi =
∑

Cj∈N+(xi)

Cj → xi −
∑

Cj∈N−(xi)

Cj → xi.

If Bi > 0 then x is assigned TRUE, if Bi < 0 then xi is assigned FALSE, otherwise xi is UNAS-
SIGNED. Assume some order on the clause-variable messages (e.g. the lexicographical order
on pairs of the form (j, i) representing the message Cj → xi). Given a vector α ∈ {0, 1}3m
in which every entry is the value of the corresponding Cj → xi message, a partial assignment
ψ ∈ {TRUE,FALSE,UNASSIGNED}n can be generated according to the corresponding Bi
values (as previously explained).

3

2.1 3SAT and Factor Graphs

Given a 3CNF formula F on n variables and m clauses, the factor graph (e.g. [?]) of F , denoted
by FG(F), is the following graph representation of F . The factor graph is a bipartite graph,
FG(F) = (V1 ∪ V2, E) where V1 = {x1, x2, ..., xn} (the set of variables) and V2 = {C1, C2, ..., Cm}
(the set of clauses). (xi, Cj) ∈ E iff xi appears in Cj . For a 3CNF F with m clauses it holds that
#E = 3m, because every clause contains exactly 3 different variables. (Here and elsewhere, #A
denotes the cardinality of a set A. The notation |a| will denote the absolute value of a real number
a.)

It would be convenient to think of the messages in terms of the corresponding factor graph.
Every undirected edge (xi, Cj) of the factor graph is replaced with 2 anti-parallel directed edges,
(xi → Cj) associated with the message xi → Cj and respectively the edge (Cj → xi).

2.2 The Warning Propagation Algorithm

Warning Propagation(CNF formula F) :
1. construct the corresponding factor graph FG(F).
2. randomly initialize the clause-variable messages to 0 or 1.

3. repeat until no clause-variable message changed from the

previous iteration:

3.a randomly order the edges of FG(F).
3.b update all clause-variable messages Cj → xi according

to the random edge order.

4. compute a partial assignment ψ according to the Bi messages.
5. return ψ.

In the above description it might seem as it no update of variable-clause messages is carried
out. However, these updates are implicit in line 3.b. Namely, when evaluating the clause-variable
message along the edge C → x, C = (x ∨ y ∨ z), the variable-clause messages concerning this
calculation (z, y → C) are evaluated on-the-fly using the last updated values Ci → y, Cj → z
(allowing feedback from the same iteration). We allow the algorithm not to terminate (the clause-
variable messages may keep changing every iteration). If the algorithm does return an assignment
ψ then we say that it converged. In practice it is common to limit in advance the number of
iterations, and if the algorithm does not converge by then, return a failure.

3 Related Work

Currently, the Survey Propagation [8] algorithm experimentally outperforms all known algorithms
in finding satisfying assignments to uniformly random 3CNF formulas with clause-variable ratio ρ
close to the satisfiability threshold (4 ≤ ρ ≤ 4.25). However, theoretical understanding of Survey
Propagation and other message passing algorithm for random SAT problems is still lacking. This
should be compared with the success of message passing algorithms for decoding low-density-parity-
check (LDPC) codes [19]. Here, the experimental success of message passing algorithms [19] was
recently complemented rigourously by a large body of theoretical work, see e.g. [26, 29, 27]. Some
important insights emerge from this theoretical work. In particular, it is shown that the quality
of decoding improves exponentially with the number of iterations – thus all but a small constant

4

fraction of the received codeword can be decoded correctly using a constant number of iterations.
Our analysis of WP on Pplant

n,p shows that much of the coding picture is valid also for Pplant
n,p thus

providing important insights as to the success of message passing algorithms for random satisfiability
problems. The planted 3SAT model is similar to LDPC in many ways. Both constructions are based
on random factor graphs. In codes, the received corrupted codeword provides noisy information
on a single bit or on the parity of a small number of bits of the original codeword. In Pplant

n,p , ϕ
being the planted assignment, the clauses containing a variable xi contain noisy information on the
polarity of ϕ(xi) in the following sense – each clause contains xi in a polarity coinciding with ϕ(xi)
with probability 4/7. The SAT setting is however more involved than its coding counterpart; for

example a SAT instance may have many satisfying assignments (which is whp the case in Pplant
n,p

with clause-variable ratio of order o(log n)) whereas a transmitted codeword has a unique true
solution. More discussion follows in Section 4.

As for relevant results in random graph theory, the seminal work of Alon and Kahale [3] paved
the road towards dealing with large-constant-degree planted distributions. [3] present an algorithm
that whp k-colors planted k-colorable graphs (the distribution of graphs generated by partitioning
the n vertices into k equally-sized color classes, and including every edge connecting two different
color classes with probability p; commonly denoted Gn,p,k) with a sufficiently large constant ex-
pected degree. Building upon the techniques introduced in [3], Chen and Frieze [22] present an
algorithm that 2-colors large constant degree planted 3-uniform bipartite hypergraphs, and Flax-
man [16] presents an algorithm for satisfying large-constant clause-variable ratio planted 3SAT
instances.

Though in our analysis we use similar techniques to the aforementioned works, our result is
conceptually different in the following sense. In [3, 22, 16] the starting point is the planted distri-
bution, and then one designs an algorithm that works well under this distribution. The algorithm
may be designed in such a way that makes its analysis easier. In contrast, our starting point is
a given message passing algorithm (WP), and then we ask for which input distributions it works
well. We cannot change the algorithm in ways that would simplify the analysis. This is similar
in spirit to the work of [2] who showed that RWalkSat works on very sparse uniformly random
3CNF instances (for which other simple heuristics are also known to work), and to the work in [15],

where a certain version of the k-opt heuristic is shown to work on Pplant
n,p . Another kind of inter-

play between algorithms and random distributions is involved in the work on the lower end of the
satisfiability threshold. Much of it is based on the analysis of simple heuristics, often too simple to
be of practical value (e.g., in [9] the pure-literal heuristic is used for very sparse uniformly random
3CNF instances).

Another difference between our work and that of [3, 22, 16] is that unlike the algorithms analyzed
in those other papers, WP is a randomized algorithm, a fact which makes its analysis more difficult.
We could have simplified our analysis had we changed WP to be deterministic (for example, by
initializing all clause-variable messages to 1 in step 2 of the algorithm), but there are good reasons
why WP is randomized. For example, it can be shown that (the randomized version) WP converges
with probability 1 on 2CNF formulas that form one cycle of implications, but might not converge
if step 4 does not introduce fresh randomness in every iteration of the algorithm (details omitted).

5

4 Our Results

Given a 3CNF F , simplify F according to ψ, when ψ is a partial assignment, means: in every
clause substitute every assigned variable with the value given to it by ψ. If a clause contains a
literal which evaluates to true, remove the clause. From the remaining clauses, remove all literals
which evaluate to false. The resulting instance is not necessarily in 3CNF form, as clauses may
have any number of literals between 0 and 3. Denote by F|ψ the 3CNF F simplified according
to ψ. Note that F|ψ may contain empty clauses, in which case it is not satisfiable. For a set of
variables A ⊆ V , denote by F [A] the set of clauses in which all variables belong to A.

To better understand our results it would be convenient to have the somewhat informal notion
of a simple formula in mind. We call a 3CNF formula simple, if it can be satisfied using simple well-
known heuristics (examples include very sparse random 3CNF formulas which are solvable whp

using the pure-literal heuristic [9], formulas with small weight terminators – to use the terminology
of [2] – solvable whp using RWalkSat, etc).

Theorem 1. Let F be a 3CNF formula randomly sampled according to Pplant
n,p , where p ≥ d/n2, d

a sufficiently large constant. Then the following holds whp (the probability taken over the choice
of F , and the random choices in lines 2 and 4 of the WP algorithm). There exists a satisfying
assignment ϕ∗ (not necessarily the planted one) such that:

(a) WP(F) converges after at most O(log n) iterations.

(b) Let ψ be the partial assignment returned by WP(F), let VA denote the variables assigned
to either TRUE or FALSE in ψ, and VU the variables left UNASSIGNED. Then for every
variable x ∈ VA, ψ(x) = ϕ∗(x). Moreover, #VA ≥ (1− e−Θ(d))n.

(c) F|ψ is a simple formula which can be satisfied in time O(n).

Remark 2. Theorem 1 relates to the planted 3SAT model, but as recent results show [?], it also
applies to the random 3SAT distribution, in which first a random 3CNF is generated by selecting
every clause with probability p = p(n), independently of the others, and then conditioning on
satisfiability (or selectingm = m(n) clauses uniformly at random and conditioning on satisfiability).
Details omitted.

Proposition 3. Let F be a 3CNF formula randomly sampled according to Pplant
n,p , where p ≥

c log n/n2, with c a sufficiently large constant, and let ϕ be its planted assignment. Then whp after
at most 2 iterations, WP(F) converges, and the returned ψ equals ϕ.

It is worth noting that formulas in Pplant
n,p , with n2p some large constant, are not known to be

simple (in the sense that we alluded to above). For example, it is shown in [2] that RWalkSat is

very unlikely to hit a satisfying assignment in polynomial time when running on a random Pplant
n,p

instance in the setting of Theorem 1.

Comparing our results with the coding setting, the effectiveness of message passing algorithms
for amplifying local information in order to decode codes close to channel capacity was recently
established in a number of papers, e.g. [26, 29]. Our results are similar in flavor, however the
combinatorial analysis provided here allows to recover an assignment satisfying all clauses, whereas
in the random LDPC codes setting, message passing allows to recover only 1 − o(1) fraction of
the codeword correctly. In [27] it is shown that for the erasure channel, all bits may be recovered

6

correctly using a message passing algorithm, however in this case the LDPC code is designed so
that message passing works for it. We on the other hand take a well known SAT distribution and
analyze the performance of a message passing algorithm on it, without changing either of them to
ease-up the analysis. Moreover, the SAT setting is more involved, as there are many assignments
satisfying the formula, while for the erasure channel there is a unique codeword satisfying the
combinatorial constraints given by the message.

The remainder of the paper is structured as follows. Section 5 provides an overview that may
help the reader follow the more technical parts of the proofs. In Section 6 we discuss some properties
that a typical instance in Pplant

n,p possesses. Using these properties, we prove in Section 7 Theorem 1
and Proposition 3. In Section 8 we summarize our results and discuss potentially interesting lines
for further research.

5 An overview

Let us first consider some possible fixed points of the Warning Propagation (WP) algorithm. The
trivial fixed point is the one in which all messages are 0. One may verify that this is the unique
fixed point in some cases when the underlying 3CNF formula is very easy to satisfy, such as when
all variables appear only positively, or when every clause contains at least two variables that do not
appear in any other clause. A local maximum fixed point is one that corresponds to a strict local
maximum of the underlying MAX-3SAT instance, namely to an assignment τ to the variables in
which flipping the truth assignment of any single variable causes the number of satisfied clauses to
strictly decrease. The reader may verify that if every clause C sends a 1 message to a variable if
no other variable satisfies C under τ , and a 0 message otherwise, then this is indeed a fixed point
of the WP algorithm. Needless to say, the WP algorithm may have other fixed points, and might
not converge to a fixed point at all.

Recall the definition of Pplant
n,p . First a truth assignment ϕ to the variables V = {x1, x2, ..., xn}

is picked uniformly at random. Next, every clause satisfied by ϕ is included in the formula with
probability p (in our case p ≥ d/n2, d a sufficiently large constant). There are (23 − 1) ·

(
n
3

)
clauses

satisfied by ϕ, hence the expected size of F is p · 7 ·
(
n
3

)
= 7dn/6 + o(n) (when d is constant, then

this is linear in n, and therefore such instances are sometimes referred to as sparse 3CNF formulas).
To simplify the presentation, we assume w.l.o.g. (due to symmetry) that the planted assignment
ϕ is the all-one vector.

To aid intuition, we list some (incorrect) assumptions and analyze the performance of WP on

a Pplant
n,p instance under these assumptions.

(a) In expectation, a variable appears in 4
(n
2

)
p = 2d+ o(1) clauses positively, and in 3d/2 + o(1)

clauses negatively. Our first assumption is that for every variable, its number of positive and
negative appearances is equal to these expectations.

(b) We say that a variable supports a clause with respect to the planted assignment (which was
assumed without loss of generality to be the all 1 assignment) if it appears positively in the
clause, and the other variables in the clause appear negatively. Hence the variable is the only
one to satisfy the clause under the planted assignment. For every variable in expectation there
are roughly d/2 clauses that it supports. Our second assumption is that for every variable,
the number of clauses that it supports is equal to this expectation.

7

(c) Recall that in the initialization of the WP algorithm, every clause-variable message C → x is
1 w.p. 1

2 , and 0 otherwise. Our third assumption is that with respect to every variable, half
the messages that it receives from clauses in which it is positive are initialized to 1, and half
the messages that it receives from clauses in which it is negative are initialized to 1.

(d) Recall that in step 3b of WP, clause-variable messages are updated in a random order. Our
fourth assumption is that in each iteration of step 3, the updates are based on the values
of the other messages from the previous iteration, rather than on the last updated values of
the messages (that may correspond either to the previous iteration or the current iteration,
depending on the order in which clause-variable messages are visited). Put differently, we
assume that in step 3b all clause-variable messages are evaluated in parallel.

Observe that under the first two assumptions, the planted assignment is a local maximum of
the underlying MAX-3SAT instance. We show that under the third and fourth assumption, WP
converges to the corresponding local maximum fixed point in two iterations. Based on the initial
messages as in our third assumption, the messages that variables send to clauses are all roughly
(2d−3d/2)/2 = d/4. Following the initialization, in the first iteration of step 3 every clause C that
x supports will send x the message 1, and all other messages will be 0. Here we used our fourth
assumption. (Without our fourth assumption, WP may run into trouble as follows. The random
ordering of the edges in step 3 may place for some variable x all messages from clauses in which it
appears positively before those messages from clauses in which it appears negatively. During the
iteration, some of the messages from the positive clauses may change from 1 to 0. Without our
fourth assumption, this may at some point cause x to signal to some clauses a negative rather than
positive value.) The set of clause-variable messages as above will become a fixed point and repeat
itself in the second iteration of step 3. (For the second iteration, the fourth assumption is no longer
needed.) Hence the algorithm will terminate after the second iteration.

Unfortunately, none of the four assumptions that we made are correct. Let us first see to what
extent they are violated in the context of Proposition 3, namely, when d is very large, significantly
above log n. Standard concentration results for independent random variables then imply that the
first, second and third assumptions simultaneously hold for all variables, up to small error terms
that do not effect the analysis. Our fourth assumption is of course never true, simply because
we defined WP differently. This complicates the analysis to some extent and makes the outcome
depend on the order chosen in the first iteration of step 3a of the algorithm. However, it can be
shown that for most such orders, the algorithm indeed converges to the fixed point that corresponds
to the planted assignment.

The more difficult part of our work is the case when d is constant (though a sufficiently large
constant), as in the case of Theorem 1. In this case, already our first two assumptions are incorrect.
Random fluctuations with respect to expected values willwhp cause a linear fraction of the variables
to appear negatively more often than positively, or not to support any clause (with respect to the
planted assignment). In particular, the planted assignment would no longer be a local maximum
with respect to the underlying MAX-3SAT instance. Nevertheless, as is known from previous
work [16], a large fraction of the variables will behave sufficiently close to expectation so that the
planted assignment is a local maximum with respect to these variables. Slightly abusing notation,
these set of variables are often called the core of the 3CNF formula. Our proof plan is to show that
WP does converge, and that the partial assignment in step 4 assigns all core variables their correct
planted value. Moreover, for non-core variables, we wish to show that the partial assignment does
not make any unrecoverable error – whatever value it assigns to some of them, it is always possible

8

to assign values to those variables that are left unassigned by the partial assignment so that the
input formula is satisfied. The reason why we can expect such a proof plan to succeed is that it is
known to work if one obtains an initial partial assignment by means other than WP, as was already
done in [16, 15].

Let us turn now to our third assumption. It too is violated for a linear fraction of the variables,
but is nearly satisfied for most variables. This fact marks one point of departure for our work
compared to previous work [16, 15]. Our definition of the core variables will no longer depend only
on the input formula, but also on the random choice of initialization messages. This adds some
technical complexity to our proofs.

The violation of the fourth assumption is perhaps the technical part in which our work is most
interesting. It relates to the analysis of WP on factor graphs that contain cycles, which is often a
stumbling point when one analyzes message passing algorithms. Recall that when d is very large
(Proposition 3), making the fourth assumption simplifies the proof of convergence of WP. Hence
removing this assumption in that case becomes a nuisance. On the other hand, when d is smaller (as
in Theorem 1), removing this assumption becomes a necessity. This will become apparent when we
analyze convergence of WP on what we call free cycles. If messages in step 3b of WP are updated
based on the value of other messages in the previous iteration (as in our fourth assumption), then
the random choice of order in step 3a of WP does not matter, and one can design examples in
which the messages in a free cycle never converge. In contrast, if messages in step 3b of WP are
updated based on the latest value of other messages (either from the previous iteration or from the
current iteration, whichever one is applicable), free cycles converge with probability 1 (as we shall
later show).

To complete the proof plan, we still need to show that simplifying the input formula according
to the partial assignment returned by WP results in a formula that is satisfiable, and moreover,
that a satisfying assignment for this sub-formula can easily be found. The existential part (the
sub-formula being satisfiable) will follow from a careful analysis of the partial assignment returned
by WP. The algorithmic part (easily finding an assignment that satisfies the sub-formula) is based
on the same principles used in [3, 16], showing that the sub-formula breaks into small connected
components.

6 Properties of a Random Pplant
n,p Instance

In this section we discuss relevant properties of a random Pplant
n,p instance. This section is rather

technical in nature. The proofs are based on probabilistic arguments that are standard in our
context. Thus we sometimes present only an outline of a proof, when the details can be easily
completed by the reader. In cases where our argument is more tricky we give the complete proof
(most notably, Proposition 13).

In the rest of the paper, for simplicity of presentation, we assume w.l.o.g. that the planted
assignment is the all TRUE assignment.

6.1 Stable Variables

Definition 4. A variable x supports a clause C with respect to a partial assignment ψ, if it is
the only variable to satisfy C under ψ, and the other two variables are assigned by ψ.

9

Proposition 5. Let F be a 3CNF formula randomly sampled according to Pplant
n,p , where p ≥ d/n2,

d a sufficiently large constant. Let FSUPP be a random variable counting the number of variables
in F whose support w.r.t. ϕ is less than d/3. Then whp FSUPP ≤ e−Θ(d)n.

Proof.(Outline) The proposition follows from simple concentration arguments. Every variable is
expected to support d

n2 ·
(n
2

)
= d

2 +O(1n) clauses, thus using e.g. Chernoff’s bound and linearity of

expectation, one obtains E[FSUPP] ≤ e−Θ(d)n. To prove concentration around the expected value
one can use the Chernoff bound once more as the support of one variable is independent of the
others (since it concerns different clauses which are included independently of each other). �

Following the definitions in Section 2, given a CNF F and a variable x, we let N++(x) be the
set of clauses in F in which x appears positively but doesn’t support w.r.t. ϕ. Let N s(x) be the
set of clause in F which x supports w.r.t. ϕ. Let π = π(F) be some ordering of the clause-variable
message edges in the factor graph of F . For an index i and a literal ℓx (by ℓx we denote a literal
over the variable x) let π−i(ℓx) be the set of clause-variable edges (C → x) that appear before index
i in the order π and in which x appears in C as ℓx. For a set of clause-variable edges E and a set
of clauses C we denote by E ∩ C the subset of edges containing a clause from C as one endpoint.

Definition 6. A variable x is stable in F w.r.t. an edge order π if the following holds for every
clause-variable edge C → x (w.l.o.g. assume C = (ℓx ∨ ℓy ∨ ℓz), C → x is the i’th message in π):

(a) |#π−i(y) ∩N++(y)−#π−i(ȳ) ∩N−(y)| ≤ d/30.

(b) |#N++(y)−#N−(y)| ≤ d/30.

(c) #N s(y) ≥ d/3

and the same holds for z.

Proposition 7. Let F be a 3CNF formula randomly sampled according to Pplant
n,p , where p ≥ d/n2,

d a sufficiently large constant. Let π be a random ordering of the clause-variable messages, and
FUNSTAB be a random variable counting the number of variables in F which are not stable. Then
whp FUNSTAB ≤ e−Θ(d)n.

Proof. We start by bounding E[FUNSTAB]. Consider a clause-variable message edge C → x in
location i in π, C = (ℓx ∨ ℓy ∨ ℓz). Now consider location j ≤ i. The probability of an edge C ′ → ȳ
in location j is

(
3
(
n
2

))
/
(
7
(
n
3

))
= 3

7n + O(1n) which is exactly the probability of an edge C ′′ → y,
C ′′ ∈ N++(y). This implies

E[|#π−i(y) ∩N++(y)−#π−i(ȳ) ∩N−(y)|] = 0.

If however
|#π−i(y) ∩N++(y)−#π−i(ȳ) ∩N−(y)| > d/30

then at least one of the quantities deviates from its expectation by d/60.

Look at #π−i(y) ∩N++(y) – this is the number of success in draws without replacement. It is
known that this quantity is more concentrated than the corresponding quantity if the draws were
made with replacement [21]. In particular, since the expectation of #π−i(y) ∩N++(y) is O(d) it
follows from Chernoff’s bound that the probability that it deviates from its expectation by more

10

than d/60 is e−Θ(d). A similar statement holds for #π−i(ȳ) ∩ N−(y). Properties (b) and (c) are
bounded similarly using concentration results.

The calculations above hold in particular for the first 5d appearances of messages involving x. As
for message 5d + 1, the probability of this message causing x to become unstable is bounded by
the event that x appears in more than 5d clauses. As x is expected to appear in 3.5d clauses, the
latter event happens w.p. e−Θ(d) (again using standard concentration results). To sum up,

Pr[x is unstable] ≤ 5d · e−Θ(d) + e−Θ(d) = e−Θ(d).

The bound on E[FUNSTAB] follows by linearity of expectation.

We are now left with proving that FUNSTAB is concentrated around its expectation, we do so
using a martingale argument. Define two new random variables, F1 counting the number of unstable
variables x s.t. there exists a clause C, containing x, and another variable y, s.t. y appears in more
than log n clauses, and F2 to be the unstable variables s.t. in all clauses in which they appear, all
the other variables appear in at most log n clauses. Observe that FUNSTAB = F1 + F2. To bound
F1, observe that if F1 ≥ 1, then in particular this implies that there exists a variable which appears
in more than log n clauses in F . This however can be shown not to happen whp (since every
variable is expected to appear only in O(d) clauses). To bound F2 we use a martingale argument
in the constellation of [5], page 101. We use the clause-exposure martingale (the clause-exposure
martingale implicitly includes the random ordering π, since one can think of the following way
to generate the random instance – first randomly shuffle all possible clauses, and then toss the
coins). The exposure of a new clause C can change F2 by at most 6 log n since every variable in
C appears in at most log n clauses, namely with at most 2 log n other variables that might become
(un)stable due to the new clause. The martingale’s total variance, to use the terminology in [5], is
σ2 = Θ(dn log2 n). Using inequality (7.1) in [5] page 101, with α = e−Θ(d)√n/ log n, and the fact
that E[F2] ≤ E[FUNSTAB], concentration around the expectation of F2 is obtained. �

Let α ∈ {0, 1}3#F be a clause-variable message vector. For a set of clause-variable message
edges E let 1α(E) be the set of edges along which the value is 1 according to α. For a set of clauses
C, 1α(C) denotes the set of clause-variable message edges in the factor graph of F containing a
clause from C as one endpoint and along which the value is 1 in α.

Definition 8. A variable x is violated by α in π if there exists a message C → x, C = (ℓx∨ℓy∨ℓz),
in place i in π s.t. one of the following holds:

(a) |#1α(π
−i(y) ∩N++(y)) −#1α(π

−i(ȳ) ∩N−(y))| > d/30

(b) |#1α(N
++(y))−#1α(N

−(y))| > d/30

(c) #1α(N
s(y)) < d/7.

Or one of the above holds for z.

Proposition 9. Let F be as in the setting of Theorem 1, and let X be a set of stable variables
w.r.t. an arbitrary ordering π. Let α be a random clause-variable message vector. Let FV IO be a
random variable counting the number of violated variables in X. Then, FV IO ≤ e−Θ(d)#X.

Proof. As in the proof of Proposition 7, we first bound E[FV IO], and then prove concentration
using a martingale argument. Since the martingale argument is the same as Proposition 7 (instead

11

of a clause-exposure martingale, we have a clause-variable message values exposure martingale), we
just show how to bound the expectation.

Consider a stable variable x in F w.r.t. to an ordering π of the clause-variable messages. Let α
be a random assignment to the clause-variable messages. Consider a clause-variable message edge
C → x at location i in π. x is stable and therefore

|#π−i(y) ∩N++(y)−#π−i(y) ∩N−(y)| ≤ d/30.

Since α is a random assignment

E[|#1α(π
−i(y) ∩N++(y))−#1α(π

−i(ȳ) ∩N−(y))|] ≤ d/60.

If however
|#1α(π

−i(y) ∩N++(y))−#1α(π
−i(ȳ) ∩N−(y))| > d/30, (6.1)

then at least one of the quantities in (6.1) deviated from its expectation by at least (d/30−d/60)/2.
Since both quantities are binomially distributed with expectation O(d), the probability of the latter
happening is e−Θ(d), using standard concentration results. Properties (b) and (c) are bounded
similarly using tight concentration results. Using the union bound as in the proof of Proposition 7
and the linearity of expectation the bound on the expectation follows. �

6.2 Dense Subformulas

The next property we discuss is analogous to a property proved in [3] for random graphs. Loosely
speaking, [3] prove that whp a random graph doesn’t contain a small induced subgraph with a
large average degree. A similar proposition for 3SAT can also be found in [16].

Proposition 10. Let c 	 1 be an arbitrary constant. Let F ∈ Pplant
n,p be as in the setting of Theorem

1. Then whp there exists no subset of variables U , s.t. #U ≤ e−Θ(d)n and there are at least c#U
clauses in F containing two variables from U .

Proof.(Outline) For a fixed set U of variables, #U = k, the number of clauses containing two
variables from U is (

k

2

)

(n− 2)23 ≤ 4k2n.

Each of these clauses is included independently w.p. d
n2 . Thus, the probability that ck of them are

included is at most
(
4k2n

ck

)(
d

n2

)ck

≤
(
4k2ne

ck
· d
n2

)ck

≤
(
12kd

cn

)ck

.

Using the union bound, the probability there exists a ”dense” set U is at most

e−Θ(d)n∑

k=2

(
n

k

)(
12kd

cn

)ck

= O(d2c/n2c−2).

The last equality is obtained using standard calculations. �

12

6.3 The Core Variables

We describe a subset of the variables, denoted throughout byH and referred to as the core variables,
which plays a crucial role in the analysis. The notion of a stable variable is not enough to ensure
that the algorithm will set a stable variable according to the planted assignment, as it may happen
that a stable variable x appears in many of its clauses with unstable variables. Thus, x can be biased
in the wrong direction (by wrong we mean disagreeing with the planted assignment). However, if
most of the clauses in which x appears contain only stable variables, then this is already a sufficient
condition to ensure that x will be set correctly by the algorithm. The set H captures the notion
of such variables. There are several ways to define a set of variables with these desired properties,
we present one of them, and give a constructive way of obtaining it (though it has no algorithmic
implications, at least not in our context).

Formally, H = H(F , ϕ, α, π) is constructed using the following iterative procedure:

Let A1 be the set of variables whose support w.r.t. ϕ is at most d/3.
Let A2 be the set of non-stable variables w.r.t. π.
Let A3 be the set of stable variables w.r.t. π which are violated by α.

(a) Set H0 = V \ (A1 ∪A2 ∪A3).

(b) While there exists a variable ai ∈ Hi which supports less than d/4 clauses in F [Hi] OR appears
in more than d/30 clauses not in F [Hi] define Hi+1 = Hi \ {ai}.

(c) Let am be the last variable removed in step 2. Define H = Hm+1.

Proposition 11. If both α and π are chosen uniformly at random then whp #H ≥ (1− e−Θ(d))n.

Proof. Let H̄ = V \ H. Set δ = e−Θ(d). Partition the variables in H̄ into variables that belong to
A1 ∪ A2 ∪ A3, and variables that were removed in the iterative step, H̄ it = H0 \ H. If #H̄ ≥ δn,
then at least one of A1 ∪A2 ∪A3, H̄

it has cardinality at least δn/2. Consequently,

Pr[#H̄ ≥ δn] ≤ Pr[#A1 ∪A2 ∪A3 ≥ δn/2]
︸ ︷︷ ︸

(a)

+Pr[#H̄ it ≥ δn/2
∣
∣ #A1 ∪A2 ∪A3 ≤ δn/2]

︸ ︷︷ ︸

(b)

.

Propositions 5, 7, and 9 and Azuma’s inequality for example are used to bound (a). To bound (b),
observe that every variable that is removed in iteration i of the iterative step (step 2), supports at
least (d/3−d/4) = d/12 clauses in which at least another variable belongs to {a1, a2, ..., ai−1}∪A1∪
A2 ∪ A3, or appears in d/30 clauses each containing at least one of the latter variables. Consider
iteration δn/2. Assuming #A1 ∪ A2 ∪ A3 ≤ δn/2, by the end of this iteration there exists a set
containing at most δn variables, and there are at least d/30 · δn/2 · 1/3 clauses containing at least
two variables from it (we divide by 3 as every clause might have been counted 3 times). Plugging
c = d/180 in Proposition 10, (b) is bounded. �

6.4 The Factor Graph of the Non-Core Variables

Proposition 11 implies that for p = c log n/n2, c a sufficiently large constant, whp H contains
already all variables. Therefore the following propositions are relevant for the setting of Theorem

13

1 (namely, p = O(1/n2)).

Proposition 12. Whp every connected component in the factor graph induced by the non-core
variables contains O(log n) variables.

A proposition of similar flavor to Proposition 12 was proven in [16] though with respect to a
different notion of core. Proposition 12 will not suffice to prove Theorem 1, and we need a further
characterization of the non-core factor graph, which is not present in any of the aforementioned
works.

Proposition 13. Whp every connected component in the factor graph induced by the non-core
variables contains at most one cycle.

Proposition 14. The probability of a cycle of length at least k in the factor graph induced by the
non-core variables is at most e−Θ(dk).

Corollary 15. Let f = f(n) be an arbitrary growing function of n (namely, f(n) → ∞ as n→ ∞).
Then whp there is no cycle of length f(n) in the non-core factor graph

Since Propositions 12-14 are all proven using similar arguments, we chose to prove Proposition
13 which is not present in any of [3, 16]. We proceed with the proof of Proposition 13 and Corollary
15.

6.5 Proof of Proposition 13

In order to prove Proposition 13 it suffices to prove that whp there are no two cycles with a simple
path (maybe of length 0) connecting the two. To this end, we consider all possible constellations
of such prohibited subgraphs and prove the proposition using a union bound over all of them.

Every simple 2k-cycle in the factor graph consists of k variables, w.l.o.g. say x1, ..., xk (all
different), and k clauses C1, ..., Ck, s.t. xi, xi+1 ∈ Ci. The cycle itself consists of 2k edges.

As for paths, we have 3 different types of paths: paths connecting a clause in one cycle with
a variable in the other (type 1), paths connecting two clauses (type 2), and paths connecting two
variables (type 3). Clause-variable paths are always of odd length, and clause-clause, variable-
variable paths are always of even length. A k-path P consists of k edges. If it is a clause-variable
path, it consists of (k − 1)/2 clauses and the same number of variables. If it is a variable-variable
path, it consists of k/2−1 variables and k/2 clauses and symmetrically for the clause-clause path (we
don’t take into account the clauses/variables that participate in the cycle, only the ones belonging
exclusively to the path).

Our prohibited graphs consist of two cycles C1, C2 and a simple path P connecting them. We
call a graph containing exactly two simple cycles and a simple path connecting them a bi-cycle.
The path P can be of either one of the three types described above. Similarly to the bi-cycle case,
one can have a cycle C and a chord P in it. We call such a cycle a chord-cycle. For parameters
i, j, k ∈ [1, n], and t ∈ {1, 2, 3}, we denote by B2i,2j,k,t a bi-cycle consisting of a 2i-cycle connected
by a k-path of type t to a 2j-cycle. Similarly, we denote by B2i,k,t a chord-cycle consisting of a
2i-cycle with a k-path of type t as a chord.

Our goal is then to prove that whp the graph induced by the non-core variables contains no
bi-cycles and no chord-cycles.

For a fixed factor graph H we let FH ⊆ F be a fixed minimal set of clauses inducing H, and
V (H) be the set of variables in H. In order for a fixed graph H to belong to the factor graph

14

induced by the non-core variables it must be that there exists some FH s.t. FH ⊆ F and that
V (H) ⊆ H̄ (put differently, V (H) ∩H = ∅).

Let B = B2i,2j,k,t (or B = B2i,k,t if B is a chord-cycle) be a fixed bi-cycle and FB a fixed
minimal-set of clauses inducing B. We start by bounding Pr[FB ⊆ F and V (B)∩H = ∅] and then
use the union bound over all possible bi-cycles (chord-cycles) and inducing minimal sets of clauses.
As the two events – {FB ⊆ F} and {V (B) ∩ H = ∅} – are not independent, the calculations are
more involved. Loosely speaking, to circumvent the dependency issue, one needs to defuse the
effect that the event {FB ⊆ F} might have on H. To this end we introduce a set H∗, defined very
similarly to H only ”cushioned” in some sense to overcome the dependency issues (the ”cushioning”
depends on FB). This is done using similar techniques to [3, 16].

We start by defining the new set of core variables H∗ (again w.r.t. an ordering π of the clause-
variable messages and an initial values vector α). The changes compared to H are highlighted in
bold.

Let B1 be the set of variables whose support w.r.t. ϕ is at most d/3.
Let B2 be the set of non-stable variables w.r.t. π where we redefine the gap in Definition 6 to be

(d/30-6) in (a) and (b).
Let B3 be the set of stable variables w.r.t. π which are violated by α where we redefine the gap in

Definition 8 to be (d/30-6) in (a) and (b).
Let J ⊆ V (B) be the set of variables appearing in no more than 6 different clauses in FB

(a) Set H ′
0 = V \ (B1 ∪B2 ∪B3 ∪ (V (FC) \ J)).

(b) While there exists a variable ai ∈ H ′
i which supports less than d/4 clauses in F [H ′

i] OR
appears in more than (d/30-6) clauses not in F [H ′

i], define H
′
i+1 = H ′

i \ {ai}.

(c) Let am be the last variable removed at step 2. Define H∗ = H ′
m+1. = H ′

m+1.

Propositions 7 and 9 could be easily adjusted to accommodate the 6-gap in the new definition in
B2 and B3. Therefore Proposition 11 can be safely restated in the context of H∗:

Proposition 16. If both α and π are chosen uniformly at random then whp #H∗ ≥ (1−e−Θ(d))n.

Proposition 17. Let b = #V (B), then the set J defined above satisfies #J ≥ b/4

Proof. Observe that if FB is minimal then #FB ≤ b+1. This is because in every cycle the number
of variables equals the number of clauses, and in the worst case, the path contains at most one
more clause than the number of variables, and the same goes for the chord-cycle. Now suppose in
contradiction that #J < b/4, then there are more than 3b/4 variables in V (B), each appearing in
at least 6 different clauses in FB . Thus, #FB > (6 · 3b/4)/3 = 1.5b >

︸︷︷︸

b≥3

b+ 1 (we divided by three

as every clause might have been counted 3 times), contradicting #FB ≤ b+ 1. �

The following proposition “defuses” the dependency between the event that a bi-cycle (chord-cycle)
was included in the graph and the fact that it doesn’t intersect the core variables. In the following
proposition we fix an arbitrary π and α in the definition of H∗, therefore the probability is taken
only over the randomness in the choice of F .

Proposition 18. Pr[FB ⊆ F and V (B) ∩H = ∅] ≤ Pr[FB ⊆ F] · Pr[J ∩H∗ = ∅]

15

To prove Proposition 18 we need the following Lemma.

Lemma 19. For every bi-cycle (chord-cycle) B and every minimal inducing set FB, H∗(F , ϕ, α, π) ⊆
H(F ∪ FB , ϕ, α, π).

This lemma clarifies the motivation for defining H∗. It is not necessarily true that H(F) ⊆
H(F ∪FB). For example, a variable which appears in H(F) could disappear from H(F ∪FB) since
the clauses in FB make it unstable. Loosely speaking, H∗ is cushioned enough to prevent such a
thing from happening.

Proof.(Proposition 18)

Pr[FB ⊆ F and V (B)∩H = ∅] ≤ Pr[FB ⊆ F and J∩H = ∅] = Pr[J∩H = ∅|FB ⊆ F]Pr[FB ⊆ F].

Therefore, it suffices to prove

Pr[J ∩H = ∅|FB ⊆ F] ≤ Pr[J ∩H∗ = ∅].

P r[J ∩H∗ = ∅] =
∑

F :J∩H∗(F)=∅

Pr[F = F] ≥
︸︷︷︸

Lemma 19

∑

F :J∩H(F∪FB)=∅

Pr[F = F]

Break each set of clauses F into F ′ = F \ FB and F ′′ = F ∩ FB , and the latter equals

∑

F ′:F ′∩FB=∅,J∩H(F ′∪FB)=∅

∑

F ′′:F ′′⊆FB

Pr[F \ FB = F ′ and F ∩ FB = F ′′]

Since the two sets of clauses, F \FB , and F∩FB, are disjoint, and clauses are chosen independently,
the last expression equals,

∑

F ′:F ′∩FB=∅,J∩H(F ′∪FB)=∅

∑

F ′′:F ′′⊆FB

Pr[F \ FB = F ′]Pr[F ∩ FB = F ′′] =

∑

F ′:F ′∩FB=∅,J∩H(F ′∪FB)=∅

Pr[F \ FB = F ′]
∑

F ′′:F ′′⊆FB

Pr[F ∩ FB = F ′′]

︸ ︷︷ ︸

1

=

∑

F ′:F ′∩FB=∅,J∩H(F ′∪FB)=∅

Pr[F \ FB = F ′]

Since (F \FB)∩FB = ∅, and clauses are chosen independently, the event {FB ⊆ F} is independent
of the event {F \ FB = F ′}. Therefore, the latter expression can be rewritten as

∑

F ′:F ′∩FB=∅,J∩H(F ′∪FB)=∅

Pr[F \ FB = F ′|FB ⊆ F] = Pr[J ∩H = ∅|FB ⊆ F].

�

Proof.(Lemma 19) The lemma is proved using induction on i (i being the iteration counter in the
construction of H). For the base case H ′

0(F) ⊆ H0(F ∪FB), since every variable in H ′
0(F) appears

in at most 6 clauses in FB it holds that Ai(F ∪ FB) ⊆ Bi(F), i = 2, 3. A1(F ∪ FB) ⊆ B1(F)
holds at any rate as more clauses can only increase the support, and the set J was not even con-
sidered for H0. Suppose now that H ′

i(F) ⊆ Hi(F ∪ FC), and prove the lemma holds for iteration

16

i + 1. If x ∈ H ′
i+1(F) then x supports at least d/3 clauses in which all variables are in H ′

i(F).
Since H ′

i(F) ⊆ Hi(F ∪ FB), then x supports at least this number of clauses with only variables
of Hi(F ∪ FC). Also, x appears in at most d/30 − 6 clauses with some variable outside of H ′

i(F),
again since H ′

i(F) ⊆ Hi(F ∪ FB) and FB contains at most 6 clauses containing x, x will appear
in no more than d/30 clauses each containing some variable not in Hi(F ∪ FB). We conclude then
that x ∈ Hi(F ∪ FB). �

Corollary 20. Let B = B2i,k,t be a chord-cycle, and let λ = 1−#H∗/n, then Pr[FB ⊆ F and V (B)∩
H = ∅] ≤ p(i, k) where:

(a) p(i, k) ≤ (d/n2)(i+k/2) ·λ(i+ k
2
−1)/4 if B consists of a 2i-cycle and a variable-variable k-path as

a chord.

(b) p(i, k) ≤ (d/n2)(i+k/2−1) · λ(i+ k
2
)/4 if B consists of 2i-cycle and a clause-clause k-path as a

chord.

(c) p(i, k) ≤ (d/n2)(i+
k−1
2

) · λ(i+ k−1
2

)/4 if B consists of 2i-cycle and a variable-clause k-path as a
chord.

Proof. In (a), we have i + k
2 − 1 variables and i + k

2 clauses. Since the clauses are chosen
independently,

Pr[FB ⊆ F] ≤ (d/n2)i+
k
2 .

To bound the event {J ∩H∗ = ∅}, observe that FB is fixed in the context of this event, and there is
no pre-knowledge whether FB is included in F or not. Therefore, J can be treated as a fixed set of
variables, thus the choice of H∗ is uniformly distributed over J . Recalling that #J ≥ (i+ k

2 − 1)/4,
it follows that

Pr[J ∩H∗ = ∅] ≤
(n−#H∗

#J

)

(n
#J

) =

(λn
(i+ k

2
−1)/4

)

(n
(i+ k

2
−1)/4

) ≤ λ(i+
k
2
−1)/4.

The last inequality follows from standard bounds on the binomial coefficients. (a) now follows
immediately from Proposition 18. In the same manner items b, c are proven (just counting how
many variables and clauses B contains, depending on the type of its path). �

Corollary 21. Let B = B2i,2j,k,t be a bi-cycle, and let λ = 1−#H∗/n, then Pr[FB ⊆ F and V (B)∩
H = ∅] ≤ p(i, j, k) where:

(a) p(i, j, k) ≤ (d/n2)(i+j+k/2) ·λ(i+j+ k
2
−1)/4 if B consists of a 2i,2j-cycles and a variable-variable

k-path.

(b) p(i, j, k) ≤ (d/n2)(i+j+k/2−1) · λ(i+j+ k
2
)/4 if B consists of 2i,2j-cycles and a clause-clause

k-path.

(c) p(i, j, k) ≤ (d/n2)(i+j+
k−1
2

) · λ(i+j+ k−1
2

)/4 if B consists of 2i,2j-cycles and a variable-clause
k-path.

17

Corollary 21 is proven in a similar way to Corollary 20.

To complete the proof of Proposition 13, we use the union bound over all possible bi/chord-
cycles. We present the proof for the bi-cycle case; the proof of the chord-cycle is analogous. First
consider the case where B is a bi-cycles with a variable-variable path (in which case the path must
be of even length). Let s = si,j,k = i + j + k

2 − 1 (namely, #V (B) = s and #FB = s + 1). The
probability of B is then at most

n∑

i,j, k
2
=1

(
n

si,j,k

)

· (si,j,k)! · (7n)si,j,k+1 ·
(
d

n2

)si,j,k+1

· λsi,j,k/4 ≤

n∑

i,j, k
2
=1

7d ·
(
7en

s

)s

· ss · ns+1 ·
(
d

n2

)s+1

· λs/4 ≤
n∑

i,j, k
2
=1

(7e · d · λ1/4)s · 7d
n

≤
n∑

i,j, k
2
=1

(
1

2

)s

· 7d
n

≤

∑

i+j+ k
2
≤4 logn

7d

n
+

∑

i+j+ k
2
≥4 logn

(
1

2

)s

≤ (4 log n)3 · 7d
n

+ n3 · 1

n4
= o(1).

We now move to the case B is a bi-cycles with a clause-clause path (in which case the path again
must be of even length). Let s = si,j,k = i+ j+ k

2 (namely, #V (B) = s and #FB = s−1). Observe
that in this case the number of classes in FB is s − 1, however only for s − 3 clauses one has the
freedom in choosing the third variable (the two clauses which are the endpoints of the path are
completely determined once the order of the variables is fixed). The probability is then at most

n∑

i,j, k
2
=1

(
n

si,j,k

)

· (si,j,k)! · (7n)si,j,k−3 ·
(
d

n2

)si,j,k−1

· λsi,j,k/4 ≤

n∑

i,j, k
2
=1

(
7en

s

)s

· ss · ns−3 ·
(
d

n2

)s−1

· λs/4 ≤
n∑

i,j, k
2
=1

(7e · d · λ1/4)s · 1
n
= o(1)

Lastly, we need to consider the case B is a bi-cycles with a clause-variable path (in which case the
path must be of odd length). Let s = si,j,k = i+ j+ k−1

2 (namely, s = #V (B) = #FB). Again, one
clause in FB is completely determined once the the order of the variables is fixed. The probability
is then at most

n∑

i,j, k−1
2

=1

(
n

si,j,k

)

· (si,j,k)! · (7n)si,j,k−1 ·
(
d

n2

)si,j,k

· λsi,j,k/4 ≤

n∑

i,j, k−1
2

=1

(
7en

s

)s

· ss · ns−1 ·
(
d

n2

)s

· λs/4 ≤
n∑

i,j, k−1
2

=1

(7e · d · λ1/4)s · 1
n
= o(1)

To sum up, the probability of a bi-cycle in the graph induced by the non-core variables is 3 · o(1) =
o(1).

6.6 Outline of Proof of Proposition 14

The proof is basically the same as that of Proposition 13. One defines the same notion of “cush-
ioned” core H∗, and proceeds similarly. We therefore reprove only the last part – the union bound
over all possible cycles.

18

First let us bound the number of cycles of length k. There are
(
n
k

)
ways to choose the variables

inducing the cycle, and k!/2 ways to order them on the cycle. As for the set of clauses that induces
the cycle, once the cycle is fixed, we have at most (7n)k ways of choosing the third variable and
setting the polarity in every clause. In what follows we let λn be the number of vertices in the
non-core factor graph.

Using the union bound, the probability of a cycle of length at least k in the non-core factor
graph is at most

λn∑

t=k

(
n

t

)

· t! · (7n)t
︸ ︷︷ ︸

choose the cycle

·
(
d

n2

)t

· λt/2
︸ ︷︷ ︸

cycle included but doesn’t intersect H∗,P rop. 18

≤
λn∑

t=k

(
7en

t

)t

· tt · nt ·
(
d

n2

)t

· λt/2

=

λn∑

t=k

(7e · d ·
√
λ)t

Assuming that Proposition 16 holds (which is the case whp), then λ = e−Θ(d) and 7e ·d ·
√
e−Θ(d) =

e−Θ(d) – which is much smaller than 1. In particular, the last summation is simply the sum of a
decreasing geometric series with quotient e−Θ(d), which sums up to at most twice the first item,
which is at most e−Θ(dk).

7 Proof of Theorem 1 and Proposition 3

We start by giving an outline of the proof of Theorem 1. Proposition 3 is derived as an easy
corollary of that proof.

Recall that to prove Theorem 1, we need to establish three properties:

(a) Convergence: the WP algorithm converges to a fixed point.

(b) Consistency: the partial assignment implied by this fixed point is consistent with some sat-
isfying assignment.

(c) Simplicity: after simplifying the input formula by substituting in the values of the assigned
variables, the remaining subformula is not only satisfiable (this is handled by consistency),
but also simple.

We assume that the formula F and the execution ofWP are typical in the sense that Propositions
11, 12, and 13 hold. First we prove that after one iteration WP sets the core variables H correctly
(Bi agrees with ϕ in sign) and this assignment does not change in later iterations. The proof of
this property is rather straightforward from the definition of a core. This establishes convergence
and consistency for the core variables. From iteration 2 onwards WP is basically running on F in
which variables belonging to H are substituted with their planted assignment. This subformula
is satisfiable. Moreover, its factor graph contains small (logarithmic size) connected components,
each containing at most one cycle. This last fact serves a dual purpose. It shows that if the
WP will eventually converge, the simplicity property will necessarily hold. Moreover, it will assist
us in proving convergence and consistency for the subformula. Consider a connected component
composed of a cycle and trees “hanging” on the cycle. Proving convergence on the trees is done
using a standard inductive argument. The more interesting part is proving convergence on the

19

cycle. The difficulty there is that messages on a cycle may have more than one fixed point to which
they may possibly converge, which makes it more difficult to prove that they converge at all. Our
proof starts with a case analysis that identifies those cases that have multiple fixed points. On these
cases we prove that almost surely random fluctuations caused by step 3.a of the WP algorithm will
lead to convergence to some fixed point. This is similar in flavor to the fact that a random-walk
on a line eventually reaches an endpoint of the line (even though one cannot tell a-priori which
endpoint this will be). Hand-in-hand with establishing convergence for the trees and cycle, we shall
also prove consistency.

The set VA of Theorem 1 is composed of all variables from H and those variables from the
non-core factor graph that get assigned. The set VU is composed of the UNASSIGNED variables
from non-core factor graph. We now proceed with the formal proof.

7.1 Analysis of WP on the core factor graph

We start by proving that the messages concerning the factor graph induced by the core-variables
converge to the correct value, and remain the same until the end of the execution.

We say that a message C → x, C = (ℓx ∨ ℓy ∨ ℓz), is correct if its value is the same as it is when
y → C and z → C are 1 (that is agree in sign with their planted assignment). In other words,
C → x is 1 iff C = (x ∨ ȳ ∨ z̄) (x supports C).

Proposition 22. If xi ∈ H and all messages C → xi, C ∈ F [H] are correct at the beginning of an
iteration (line 3 in the WP algorithm), then this invariant is kept by the end of that iteration.

Proof. By contradiction, let C0 → x be the first wrongly evaluated message in the iteration.
W.l.o.g. assume C0 = (ℓx ∨ ℓy ∨ ℓz). Then at least one of y, z sent a wrong message to C0.

y → C0 =
∑

C∈N+(y),C 6=C0

C → y −
∑

C′∈N−(y),C′ 6=C0

C ′ → y.

Every message C ′′ → y, C ′′ ∈ F [H]∩ {N++(y)∪N−(y)} is 0 (since it was correct at the beginning
of the iteration and that didn’t change until evaluating C0 → x). On the other hand, y ∈ H and
therefore it supports at least d/4 clauses in F [H]. Thus at least (d/4 − 1) messages in the left
hand sum are ‘1’ (we subtract 1 as y might support C0). y appears in at most d/30 clauses with
non-core variables (all of which may contribute a wrong ’1’ message to the right hand sum). All
in all, y → C0 ≥ (d/4 − d/30 − 1) > d/5, which is correct (recall, we assume ϕ = 1n). The same
applies for z, contradicting our assumption. �

Proposition 23. If xi ∈ H and all messages C → xi, C ∈ F [H] are correct by the end of a WP
iteration, then Bi agrees in sign with ϕ(xi) by the end of that iteration.

Proposition 23 follows immediately from the definition of H and the message Bi. It suffices to show
then that after the first iteration all messages C → xi, C ∈ F [H] are correct.

Proposition 24. If F is a typical instance in the setting of Theorem 1, then after one iteration of
WP(F), for every variable xi ∈ H, every message C → xi, C ∈ F [H] is correct.

Proof. The proof is by induction on the order of the execution in the first iteration. Consider the
first message C → x, C = (ℓx ∨ ℓy ∨ ℓz), C ∈ F [H], to be evaluated in the first iteration. Now

20

consider the message y → C at the time C → x is evaluated. All messages C ′ → y, C ′ ∈ F [H]
have their initial random value (as C → x is the first core message to be evaluated). Furthermore,
y ∈ H, and therefore there are at most d/30 messages of the form C ′′ → y, C ′′ /∈ F [H]. x ∈ H hence
it is stable w.r.t. π and not violated by the initial clause-variable random messages. Therefore

y → C ≥ d/7
︸︷︷︸

property (c) in defn. 8

− d/30
︸︷︷︸

property (b) in defn. 8

− d/30
︸︷︷︸

non-core messages

> d/14.

The same applies to z, to show that C → x is correct. Now consider a message C → x at position
i, and assume all core messages up to this point were evaluated correctly. Observe that every core
message C ′ → y that was evaluated already, if C ′ ∈ {N++(y)∪N−(y)} ∩F [H] then its value is ’0’
by the induction hypothesis. Since x is not violated by α, property (b) in definition 8 ensures that
to begin with |#1α(N

++(y))−#1α(N
−(y))| ≤ d/30. y ∈ H, therefore it appears in at most d/30

non-core messages, all of which could have been already wrongly evaluated, changing the above
difference by additional d/30. As for the core messages of y which were already evaluated, since
they were evaluated correctly, property (a) in definition 8 ensures that the above difference changes
by at most additional d/30. All in all, by the time we evaluate C → x,

∑

C′∈N++(y),C′ 6=C

C ′ → y −
∑

C′′∈N−(y),C′′ 6=C

C ′′ → y ≥ −3 · d/30.

As for messages that y supports, property (c) in definition 8 ensures that their contribution is at
least d/7 to begin with. Every core message in N s(y) that was evaluated turned to ’1’, every non-
core message was already counted in the above difference. Therefore y → C ≥ d/7−3·d/30 > d/25.
The same applies to z showing that C → x is correct. �

To prove Proposition 3, observe that when p = c log n/n2, with c a sufficiently large constant,
Proposition 11 implies H = V . Combining this with Proposition 24, Proposition 3 readily follows.

7.2 The effect of messages that already converged

It now remains to analyze the behavior of WP on the non-core factor graph, given that the messages
involving the core factor graph have converged correctly. A key observation is that once the messages
in the factor graph induced by the core variables converged, we can think of WP as if running on
the formula resulting from replacing every core variable with its planted assignment and simplifying
(which may result in a 1-2-3CNF). The observation is made formal by the following proposition:

Proposition 25. Consider a run of WP that has converged on the core. Starting at some iteration
after WP has converged on the core, consider two alternative continuations of the warning propa-
gation algorithm. WP1 denotes continuing with WP on the original input formula. WP2 denotes
continuing with WP on the formula obtained by replacing each core variable with its planted assign-
ment and simplifying. Then for every iteration t, the sequence of messages in the t’th iteration of
WP2 is identical to the respective subsequence in WP1. (This subsequence includes those messages
not involving the core variables, and includes messages of type x→ C and of the type C → x.)

Proof. First note that all messages x→ C, x ∈ H, do not change (sign) from the second iteration
onwards (by the analysis in the proof of Proposition 24). Furthermore, if ℓx satisfies C in ϕ, then
x → C is positive (if x is a true literal in C, or negative otherwise), and therefore all messages

21

C → y, y 6= x are constantly 0. Namely, they don’t effect any calculation, and this is as if we
replaced ℓx with TRUE, and in the simplification process C disappeared. If ℓx is false in C under
ϕ, then x→ C is constantly negative (if ℓx = x, or constantly positive if ℓx = x̄), and this is exactly
like having ℓx removed from C (which is the result of the simplification process).

�

7.3 Analysis of WP on the non-core factor graph

Note that to prove the convergence of the algorithm we need also to prove that messages of the
sort C → x where C is not in the core and x is in the core converge. However, if we prove that all
messages in the factor graph induced by the non-core variables converge, then this (with the fact
that the core factor graph messages converge) immediately implies the convergence of messages of
this type. Therefore, our goal reduces to proving convergence of WP on the factor graph induced by
F|ψ, where ψ assigns the core variables their planted assignment, and the rest are UNASSIGNED.

We say that WP converged correctly in a connected component C of the non-core factor graph
if there exists a satisfying assignment ψ of the entire formula which is consistent with ϕ on the
core, and with the assignment of WP to C.

Consider a connected component in the non-core factor graph consisting of a cycle with trees
hanging from it. Our analysis proceeds in three steps:

(a) We first prove that clause-variable and variable-clause messages of the form α→ β where α→
β lead from the trees to the cycle, converge weakly correctly w.r.t. the planted assignment.
In the case that the component has no cycles, this concludes the proof.

(b) Then, using a refined case analysis, we show that the messages along the cycle also converge
whp, this time not necessarily to the planted assignment, but to some satisfying assignment
which agrees with the already converged messages.

(c) Finally, we conclude by showing that messages from the cycles to the trees converge. More-
over, this will imply that convergence will be to values consistent with the values converged to
in step (a), and that hence that all messages in the connected component converge correctly
according to some satisfying assignment.

Consider the factor graph F induced by the simplified formula. A cycle in F is a collection
x1, C2, x3, C4, . . . , xr = x1 where xi and xi+2 belong to Ci+1 for all i (in our description we consider
only odd values of i) and xi 6= xi+2, Ci+1 6= Ci+3 for all i. A factor graph F is a tree if it contains
no cycles. It is unicyclic if it contains exactly one cycle. Let x → C be a directed edge of F . We
say that x→ C belongs to the cycle, if both x and C belong to the cycle. For an edge x→ C that
does not belong to the cycle, we say that x → C is directed towards the cycle if x doesn’t belong
to the cycle and C lies on the simple path from x to the cycle. We say that the edge x → C is
directed away from the cycle if C doesn’t belong to the cycle and x lies on the simple path from
the cycle to C. Similarly we define what it means for an edges C → x to belong to the cycle, to be
directed towards the cycle and to be directed away from the cycle.

Proposition 26. Let F be a unicyclic factor graph. Then every directed edge of the form x → C
or C → x either belongs to the cycle, or is directed towards it or directed away from it.

22

Proof. Recall that the factor graph is an undirected graph, and the direction is associated with
the messages. Take an edge x→ C (similarly for C → x), if it lies on the cycle, then we are done.
Otherwise, since the factor graph is connected, consider the path in the tree leading from some
element of the cycle to C. This path is either contained in the path to x or contains it (otherwise
there is another cycle). In the first case x → C is directed towards the cycle, and in the latter
x→ C is directed away from the cycle. �

Our analysis proceeds in two parts: first we shall analyze WP on the trees, then WP on the
cycle and connect the two (which is relevant for the uni-cyclic components).

7.4 WP on the trees

As we already mentioned before, there are two directions to consider: messages directed towards
the cycle and away from the cycle. In this section we shall consider a rooted tree, and partition
the messages according to messages which are oriented away from the root (they will correspond in
the sequel to messages going away from the cycle) and messages towards the root (messages from
the leaves towards the root – later to be identified with messages going into the cycle). The first
lemma concerns messages going towards the root.

Remark 27. Lemma 28 is a special case of the known fact (see [8] for example) that for every
tree induced by a satisfiable formula, WP converges and there exists a satisfying assignment ψ such
that every Bi is either 0 or agrees with ψ. In Lemma 28 we assume that the formula is satisfiable
by the all 1 assignment (the planted assignment), and consider only messages towards the root.

Lemma 28. Let C → x be an edge in the non-core factor graph belonging to a connected component
of size s, and in particular to a rooted tree T . If C → x is directed towards the root then the message
C → x converges after at most O(s) iterations. Furthermore, if C → x = 1 then x appears positively
in C.

Proof. We consider the case C = (ℓx ∨ ℓy) – the case C = (ℓx ∨ ℓy ∨ ℓz) where all three literals
belong to non-core variables is proved similarly. For an edge (C, x) in the factor graph, we define
level(C, x) to be the number of edges in a path between C and the leaf most distant from C in
the factor graph from which the edge (C, x) is removed. The lemma is now proved using induction
on the level i. Namely, after the i′th iteration, all messages C → x associated with an edge (C, x)
at level i converge, and if C → x = 1 then x appears positively in C.

The base case is an edge (C, x) at level 0. If level(C, x) = 0 then C is a unit clause containing
only the variable x. By the definition of the messages, in this case C → x = 1 and indeed it must be
the case that x is positive in C (as the other two variables evaluate to FALSE under the planted).
Now consider an edge (C, x) at level i, and consider iteration i. Since i > 0, it must be that there
is another non-core variable y in C (or two more variables y, z). Consider an edge (C ′, y), y ∈ C ′

(if no such C ′ exists that we are done as C → x will be constantly 0 in this case).

level(C ′, y) is strictly smaller than i since every path from C to a leaf (when deleting the edge
(C, x)) passes through some edge (C ′, y). By the induction hypothesis, all messages C ′ → y already
converged, and therefore also y → C and in turn C → x. It is only left to take care of the case
C → x = 1. In this case, there must be a clause C ′ s.t. C ′ → y = 1 and y appears positively in
C ′ (by the induction hypothesis). If C → x = 1 it must be that y appears negatively in C and
therefore x must appear positively (otherwise C is not satisfied by the planted assignment). �

23

Next we consider several scenarios that correspond to messages going form the root towards the
leaves. Those scenarios correspond to step (c) of our analysis, referred to in Section 7.3.

Proposition 29. Assume that F is a unicyclic formula. Assume further that WP has converged
on F . Let x → C be directed away from the cycle. Let FC be the subformula inducing the tree
rooted at C, while x itself is removed from C. This formula contains all clauses whose path to the
cycle goes via x and a clause corresponding to C where the literal corresponding to the variable x
is removed (see Pic1). Then C → x = 0 in the fixed point if and only if FC is satisfiable.

Proof. The structure of the proof is similar to that of Lemma 28. For convenience we extend the
definition of level above as to include edges on the cycle. We say that an edge (C, x) in the factor
graph has level(C, x) equal ∞ if (C, x) lies on a cycle and level(C, x) = t <∞ if t is the maximal
length of a path between C and a leaf in the factor graph from which the edge (C, x) is removed.
The lemma is now proved using induction on t.

The base case is an edge (C, x) at level 0. If level(C, x) = 0 then C is a unit clause containing
only the variable x, and then FC is the empty formula. Indeed C → x = 1 by definition and FC is
unsatisfiable (by definition again, the empty formula is not satisfiable).

Now consider an edge (C, x) at level t > 0. Assume C = (x∨ ℓy ∨ ℓz) (maybe only ℓy). Observe
that every edge (Cj , y) in FC has level value which is strictly smaller than t – since every path
from C to a leaf (when deleting the edge (C, x)) passes through some edge (Cj , y). First we prove
that if FC is not satisfiable then it must be that C → x = 1. If FC is not satisfiable then it must be
that ℓy = ȳ and ℓz = z̄ (otherwise, if one of them is positive then ϕ satisfies FC). Further, observe
that there must exist at least one clause Cj containing y positively, and at least one Ck containing
z positively s.t. FCi

and FCj
are unsatisfiable. Otherwise, we can define ϕ′ to be ϕ except that y or

z are assigned FALSE (depending which of Ci or Cj doesn’t exist). It is easy to see that ϕ′ satisfies
FC , contradicting our assumption. By the induction hypothesis Ci → y = 1 and Cj → z = 1.
This in turn implies that C → xi = 1 (since Ci and Cj contain y and z respectively in an opposite
polarity to C and there cannot be any message Ck → y = 1 where y appears negatively in Ck since
FCk

is satisfiable in this case). Now assume that C → x = 1. The same arguments imply that C
must be of the form C = (x∨ ȳ ∨ z̄) and there exists Ci, Cj as above. By the induction hypothesis,
if one is to satisfy FC it must be that y = z = TRUE (this is the only way to satisfy FCi

and FCj

when inserting y back to Ci and z to Cj), but then C is not satisfied. �

Proposition 30. Assume that F is a unicyclic formula. Assume further that WP has converged
on F . Let C → y be directed away from the cycle. Consider a subformula FC which induces a tree
rooted at a clause C. This formula contains the clause C and all other clauses whose path to the
cycle goes via y. If in the fixed point for F it holds that

• C → y = 1,

• y appears negatively in C,

• y → C ≥ 1,

then WP converge correctly in FC if (recall this means that there exists a satisfying assignment ψ
of the entire formula which is consistent with ϕ on the core, and with the assignment of WP to
FC).

24

Proof. Let us track the origin of the message y → C in the tree. (which is directed towards the
root). For y → C ≥ 1 to occur, there must be a clause D1 in the tree that contains y positively and
a message D1 → y = 1 in the direction of the root (as messages in the direction of the root are only
effected by other messages in that direction). Let us backtrack one more step. D1 = (y ∨ k̄ ∨ w̄)
for some variables w, k; k and w must appear negatively in D1 by Lemma 28), and the fact that
D1 → y = 1, that is both k and w were issued warnings having them not satisfy D1. Let us consider
the clauses D2 and D3 that issues warnings to k and w respectively. D2 = (k ∨ ...),D3 = (w ∨ ...),
D2 → k = 1 and D3 → w = 1, and both messages are directed towards the root. Obviously, one can
inductively continue this backtracking procedure which terminates at the leaves of the tree (since
there are not cycles the procedure is well defined and always terminates). Let us call the clauses
and variables that emerge in this backtrack the spine of the tree. The figure below illustrates this
procedure.

Figure 1: The spine of a tree

For the subtree corresponding to the spinal variable we show that all messages that point away
from the root converge in a consistent way with planted assignment. This combined with Lemma
28 completes that part of the proof.

Let k be some variable that belongs to the spine, and let Fk be the subformula corresponding
to the tree hanging from k (and we think of the messages along that tree oriented away from the
cycle). We claim that k → C ≥ 0 for every C in Fk. This is proven via induction on the distance
of the variable from y. The base case is distance 0, which is y itself. The messages that we need
to verify are of the form y → C ′, C ′ 6= D1, which are pointing away from the cycle. In this case
y → C ′ ≥ 0 (y’s message agrees with the planted); this is because the wrong message Ci+1 → y is
evened by the correct warning D1 → y, and y → C ′ depends only on one message which is directed
away from the cycle – otherwise there is a second cycle. The induction step follows very similarly.
This fact guarantees correct convergence of the variables in the trees hanging from spinal variables.
Finally, for the spinal variables, there is always at most one message in the direction away from the
cycle (otherwise there is more than one cycle); this message may be wrong. Using a very similar
inductive argument one can show that there is always at least one correct warning (in the direction
of the cycle), therefore Bw ≥ 0 for every spinal variable w.

As for the non-spinal parts of the tree that hang on y, say a clauseM 6= D1, C, then y →M ≥ 0
since the wrong message of C is evened by the correct warning of D1 (and there may be other

25

correct warnings from messages in the direction of the cycle). Since there is a satisfying assignment
of that subtree which is consistent with By ≥ 0, Remark 27 can be applied to guarantee correct
convergence. �

7.5 WP on cycles

We will denote a cycle by x1, C2, x3, C4...x2r−1, C2r, x1 where by this we mean that xi appears in
the clauses before/after it and that Ci contains the two variables before/after it. We consider two
different types of cycles.

• Biased cycles: cycles that have at least one warning message C → xi = 1 coming into the
cycle, where C → xi directs into the cycle and the value of C → xi is the value after the edge
has converged.

• Free cycles: cycles that do not have such messages coming in, or all messages coming in are
0 messages.

7.5.1 Convergence of WP when the cycle is biased:

First we observe that we may assume w.l.o.g. that edges that enter the cycle enter it at a variable
rather than at a clause (hence that every clause on the cycle contains exactly two non-core variables).
This is because of a simple argument similar to Proposition 25: consider an edge going into the
cycle, z → C, and w.l.o.g. assume that z appears positively in C. After all the edges going into
the cycle have converged, if z → C ≥ 0 it follows that C → x = 0 for cycle edges (C, x), and thus
execution on the cycle is the same as if C was removed from the formula, only now we are left with
a tree, for which convergence to a correct assignment is guaranteed (Remark 27). If z → C < 0,
then the execution is exactly as if z was removed from C (and C is in 2-CNF form).

Proposition 31. Let C be a connected component of the factor graph of size s containing one cycle
s.t. there exists an edge directed into the cycle C → xi where xi belongs to the cycle and such
that the message converges to C → xi = 1. Then WP converges on C after at most O(s) rounds.
Moreover for the fixed point, if the message C ′ → x = 1 then x appears positively in C ′.

Proof. A message of the cycle Cj → xj+1 depends only on cycle messages of the type Cj′ →
xj′+1, xj′+1 → Cj′+2 and on messages coming into the cycle. In other words during the execution
of WP the values of all messages Cj′ → xj′−1, xj′−1 → Cj′−2 do not effect the value of the message
Cj → xj+1. Recall that we are in the case where there exists a message C → xi = 1 going into the
cycle (after the convergence of these messages). Also xi must appear positively in C. We consider
the following cases:

• There exists a variable xj that appears positively in both Cj−1 and Cj+1 (the case j = i is
allowed here). We note that in this case the message xj → Cj+1 must take the value either
0 or 1 which implies that the message Cj+1 → xj+2 converges to the value 0. This in turn
implies that the value of all messages xr → Cr+1 and Cr+1 → xr+2 for r 6= j will remain the
same if the clause Cj+1 is removed from the formula. However, this case reduces to the case
of tree formula.

26

• xi appears negatively in Ci+1 and positively in Ci−1. We note that in this case the message
xi → Ci+1 always take the value 1 which implies that the message Ci+1 → xi+2 always take
the value 1. Thus in this case we may remove the clause Ci+1 from the formula and replace it
by the unit clause ℓy where Ci+1 = ℓy ∨ x̄i. Again, this reduces to the case of a tree formula.

• The remaining case is the case where xi appears negatively in both Ci−1 and Ci+1 and there
is no j such that xj appears positively in both Cj−1 and Cj+1. We claim that this leads
to contradiction. Note that by the lemma above there exists a satisfying assignment where
xi = 1. Write Ci+1 = x̄i ∨ ℓi+2. Then for the truth assignment we must have ℓi+2 = 1,
similarly ℓi+4 = 1 etc. until we reach x̄i = 1 - a contradiction.

To summarize, by Lemma 28 the messages going into the rooted tree at xi converge after O(s) steps,
and at least one warning is issued. By the above discussion, for every clause D in the connected
component it holds that xi → D ≥ 0 (as xi appears in at most one message which may be wrong –
a cycle message). Since there is always a satisfying assignment consistent with xi assigned TRUE,
then after reducing the cycle to a tree we are left with a satisfiable tree. Remark 27 guarantees
convergence in additional O(s) iterations. �

7.6 Convergence of WP when the cycle is free

The main result of this subsection is summarized in the following claim:

Proposition 32. Let C be a connected component of the factor graph of size s containing one cycle
of size r s.t. the fixed point contains no messages C → x = 1 going into the cycle (the cycle is
free). Then whp WP converges on C after at most O(r2 · log n+ s) rounds. Moreover for the fixed
point, if we simplify the formula which induces C according to the resulting Bi’s, then the resulting
subformula is satisfiable.

Remark 33. Observe that the free case is the only one where convergence according to the planted
assignment is not guaranteed. Furthermore, the free cycle case is the one that may not converge
“quickly” (or not at all), though this is extremely unlikely. The proof of Proposition 32 is the only
place in the analysis where we use the fact that in line 3.a of WP we use fresh randomness in every
iteration.

We consider two cases: the easy one is the case in which the cycle contains a pure variable w.r.t
the cycle (though this variable may not be pure w.r.t to the entire formula).

Proposition 34. If the cycle contains a variable xi appearing in the same polarity in both Ci+1, Ci−1,
then the messages C → x along cycle edges converge. Moreover for the fixed point, if C → x = 1
then x satisfies C according to ϕ.

The proof is very similar to the first case in the proof of Proposition 31. We omit the details.

We now move to the harder case, in which the cycle contains no pure variables (which is the case
referred to in Remark 33).

Proposition 35. Consider a free cycle of size r with no pure literal, and one of the two directed
cycles of messages. Then the messages along the cycle converge whp to either all 0 or all 1 in
O(r2 log n) rounds.

27

Convergence whp in polynomial time suffices due to Corollary 15 (which asserts that whp

every cycle is of length at most logε n for every ε > 0). The proof of Proposition 35 is given in the
end of this section. We proceed by analyzing WP assuming that Proposition 35 holds, which is the
case whp.

Proposition 36. Suppose that the cycle messages have converged (in the setting of Proposition 35),
then the formula resulting from substituting every xi with the value assigned to it by Bi (according
to the fixed point of WP), and simplifying, is satisfiable.

Proof. Let F be the subformula that induces the connected component C, and decompose it
according to the trees that hang on the cycle’s variables and the trees that hang on the cycle’s
clauses. Observe that the formulas that induce these trees are variable and clause disjoint (since
there is only one cycle in the C).

Let us start with the cycle clauses. The key observation is that setting the cycle variables
according to one arbitrary orientation (say, set xi to satisfy Ci+1) satisfies the cycle and doesn’t
conflict with any satisfying assignment of the hanging trees: if the tree hangs on a variable xi,
then since the cycle is free, the tree is satisfiable regardless of the assignment of xi (Proposition
29). In the case that the tree hangs on a cycle-clause C, then the cycle variables and the tree
variables are disjoint, and C is satisfied already by a cycle-variable regardless of the assignment of
the tree-variables. Now how does this coincide with the result of WP. Recall that we are in the
case where the cycle is free. Therefore only messages C → xi where both C and xi belong to the
cycle effect Bi. If in the fixed point one cycle orientation is 0 and one orientation is 1, then the Bi
messages of the cycle variables implement exactly this policy. If both cycle orientations converged
to 1 or to 0, then the corresponding Bi messages of all cycle variables are UNASSIGNED (since the
cycle is free), but then the same policy can be used to satisfy the clauses of the cycle in a manner
consistent with the rest of the formula.

It remains to show that WP converges on every tree in a manner that is consistent with some
satisfying assignment of the tree. We consider several cases.

Consider a tree hanging on a cycle variable xi. Let C be some non-cycle clause that contains
xi, and FC the subformula that induces the tree rooted at C. Observe that once the cycle has
converged, then the message xi → C does not change anymore. If xi → C agrees with ϕ there are
two possibilities. Either xi satisfies C under ϕ, in which case C always sends 0 to FC , and then
WP executes on FC as if C is removed. Remark 27 guarantees correct convergence (as FC \ C is
satisfiable), and as for C, Bi ≥ 0 and we can set xi to TRUE so that it satisfies C and is consistent
with the assignment of the cycle (Bi ≥ 0 since xi ≥ 0 and C → xi = 0 as we are in the free cycle
case). If xi appears negatively in C, then WP executes as if xi was deleted from C. Still FC is
satisfiable and correct convergence is guaranteed.

Now consider the case where xi → C disagrees with ϕ. Recall that we assume ϕ(xi) = TRUE,
and therefore x → C is negative in the fixed point. If xi appears negatively in C then C → y = 0
for every y ∈ C (since xi signals C that it satisfies it), and therefore C doesn’t effect any calculation
from this point onwards, and the correct convergence of FC is again guaranteed by Remark 27 on
the convergence for satisfiable trees. The more intricate case is if C contains xi positively. Since
we are in the free case, it must hold that C → x = 0. Therefore using Proposition 29 one obtains
that FC is satisfiable (regardless of the assignment of xi), and WP will converge as required (again
Remark 27).

Now consider a tree hanging on a cycle clause. Namely, Ci+1 = (xi ∨ xi+2 ∨ y), where xi, xi+2

are cycle variables, and (Ci+1, y) is a tree edge. If one of the cycle orientations converged to 0,

28

then Ci+1 → y converges to 0, and then Remark 27 guarantees correct convergence. The same
applies to the case where Ci+1 → y converges to 1 and y is positive in Ci+1 (since then we can
remove y from the tree, use Remark 27 for the remaining part, then add back y, and set it to TRUE
without causing any conflict with the tree assignment, but satisfying Ci+1 according to the planted
assignment).

The delicate case remains when Ci+1 → y converges to 1 but y’s polarity in Ci+1 disagrees
with ϕ, that is, y is negative in Ci+1. The key observation is that the message y → Ci+1 (which
is directed towards the cycle) must have converged to a positive value (otherwise, Ci+1 → xi and
Ci+1 → xi+2 would have converged to 0). However this complies with the scenario of Proposition
30, and again correct convergence is guaranteed. �

In Theorem 1 the unassigned variables are required to induce a “simple” formula, which is
satisfiable in linear time. Observe that the factor graph induced by the UNASSIGNED variables
consists of connected components whose structure is a cycle with trees hanging on it, or just a tree.
A formula whose factor graph is a tree can be satisfied in linear time by starting with the leaves
(which are determined uniquely in case that the leaf is a clause – namely, a unit clause, or if the leaf
is a variable then it appears only in one clause, and can be immediately assigned) and proceeding
recursively. Regarding the cycle, consider an arbitrary variable x on the cycle. By assigning x and
simplifying accordingly, we remain with a tree. Since there are only two ways to assign x, the whole
procedures is linear in the size of the connected component. This completes the proof of Theorem
1.

7.7 Proof of Proposition 35

Since the cycle has no pure literal it must be of the following form: C1 = (ℓx1 ∨ ℓx2), C2 =
(ℓx2 ∨ ℓx3), . . . , CL = (ℓxL ∨ ℓx1).

Consider one of the directed cycles, say: x1 → C1 → x2 → · · · and note that when the message
xi → Ci is updated it obtains the current value of Ci−1 → xi and when the message Ci → xi+1 is
updated, it obtains the current value of xi → Ci.

It thus suffices to show that the process above converges to all 0 or all 1 in time polynomial in
the cycle length. This we prove in the lemma below.

Proposition 37. Consider the following process on {0, 1}L. Given the state of the process Γi

at round i, the state Γi+1 at round i + 1 is defined by choosing a permutation σ ∈ Sk uniformly
at random. Then let ∆0 = Γi and for 1 ≤ j ≤ L, let ∆j be obtained from ∆j−1 by setting
∆j(σ(j − 1)) = ∆j−1((σ(j − 1) + 1) mod L) and ∆j(i) = ∆j−1(i) for all i 6= σ(j − 1). Finally, let
Γi+1 = ∆L.

Let T be the stopping time where the process hits the state all 0 or all 1. Then

Pr[T ≥ 4aL2] ≤ L2−a. (7.1)

for all a ≥ 1 integer.

The proof of Proposition 37 is based on the fact that the process defined in this lemma is a
martingle. This is established in the following two lemmas.

Lemma 38. Consider the following variant Γ̃i of the process Γi defined in Proposition 37. In the
variant, different intervals of 0/1 are assigned different colors and the copying procedure is as above.

29

Fix one color and let Xi denote the number of elements of the cycle of that color in Γ̃i. Then Xi

is a martingle with respect to the filtration defined by Γ̃i.

Proof. From the definition of the copying process it is easy to see that

E[Xi+1|Γ̃i, Γ̃i−1, . . .] = E[Xi+1|Xi].

We will show below that E[Xi+1|Xi] = 0 and thus that Xi is a martingle with respect to the
filtration Γ̃i.

Assume that Xi = k. Then w.l.o.g. we may assume that the configuration Γ̃i consists of an
interval of 1’s of length k and an interval of 0’s of length L−k. We calculate separately the expected
shifts in the locations of left end-points of the 0 and 1 interval respectively. We denote the two shift
random variables by L0 and L1. Clearly L0 = I0,1 + I0,2 + . . .+ I0,k−1 where I0,j is the indicator of
the event that 0 left-end point shifted by at least j and similarly for L1. Note that

E[I0,j] =
1

j!
− 1

(L− k + j)!

and that

E[I1,j] =
1

j!
− 1

(k + j)!
.

The last equation follows from the fact that in order for the 1 interval to extend by at least j, the
j copying has to take place in the correct order and it is forbidden that they all took place in the
right order and the interval has become a 0 interval. The previous equation is dervied similarly.
Thus

E[(Xi+1 −Xi)|Xi] = E[L1]− E[L0] =

L−k∑

j=1

(
1

j!
− 1

(k + j)!

)

−
k∑

j=1

(
1

j!
− 1

(L− k + j)!

)

= 0

This concludes the proof that Xi is a martingle. The proof follows. �

The proof of Proposition 37 follows by a union bound from the following lemma where the union
is taken over all intervals.

Lemma 39. Consider the process Γ̃i defined in Lemma 38. Fix one interval and let Xi denote its
length. Let T be the stopping time where Xi equals either 0 or L. Then

P [T ≥ 4aL2] ≤ 2−a.

Proof. In order to bound the hitting probability of 0 and L, we need some bounds on the variance
of the martingale differences. In particular, we claim that unless k = 0 or k = L it holds that

E[(Xt+1 −Xt)
2|Xt = k] ≥ 1/2.

If k = 1 or k = L− 1 this follows since with probability at least 1/2 the end of the interval will be
hit. Otherwise, it is easy to see that the probability that Xt+1 −Xt is at least 1 is at least 1/4 and
similarly the probability that it is at most −1 is at least 1/4. This can be verified by considering
the event that one end-points moves by at least 2 and the other one by at most 1.

30

Let T be the stopping time when XT hits 0 or n. Then by a Wald kind of calculation we obtain:

L2 ≥ E[(XT −X0)
2] = E[(

∞∑

t=1

1(T ≥ t)(Xt −Xt−1))
2]

= E[
∞∑

t,s=1

(Xt −Xt−1)(Xs −Xs−1)1(T ≥ max t, s)]

= E[

∞∑

t=1

(Xt −Xt−1)
21(T ≥ t)] ≥ 1

2

∞∑

t=1

P [T ≥ t] = E[T]/2,

where the first equality in the last line follows from the fact that if s < t say then:

E[(Xt −Xt−1)(Xs −Xs−1)1(T ≥ max t, s)]

= E[(Xt −Xt−1)(Xs −Xs−1)(1 − 1(T < t))]

= E[E[(Xt −Xt−1)(Xs −Xs−1)(1− 1(T < t))|X1, . . . ,Xt−1]]

= E[(Xs −Xs−1)(1− 1(T < t))E[Xt −Xt−1|X1, . . . ,Xt−1]] = 0.

We thus obtain that E[T] ≤ 2L2. This implies in turn that P [T ≥ 4L2] ≤ 1/2 and that
P [T ≥ 4aL2] ≤ 2−a for a ≥ 1 since Xt is a Markov chain. The proposition follows.

�

8 Discussion

Our results show that WP is effective in solving Pplant
n,p . Though not being the first to give an

algorithm for Pplant
n,p , our results are a first example of rigourously analyzing a message passing

algorithm on a natural non-trivial random SAT distribution. We remark that our goal was to
analyze WP under its most common definition, resisting attempts to modify the algorithm in ways
that would simplify the analysis. One such simplification would result if in the first few iterations,
messages are updated in parallel in two phases: clause-variable messages updates and then variable-
clause messages updates.

In the non-planted case, for low density formulas (considerably below the satisfiability thresh-
old), some algorithms were rigorously shown to find whp a satisfying assignment efficiently [2, 9].
Experimental results predict that as the density of the formula increases, more sophisticated al-
gorithms are needed in order to find a satisfying assignment. At higher densities (closer to the
satisfiability threshold), there is a major gap between the experimental performance of the best
known algorithms [8] (a message passing algorithm that experimentally works at density ∼4.2),
and the best rigorously-analyzed algorithm [23] (density 3.52).

One possible explanation for the increasing computational hardness of finding solutions in the
non-planted case is based on the geometry of the space of satisfying assignment. It is now established
[28, 1] that for k-SAT just below the satisfiability threshold and k ≥ 8, the space of solutions
decomposes into an exponential number of (Hamming-distance) connected clusters such that the
distance between each two is linear in the number of variables. Such complex geometry of the space
of solutions poses a complex algorithmic challenge.

31

Our results, and similarly [16, 15], show that in the planted case (with density some large con-
stant above the satisfiability threshold), the algorithmic task of finding a satisfying assignment is
relatively easy, and in particular, the näıve WP algorithm is effective in finding satisfying assign-
ments. Planted formulas in this regime have only one cluster of satisfying assignments (see [10] for
more discussion).

We conclude with an open problem. Can our analysis be extended to show that Belief Propaga-
tion (BP) finds a satisfying assignment to Pplant

n,p in the setting of Theorem 1? Experimental results
predict the answer to be positive. However, our analysis of WP does not extend as is to BP. In
WP, all warnings received by a variable (or by a clause) have equal weight, but in BP this need
not be the case (there is a probability level associated with each warning). In particular, this may
lead to the case that messages received from non-core portions of the formula can effect the core,
a possibility that our analysis managed to exclude for the WP algorithm.

Acknowledgements

We thank Eran Ofek for many useful discussions. This work was done while the authors were
visiting Microsoft Research, Redmond, Washington.

References

[1] D. Achlioptas and A. Coja-Oghlan. Algorithmic barriers from phase transitions. preprint.

[2] M. Alekhnovich and E. Ben-Sasson. Linear upper bounds for random walk on small density
random 3-cnfs. SIAM J. on Comput., 36(5):1248–1263, 2007.

[3] N. Alon and N. Kahale. A spectral technique for coloring random 3-colorable graphs. SIAM
J. on Comput., 26(6):1733–1748, 1997.

[4] N. Alon, M. Krivelevich, and B. Sudakov. Finding a large hidden clique in a random graph.
Random Structures and Algorithms, 13(3-4):457–466, 1998.

[5] N. Alon and J. Spencer. The probabilistic method. Wiley-Interscience Series in Discrete Math-
ematics and Optimization. Wiley-Interscience, New York, second edition, 2000. With an ap-
pendix on the life and work of Paul Erdős.

[6] E. Ben-Sasson, Y. Bilu, and D. Gutfreund. Finding a randomly planted assignment in a
random 3CNF . manuscript, 2002.

[7] A. Blum and J. Spencer. Coloring random and semi-random k-colorable graphs. J. of Algo-
rithms, 19(2):204–234, 1995.

[8] A. Braunstein, M. Mezard, and R. Zecchina. Survey propagation: an algorithm for satisfiabil-
ity. Random Structures and Algorithms, 27:201–226, 2005.

[9] A. Z. Broder, A. M. Frieze, and E. Upfal. On the satisfiability and maximum satisfiability
of random 3-CNF formulas. In Proc. 4th ACM-SIAM Symp. on Discrete Algorithms, pages
322–330, 1993.

32

[10] A. Coja-Oghlan, M. Krivelevich, and D. Vilenchik. Why almost all satifiable k-CNF formulas
are easy. In 13th conference on Analysis of Algorithms, DMTCS proceedings, pages 89–102,
2007.

[11] S. Cook. The complexity of theorem-proving procedures. In Proc. 3rd ACM Symp. on Theory
of Computing, pages 151–158, 1971.

[12] J. M. Crawford and L. D. Auton. Experimental results on the crossover point in random
3-SAT. Artificial Intelligence, 81(1-2):31–57, 1996.

[13] O. Dubois, Y. Boufkhad, and J. Mandler. Typical random 3-sat formulae and the satisfiability
threshold. Electronic Colloquium on Computational Complexity, 10(007), 2003.

[14] U. Feige and R. Krauthgamer. Finding and certifying a large hidden clique in a semirandom
graph. Random Structures and Algorithms, 16(2):195–208, 2000.

[15] U. Feige and D. Vilenchik. A local search algorithm for 3SAT. Technical report, The Weizmann
Institute of Science, 2004.

[16] A. Flaxman. A spectral technique for random satisfiable 3CNF formulas. In Proc. 14th ACM-
SIAM Symp. on Discrete Algorithms, pages 357–363, 2003.

[17] E. Friedgut. Sharp thresholds of graph properties, and the k-sat problem. J. Amer. Math.
Soc., 12(4):1017–1054, 1999.

[18] A. Frieze and C. McDiarmid. Algorithmic theory of random graphs. Random Structures and
Algorithms, 10(1-2):5–42, 1997.

[19] R. Gallager. Low-Density Parity-Check Codes. SMIT Press, Cambridge, 1963.

[20] J. H̊astad. Some optimal inapproximability results. J. of the ACM, 48(4):798–859, 2001.

[21] W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the
American Statistical Association, 58:13–30, 1963.

[22] C. Hui and A. Frieze. Coloring bipartite hypergraphs. In Proceedings of the 5th International
Conference on Integer Programming and Combinatorial Optimization, pages 345–358, 1996.

[23] A. Kaporis, L. Kirousis, and E. Lalas. The probabilistic analysis of a greedy satisfiability
algorithm. In Proc. 10th Annual European Symposium on Algorithms, volume 2461 of Lecture
Notes in Comput. Sci., pages 574–585. Springer, Berlin, 2002.

[24] E. Koutsoupias and C. H. Papadimitriou. On the greedy algorithm for satisfiability. Info.
Process. Letters, 43(1):53–55, 1992.

[25] M. Krivelevich and D. Vilenchik. Solving random satisfiable 3CNF formulas in expected
polynomial time. pages 454–463, 2006.

[26] M. Luby, M. Mitzenmacher, A. Shokrollahi, and D. Spielman. Analysis of low density parity
check codes and improved designs using irregular graphs. In Proc. 30th ACM Symp. on Theory
of Computing, pages 249–258, 1998.

33

[27] M. Luby, M. Mitzenmacher, A. Shokrollahi, and D. Spielman. Efficient erasure correcting
codes. IEEE Trans. on Info. Theory, 47:569–584, February 2001.

[28] M. Mezard, T. Mora, and R. Zecchina. Clustering of solutions in the random satisfiability
problem. Physical Review Letters, 94:197–205, 2005.

[29] T. Richardson, A. Shokrollahi, and R. Urbanke. Design of capacity-approaching irregular
low-density parity check codes. IEEE Trans. on Info. Theory, 47:619–637, February 2001.

34

	Introduction
	Average case analysis

	Warning Propagation
	3SAT and Factor Graphs
	The Warning Propagation Algorithm

	Related Work
	Our Results
	An overview
	Properties of a Random Pplantn,p Instance
	Stable Variables
	Dense Subformulas
	The Core Variables
	The Factor Graph of the Non-Core Variables
	Proof of Proposition 13
	Outline of Proof of Proposition 14

	Proof of Theorem 1 and Proposition 3
	Analysis of WP on the core factor graph
	The effect of messages that already converged
	Analysis of WP on the non-core factor graph
	WP on the trees
	WP on cycles
	Convergence of WP when the cycle is biased:

	Convergence of WP when the cycle is free
	Proof of Proposition 35

	Discussion

