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Abstract

In this paper we relate the problem of finding structures related to perfect matchings in bipartite
graphs to a stochastic process similar to throwing balls into bins. Given a bipartite graph with n nodes
on each side, we view each node on the left as having balls that it can throw into bins on the right to
which it is adjacent. If each node on the left throws exactly one ball and each bin on the right gets
exactly one ball, then the edges represented by the ball-placement form a perfect matching. Further, if
each thrower is allowed to throw a large but equal number of balls, and each bin on the right receives
an equal number of balls, then the set of ball-placements corresponds to a perfect fractional matching
– a weighted subgraph on all nodes with nonnegative weights on edges so that the total weight incident
at each node is 1. We show that several simple algorithms based on throwing balls into bins deliver a
near-perfect fractional matching. For example, we show that by iteratively picking a random node on
the left and throwing a ball into its least-loaded neighbor, the distribution of balls obtained is no worse
than randomly throwing kn balls into n bins. Another algorithm is based on the d-choice load-balancing
of balls and bins. By picking a constant number of nodes on the left and appropriately inserting a
ball into the least-loaded of their neighbors, we achieve a smoother load distribution on both sides –
maximum load is at most log log n/ log d+O(1). When each vertex on the left throws k balls, we obtain
an algorithm that achieves a load within k ± 1 on the right vertices.

1 Introduction

We study the problem of finding perfect (fractional) matchings in unweighted bipartite graphs using al-
gorithms based on throwing balls into bins. While the problem of finding matchings in graphs is well-
studied [16], as is the balls-and-bins formulation [22], the connection between the two problems is novel to
the best of our knowledge.

A perfect matching is a subgraph on all nodes where every node has degree exactly 1. The problem of
finding perfect matchings in bipartite graphs is one of the classical fundamental problems in computing
with applications in a wide variety of fields ranging from operations research, scheduling to load balancing.
There are a variety of algorithms for computing maximum matchings in bipartite graphs and the related
assignment problem [12, 15, 6, 5]. Most such algorithms are based on finding augmenting paths by reduction
to maximum flow [7, 1]. The fastest algorithm for finding a perfect matching in a bipartite graph with m
edges and n nodes runs in O(m

√
n) time [12] (see also [11]).

A closely related notion is the well-known perfect k-matching [16], where the subgraph has non-negative
integral weights on edges and the weighted degree of any node is exactly k. As k becomes large, in the
limiting case this becomes a perfect fractional matching [16], which is a weighted subgraph on all nodes
with nonnegative and possibly fractional weights on edges so that the total weight incident at each node is
1. The fractional matching (and k-matching), arises in any setting involving the matching problem where
the nodes on the left side of the bipartite graph represent types and several entities of each type need
to be matched to the neighboring right nodes – for instance, each left node could represent several jobs
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of a type. Fractional matching is also meaningful if a single job may be split across multiple machines.
More generally in a dynamic setting, a large number of jobs may arrive (and depart) over time, and need
to be load balanced across the machines; this is equivalent to computing an online k-matching. Several
earlier works have used this framework to model important applications [14, 13, 17]: recently [17] used this
model to study Ad-Words problem where Internet queries (left nodes) on a search engine such as Google
are matched to advertisements (right nodes) based on a set of ad-words; k-matching has been used as a
crucial component in several auction design problems [25, 29]; fractional matchings were also used by Azar
and Litichevskey [3] to model switch scheduling problem where packets arrive at input ports over time and
need to be continuously matched to output ports. The k-matching problem in general (weighted) graphs
arises in several important applications including the Chinese postman problem[10], capacitated vehicle
routing[19], and quadrilateral mesh refinement in computer-aided design [21].

The stochastic process of throwing balls into random bins is also a well-studied problem (see, for
example, [20, 2, 4, 26, 30]). The typical goal is to study the distribution obtained by randomly assigning m
indistinguishable balls into n bins, or variants of this process. If n balls are inserted into n bins, then with
high probability the bin with maximum load contains (1+o(1)) log n/ log log n balls; when m > n log n the
maximum load is m/n + O(

√
m log n/n) [26]. Azar, Broder, Karlin, and Upfal [2] showed that instead of

choosing one bin, if d ≥ 2 bins are chosen at random and the ball is inserted into the least-loaded bin, the
maximum load reduces dramatically to log log n/ log d + O(1). Berenbrink et al [4] extended this result to
the case when the number of balls m is greater than the number of bins n, showing that the maximum
load is at most log log n/ log d + O(1) above the average.

In this paper we relate the problem of finding structures related to perfect matchings in bipartite graphs
to a variant of the balls-and-bins process. Given a bipartite graph with n nodes on each side, view each
node on the left as having balls that it can throw into bins on the right to which it is adjacent. Balls
from different throwers are distinguishable; each thrower has a different color. Each ball thrown into a bin
represents an edge between the thrower on the left and the bin on the right. The load of a bin on the right
is the number of balls it receives and the load of a thrower on the left is the number of balls it throws.
If each node on the left throws exactly one ball and each bin on the right gets exactly one ball, then the
edges represented by the balls form a perfect matching. On the other hand, if each thrower is allowed to
throw a large but equal number of balls, and each bin on the right receives an equal number of balls, then
the set of ball placements corresponds to a perfect fractional matching. For example, if each node on the
left throws exactly k balls and each bin on the right receives exactly k bins, then the set of ball placements
corresponds to perfect k matching, where the degree of each node in the subgraph is exactly k; then, by
assigning a weight 1/k to each instance of an edge in the subgraph, we obtain a perfect fractional matching.
In this context, for a weighted subgraph, we define the load of a vertex to be its weighted degree.

Assuming the graph has a perfect matching, we show how to efficiently compute a near perfect k-
matching where each node has degree close to k, or a near-perfect fractional matching where the load of
any left vertex is 1, and load of any right vertex is at most 1 + ε. While the Hopcroft-Karp Algorithm [12]
can be used to find a matching of size n(1−ε), it is not clear that it can be used to find a fractional matching
where every node is matched and has degree at most 1+ε. Many of our algorithms are also applicable in an
online setting where jobs (or Internet queries) need to be mapped to machines (or advertisers), assuming
the jobs arrive in a random order. A key advantage of our matching algorithms is that most computation
is local to each node, unlike other algorithms based on augmenting paths.

We show that simple algorithms based on throwing balls into bins find a near-perfect fractional match-
ing. For example, consider the process where we iteratively pick a random node on the left and throw a
ball into its least-loaded neighbor. We show that the distribution obtained from this algorithm is no worse
than randomly throwing kn balls into n bins, implying that the maximum load on any node is at most
k +O(

√
k log n+log n). This gives a near perfect k-matching where the load of a node differs from k by at

most O(
√

k log n + log n), and an algorithm for finding a fractional matching in time O(m log n/ε2), where
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every node on the left has degree 1 and every node on the right has degree at most 1 + ε. This can also
be viewed as an online algorithm for the problem of assigning jobs represented by nodes on the left to
machines on the right, under the assumption of random job arrivals/departures. When the graph does not
have a perfect matching, we can obtain a near-optimal fractional matching, where an optimal fractional
matching corresponds to a subgraph in which all vertices on the left have load 1 and the maximum load
on a right vertex is minimized.

Another algorithm is based on the d-choice load-balancing of balls and bins. By picking a constant
number of nodes on the left and inserting a ball into the least-loaded of their neighbors, we achieve a better
distribution of load amongst the bins on the right — the maximum load is at most log logn/ log d + O(1).
However, this process ignores the load of vertices on the left which is the number of balls of each color.
By appropriately choosing a lightly-loaded node on the left from the random choices and picking its least-
loaded neighbor, we show how to find a subgraph in which the total load on both sides is exactly n and
the maximum-loaded bin has load log log n/ log d. By increasing the number of choices from d to log n, the
maximum load can be reduced to 4.

By combining the load-balancing algorithms with the traditional augmenting path algorithms, we show
how to find in time O(m log2 n) a subgraph where every node on the left has load exactly one and every
node on the right has load at most two. This can be generalized to finding a subgraph where every node
has load either k, k + 1 or k − 1 in time O(km log n + m log2 n), implying that a near-perfect fractional
matching where each right node has load within 1± ε can be computed in O(m log n/ε) time.

2 Summary of Results

Given a bipartite graph with n vertices on each side, we associate a color with each vertex on the left.
View the vertices on the left as throwers and those on the right as bins. Each left vertex can throw a ball
of its color into any one of its neighboring bins. The objective is for each left vertex to throw k balls so
that each bin on the right gets close to k balls. This gives a subgraph (with edge repetition) in which each
left vertex has degree k and each right vertex has degree close to k; or, if we assign each edge a weight of
1
k , it gives a near-perfect fractional matching. Define the load or the height of a vertex to be the number of
balls in that bin; or for a weighted subgraph, the load of a vertex is its weighted degree. In what follows,
when we say subgraph, it could be a weighted subgraph, or a multi-graph.

Throughout the paper, we assume that the graph has a perfect matching, unless otherwise specified.
We propose a set of “load balancing” Algorithms and study their performance in Section 3.

• Round-Robin Algorithm: Perform iteratively for k rounds: in each round, go through the throwers
in some given order, each thrower throwing its ball into the least-loaded neighboring bin.

• Random-Color Algorithm: Repeatedly choose a ball of a random color (or equivalently, choose a
left vertex randomly) and throw into its least-loaded neighboring bin. Do this kn times.

• Move-to-Low Algorithm: Start with any assignment having k balls of each color. Perform iter-
atively: find any ball that can be moved to a bin adjacent to its color whose load is at least 2 less
than the current bin load, and move it.

We show that the distribution obtained from Random-Color is no worse than randomly throwing kn
balls into n bins, implying that the maximum load of any bin is at most k + O(

√
k log n + log n). When

the graph does not have a perfect matching, this gives us a near-optimal fractional matching, where an
optimal fractional matching corresponds to one where all vertices on the left have load 1 and the maximum
load on a right vertex is minimized. We obtain the same upper bound for Move-to-Low. The bounds are
tight for those two algorithms. The Round-Robin Algorithm has the weakest bound, which may not be
tight, but the lower bound of k + O(

√
k log n + log n) still holds. We prove that after k iterations of the

Round-Robin Algorithm, the maximum height of the bins is at most 8k + O(log n).
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Another algorithm (see Section 4) is based on the d-choice load-balancing of balls and bins. It gives a
bound of log log n/ log d on the maximum load of a bin, the average load being 1 on each side. By increasing
the number of choices to O(log n), the maximum load can be reduced to 4.

In Section 5, we combine the load-balancing algorithms with the traditional augmenting path algo-
rithms. We show how to find in time O(m log n) a subgraph where every node on the left has load exactly
1 and every node on the right has load at most 2. This can be generalized to finding a subgraph where
every left node has load exactly k and every right node has load either k, k+1 or k−1 in time O(km log n).

Using Algorithm Random-Color or Move-to-Low, choosing k to be sufficiently large, we obtain in time
m log n/ε2 a fractional matching where every node on the left has load 1 and every node on the right has
load at most 1 + ε. The augmenting path algorithms gives a near-perfect fractional matching where each
right node has load within 1± ε, with a better running time O(m log n/ε).

3 Performance of Load Balancing Algorithms

Now we analyze the performance of the three load balancing algorithms introduced in Section 2.

3.1 Algorithm Random-Color

We show that the distribution of balls into bins obtained by Random Color algorithm is no worse than
the distribution obtained when each ball is randomly thrown into a bin regardless of its color (we call it
the Pure-Random Algorithm). It is known that if kn balls are randomly thrown into n bins, then the
maximum bin size is k +O(

√
klogn+log n) with high probability. (More precisely, when k is constant, the

maximum load is k + O(log n/ log log n) balls; when k > log n the maximum load is k + O(
√

k log n) [26].)
This bound is tight for Random-Color, because it is tight for Pure-Random, and when the graph has only
n edges the two processes are equivalent.

The essential observation is that since there is a perfect matching, we can associate each color i with
a unique bin bi, that is, its matched neighbor in the perfect matching. Since this is a one-to-one mapping
between colors and bins, picking a random color is the same as picking a random bin. When a ball of a
certain color i is chosen, the algorithm always have the option to place the ball into bi. It will end up
placing the ball into a bin with height at most that of bi. This amounts to picking a random bin bi and
placing the new ball into a bin of height at most bi. In this sense, we are always doing better than the
random process of assigning balls to random bins.

To formalize the argument, we use the notion of “majorization” and coupling (see also [4]).

Definition 1 Load vector: A load vector u = (u1, . . . , un) specifies that the number of balls in the ith bin
is ui.

Majorization: A load vector u = (u1, . . . , un) is majorized by a load vector v, written as u ≤ v, if
for all i, the total number of balls in the i most heavily loaded bins of u is at most that of v, that is,
∀i, ∑1≤j≤i uπ(j) ≤

∑
1≤j≤i vσ(j), where π and σ are permutations of 1, . . . , n such that uπ(1) ≥ uπ(2) ≥

. . . ≥ uπ(n), and vσ(1) ≥ vσ(2) ≥ . . . ≥ vσ(n).

The intuition is that if u ≤ v, v can be converted into u by moving balls to lower heights. We are
going to use the coupling technique to compare Random-Color and Pure-Random. Here coupling means
that the two considered stochastic processes are tied together (sharing the same random bits) such that
each process for itself looks exactly like the original process, but at any point of time the load vector of
Random-Color is majorized by that of Pure-Random.

Theorem 1 If the graph has a perfect matching, then there is a coupling between Random-Color and
Pure-Random, such that the load vector obtained by Random-Color is majorized by the load vector obtained
using Pure-Random.
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Proof: We prove by induction on the number of balls thrown. Let u be the load vector obtained after
throwing some fixed number of balls using Random-Color, and v be the vector after throwing the same
number of balls using Pure-Random. Since the order of bins does not matter in majorization, we can
assume u is ordered, i.e. u1 ≥ u2 ≥ . . . ≥ un; so is v. By induction, we assume that u ≤ v.

Let u′ and v′ denote the load vectors after throwing one more ball using the two algorithms respectively.
We use the following coupling of Random-Color and Pure-Random. We choose uniformly at random a
number i from 1 to n. In Random-Color, we choose the left vertex that is matched to bin i in the perfect
matching, and put the ball into the least loaded bin adjacent to the vertex. In Pure-Random, we directly
throw the ball into the ith bin. Note that the two bins may not be the same because bins in u and v are
ordered according to the loads. It is easy to see that the probabilities for these assignments remains the
same as those in the original processes. Thus coupling is well defined. We are going to prove that u′ ≤ v′.

Random-Color will always put the ball in a bin with load at most ui. Consider the load vector obtained
by adding the new ball into bin i of u, denoted by u′′. It is easy to see that u′ ≤ u′′. We only need to show
u′′ ≤ v′, which follows a known property of majorization: for any two ordered load vectors u and v, u ≤ v
implies u + ei ≤ v + ei, where ei denotes the ith unit vector (see Lemma 3.4 in [2]). ¤

3.2 Algorithm Move-to-Low

Lemma 2 If the graph has a perfect matching, and if algorithm Move-to-Low is allowed to run to a fixed
point, the fraction of bins with load at least k + j is at most kj k!

(k+j)! ; the maximum load on any bin is
O(
√

k log n + log n) above the average.

Proof: We will compute a recurrence relation on the number of bins with load j. Observe that after
equilibrium, if a ball of a certain color is in a bin of load j, all adjacent bins of that color are at least at
height j− 1. Let pj denote the number of bins at height j or more. The total number of balls in such bins
is at least jpj . Since there are only k balls of each color, the number of different colors in these balls is at
least jpj/k. If there is a perfect matching, these throwers (colors) have at least as many neighbors all of
which have load at least j − 1.

So jpj

k ≤ pj−1 or pj ≤ k
j .pj−1, or pk+j ≤ k

k+j pk+j−1. After simplification since pk ≤ n, we get
pk+j ≤ kj k!

(k+j)!n. If j = O(
√

k log n + log n) this becomes less than one. ¤

The fraction kj k!
(k+j)! is remarkably close to the fraction of bins that receive k + j balls when nk balls

are randomly thrown into n bins, which is
(

kn
k+j

)
(1/n)k+j(1 − 1/n)nk−k−j ≈ kk+je−k/(k + j)! = kj (k/e)k

(k+j)! .
A tighter bound of the maximum bin size can be found along the lines of the bounds in [26] for random
balls and bins.

The above analysis is tight. We can construct a subgraph where d jpj

k e = pj−1 and none of the balls can
be moved to lower heights, by iteratively creating x new throwers for each bin of load x, and then creating
x bins of load x− 1 for each new throwers.

3.3 Algorithm Round-Robin

Theorem 3 If the graph has a perfect matching, then after one iteration of algorithm Round-Robin, the
maximum height of bins is at most log n + 1. After k iterations, the maximum height of bins is at most
8k + O(log n).

See Appendix for proof. The above bound might not be tight, but the lower bound k+O(
√

k log n+log n)
still holds. Consider the graph where the ith left vertex links to all right vertices with indices equal or
higher than i. In Round-Robin, if we break the tie by making each ball goes to the neighboring bin with
the highest index, then the load vector is worse than the load vector obtained by Random-Color.
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3.4 Graphs without Perfect Matchings

The analysis of Random-Color and Move-to-Low algorithm can be generalized to graphs without perfect
matchings. The graph can even have different numbers of vertices on left and right.

Define the minimum expansion of a bipartite graph to be minV⊂L
|N(V )|
|V | . Suppose the minimum

expansion of a bipartite graph G is c (c ≤ 1; equality holds only when G has a perfect matching), then the
distribution of bin heights obtained by Random-Color is no worse than that obtained by Pure-Random
on cn bins. This is because the probability that a ball falls into one of the x heaviest loaded bins in
Random Color is at most x/cn, while in Pure-Random, this probability is exactly x/cn. By a similar
coupling argument as Theorem 1, the load vector of Random-Color is majorized by that of Pure-Random.
Therefore, with high probability, the maximum bin size is k/c + O(

√
k log n/c + log n). Note that an

optimal fractional matching, where all vertices on the left have load 1 and the maximum load on a right
vertex is minimized, has the maximum bin size at least 1/c, because all balls from the subset V achieving
the minimum expansion have to go to N(V ). So Random-Color still gives a near-perfect matching.

Theorem 4 There is a coupling between Random-Color and Pure-Random on cn bins such that the load
vector obtained by Random-Color is majorized by the load vector of Pure-Random.

Proof: We prove the theorem by induction on the number of balls thrown. Assume u is the (ordered)
load vector using Random-Color after throwing some balls; v is the vector using Pure-Random. u ≤ v by
induction. Let u′ and v′ be the load vectors after throwing one more ball. We are going to show u′ ≤ v′.

We refer to a set of bins with the same height in a load vector as a plateau. A load vector consists of
a sequence of plateaus with decreasing heights. Consider the first cn bins of u. Let the number of bins in
the ith plateau of u[1..cn] be xi. Let yi be the prefix sum of xi, i.e. yi =

∑i
j=1 xj (yi ≤ cn).

We claim that given u, the probability that a ball is thrown into any bin in the first i plateaus is at
most yi/cn. The reason is as follows. Let X be the set of left vertices (colors) such that any ball in X
will be put in the first i plateaus by Random-Color. Assume |X| > yi/c, then |N(X)| > yi because the
minimum expansion is c. This contradicts with the definition of X, because there is at least one bin in
N(X) with height less than the height of plateau i, so Random-Color will put the ball there. Therefore,
|X| ≤ yi/c. The probability of choosing any color is exactly 1/n, so the probability of a ball thrown into
the first i plateaus is at most yi/cn.

We define a third stochastic process. It looks at the first cn bins of u and places the ball in plateau i
with probability xi/cn. It makes no difference which specific bin within plateau i is chosen, so we assume
the process always chooses the last bin yi. Denote by u′′ the load vector after throwing one more ball to
u by this process. u′ ≤ u′′ because the process only moves the ball toward a higher plateau compared to
Random Color.

Define another process corresponding to Pure-Random. It looks at v and put the new ball to bin yi if
Pure-Random put it in some bin in [yi−1 + 1, yi]. Denote by v′′ the load vector obtained by this process.
v′′ ≤ v′ because the process only moves the ball downward. The probability that the ball is put in bin yi

is xi/cn. (Note the yis are with respect to the load vector u.)
Both of the new processes put the ball in bin yi with probability xi/cn. We couple the two processes so

that they throw the new ball in the same bin. It is proved in [2] that if u ≤ v, and the new ball is thrown
into the same bin, then u′′ ≤ v′′. Therefore, u′ ≤ u′′ ≤ v′′ ≤ v′. ¤

Similar bounds hold for Move-to-Low on graphs without perfect matchings. The analysis is similar to
Lemma 1, except that the derivation is pk/c+j ≤ k/c

k/c+j pk/c+j−1 instead of pk+j ≤ k
k+j pk+j−1.

We can further generalize the algorithm/analysis to arbitrary demands/capacities of vertices. Each
vertex v has a demand/capacity c(v), and we look for a (fractional) matching where the total weight of a
vertex in the matching is close to c(v). When pick a ball, we pick v with probability c(v)/

∑
u c(u); when

choose the least loaded bin, normalize the load with respect to its capacity.
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4 Using d-Choice Load Balancing

The above algorithms produce a maximum load of at least O(log n/ log log n) with a total of n balls. We
now show how ideas based on d-choice hashing can be used to find a better distribution. It is known
that while throwing n balls into n bins if each ball picks d ≥ 2 bins at random and is inserted into the
least loaded of the d bins, then the maximum load of any bin is at most log log n/ log d + O(1) with high
probability. We now show an algorithm that produces a subset of the edges (allowing repetitions) of the
bipartite graph so that the total degree on each side is n and the maximum degree is log log n/ log d+O(1)
in time O(md) with high probability. In particular for d = O(log n) the maximum load is 4.

Intuitively - if we pick d ≥ 2 random vertices on the left side and throw a ball into the least loaded
vertex among all their neighbors then this is similar to the d-choice load balancing. The color of the ball
corresponds to one of the d vertices whose neighbor is chosen (breaking ties arbitrarily). If this is done n
times the maximum load of any bin on the right side is at most log log n/ log d + O(1). However, there is
no guarantee of a low load on the vertices on the left; that is the maximum number of balls of a certain
color. To remedy this we modify the algorithm slightly: Instead of picking d vertices on the left we pick
2d − 1 and consider the d of these that have lowest loads. Then we look at the set of their neighbors on
the right and add a ball into the least loaded bin. Again the color of the ball is the same as the vertex
whose neighbor is chosen. Essentially if the 2d− 1 chosen left-vertices have loads u1, u2, .., u2d−1 and their
matched neighbors in a perfect matching have loads v1, v2, .., v2d−1, then we find an edge with load on the
left at most the median value of ui’s on load and the right at most the median value of vi’s. This is like
throwing n balls into n bins where each ball picks 2d− 1 bins at random and is inserted into one of the d
least loaded of the 2d− 1 chosen bins.

Theorem 5 If the graph has a perfect matching, and if n balls are inserted by the above process, we get
a subset of the edges (allowing repetitions so it is a multiset) of the bipartite graph so that the total degree
on each side is n and the maximum degree is log log n/ log d + O(1) with high probability.

Theorem 6 If the graph has a perfect matching, and if n balls are inserted by above process except that
we choose d = O(log n) nodes for each ball, then we get a subset of the edges (allowing repetitions so it is
a multiset) of the bipartite graph so that the total degree on each side is n and the maximum degree is 4
with high probability.

Lemma 7 Assume the graph has a perfect matching. If n balls are thrown into n bins where each ball
picks 2d− 1 bins at random and is inserted arbitrarily into one of the d least loaded of the 2d− 1 chosen
bins, then the maximum load of any bin is at most log log n/ log d+O(1) with high probability. This is true
even if instead of inserting a ball in one of the d least loaded of the 2d− 1 chosen bins, it is inserted into
any other bin whose load does not exceed the median load of the 2d− 1 chosen bins.

Proof: We use the layered induction technique similar to the one used to bound the load of bins in the
two choice hashing [2]. Let pi denote an upper bound on the fraction of bins with load at least i at the
end of the process. We will derive a recurrence relation on pi. Let us compute the probability that during
an insertion the new ball lands at a height of i + 1 or higher. For this to happen at least d of the bins
chosen must have height i or greater; otherwise each of the d least loaded of the 2d− 1 bins has load less
than i. Probability that this happens is at most

(
2d−1

d

)
pd

i ≤ 22dpd
i = (4pi)d. So the expected number of

balls that fall at height i + 1 or higher is at most (4pi)dn. This is also a bound on the expected number
of bins with load at least i + 1. So given pi, the expected value of pi+1 is at most (4pi)d. This can be
converted into a high probability bound – probability at least 1− 1/nc – by using Chernoff bounds as long
as (4pi)dn ≥ c log n where c is a large enough constant.

This implies, given pi, if (4pi)dn ≥ c log n then with high probability pi+1 ≤ (4pi)d, which implies
16pi+1 ≤ (16pi)d. Now, p32 ≤ 1/32 as at most 1/32 fraction of the bins can have load 32 or higher. Using
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the recurrence we get pi+32 ≤ 1/2di
as long as 1/2di ≥ c log n/n. Let k denote the highest value of i + 32

for which this holds; k = log log n/ log d + c′ where c′ is some constant (possibly negative). Now we know
that (4pk)d ≤ c log n/n. We will show that with high probability there is no bin with load k + 2. Again
Chernoff bounds can be used to show that with high probability pk+1 ≤ 2c log n/n. Now we argue that
the probability that a bin has load k + 2 is at most n(8c log n/n)d using a simple union bound on the
probability that any of the ball thrown lands at height k + 2. So the probability that there is a ball at
height 32+ log log n/ log d+ c′+2 is at most n(8c log n/n)d +n/nc ≤ 1/nΩ(1). The conditioning arguments
can be made more precise along the lines of the proof in [2]: Essentially let Ei denote the event that the
fraction of bins with height at least i + 32 is at most the bound pi+32 computed above. Then E0 is true;
probability that Ei holds and Ei+1 does not is negligible which recursively implies that each Ei holds with
high probability except for the sum of the negligible probabilities. ¤

Given lemma 7 it is easy to argue that the loads of the vertices of the left side and right side grow
according to the process described. For the right side vertices, since 2d− 1 vertices are chosen at random
from the left side, this is equivalent to choosing 2d− 1 vertices at random on the right side in the optimal
matching. After discarding d− 1 of them we pick a vertex with load that is no more than that of the least
loaded of the d remaining right side bins. So again the arguments in proof of lemma 7 go through; the only
difference is instead of placing the ball in one of the d least loaded of the 2d − 1 chosen bins, it is placed
into some bin with possibly lower load but no higher.

Theorem 5 can also be proven similarly: The fraction of nodes on any side with load at least 3 is at
most 1/3 at any time. If d = O(log n) nodes are chosen at random then, with high probability (1− 1/n2),
the median load is at most 3. Since we can always find an edge whose load is at most the median load on
both the left and the right side, we can with high probability, add a ball along an edge so that after the
addition the loads are at most 4.

5 Combining Load Balancing with Augmenting Paths

Classical perfect matching algorithms for bipartite graphs leverage max flow algorithms based on augment-
ing paths. Now we combine the above load balancing algorithms with augmenting paths, and get efficient
algorithms to find near-perfect fractional matchings.

Definition 2 An s-almost matching in a bipartite graph G is a multi-set of edges in G, such that the load
of any left vertex in the matching is exactly s, while the load of any right vertex is in [s− 1, s + 1].

In this section, we show an algorithm finding an k-almost matching in time O(m log2 n + mk log n).

5.1 Finding 1-almost matchings

We start with 1-almost matchings. Recall that the residual graph [7] with respect to a subgraph is obtained
by first directing all edges from left to right and then flipping the directions of all edges in the subgraph;
an augmenting path is a simple path in the residual graph. Given a subgraph where the load of any left
vertex is 1, its residual graph has the following property.

Lemma 8 For every right vertex u of height h ≥ 3, there exists an augmenting path of length at most
2 log n from u to some right vertex v of height at most h− 2.

Proof: Let d be the length of the shortest such augmenting path; Np be the number of bins reachable
from u within 2p steps (2p < d). The total number of balls in those bins is at least (h − 1)Np, otherwise
we have founded a bin of height h − 2 or less. Those balls correspond to (h − 1)Np distinct left vertices,
the size of whose neighborhood is at least (h− 1)Np because there exists a perfect matching. This whole
neighborhood is reachable from u in another 2 steps. Therefore, Np+1 ≥ (h − 1)Np ≥ (h − 1)p+1. For
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h ≥ 3, (h − 1)d/2+1 ≥ 2d/2. Because the total number of balls in the system is n, we have 2d/2 ≤ n, or
d ≤ 2 log n. ¤

Moving one ball from u along the augmenting path to v decreases the height of v by one. Given any
subgraph, we can eliminate all highest bins by such moves until the maximum height is 2. In the end, the
load of any left vertex in the subgraph remains 1, and the load of any right vertex is at most 2. As in
the well known Edmonds-Karp algorithm (see Ch26.2 in [7]), augmenting paths are selected such that the
lengths of augmenting paths increase with each phase. A phase consists of augmentations along a maximal
set of edge-disjoint augmenting paths, which can be implemented by one breadth-first search. Thus we get
a 1-almost matching.

1-almost matching Algorithm:
1. Run one round of Round-Robin Algorithm: throw n balls and get a maximum bin size of log n + 1;
2. As long as the maximum bin height h is more than 2, use the Edmonds-Karp algorithm to eliminate

bins of height h.
Edmonds-Karp algorithm:
1. Let any bin of height h be a source; any bin of height h′ ≤ h− 2 be a sink;
2. while there exists a source do
2-1. by performing a breadth-first search, find the length of the shortest augmenting path from any

source to any sink; denoted this length by d;
2-2. find a maximal set of edge-disjoint source-sink paths of length d, under the constraint that any

sink of height h′ can appear in at most h − h′ − 1 paths. For each augmenting path selected, flip the
directions of the edges, i.e. perform a sequence of ball moves that decreases the height of source bin by 1
and increases the height of the sink by 1.

The Edmonds-Karp algorithm is based on the following property: if we always augment along the short-
est path, then the shortest distance from source to any node in the residual graph increases monotonically.
See Ch26.2 in [7] for the proof. This is summarized in the following lemma.

Lemma 9 In the Edmonds-Karp algorithm, the length of the shortest augmenting path d increases mono-
tonically. If a maximal set of augmenting paths are chosen in each phase, then d must strictly increase in
each phase.

We analyze the time complexity of the above algorithm. Using the standard implementation of
Edmonds-Karp algorithm, each phase takes time O(m): use a breadth-first search to decide the short-
est distance d takes time m; then use depth-first search to find a maximal set of edge-disjoint augmenting
paths of length d, which takes time O(m) (see Ch26 in [7] for details).

To reduce the maximum bin height by at least 1, we need to run Edmonds-Karp algorithm for at most
2 log n phases as the length of the augmenting path strictly increases in each phase, and by Lemma 8 we
need to look at augmenting paths of length at most 2 log n. This needs to be done at most log n + 1 times
because the maximum bin height after one round of Round-Robin is at most log n + 1. Since each phase
takes time O(m), the total running time is O(m log2 n).

Theorem 10 If the graph has a perfect matching, then a 1-almost matching can be found in time O(m log2 n).

5.2 Finding k-almost matchings

The above algorithm can be generalized to get an algorithm to find a k-almost matching in O(mk log n)
time, where the load of each left vertex in the matching is k, and the load of each right vertex is between
k ± 1.

9



The idea is to recursively double the balls in each bin, and move the balls by finding augmenting paths
of length at most klogn. We start with k = 1 and get a 1-almost matching using the above algorithm.
Assume we have a k

2 -almost matching. Now double each edge, and we get a subgraph where each left
vertex has load k and any right vertex has load k± 2. To convert the matching into a k-almost matching,
all we need to do is to eliminate bins of height k + 2 and k − 2 by finding augmenting paths to bins of
height k. We can bound the length of the shortest augmenting path similar to Lemma 8.

Lemma 11 For every bin u of height k + 2, there exists an augmenting path of length O(k log n) from u
to some bin of height at most k. For every bin u of height k− 2, there exists an augmenting path of length
O(k log n) from some bin of height at least k to u.

Proof: Let d be the length of the shortest such augmenting path; Np be the number of distinct balls
in the bins reachable from u within 2p steps (2p < d). (Two balls are distinct if they correspond to
different left vertices.) In another 2 steps, u can reach Np bins; all those bins have height at least k + 1,
so the total number of balls in those bins is at least Np(1 + k), and the number of distinct balls is np+1 ≥
Np(1 + 1

k ) ≥ (1 + 1
k )p+1. Because the total number of balls in the system is n, we have (1 + 1

k )d/2+1 ≤ n,
or d ≤ 2 log1+1/k n = O(k log n).

Similarly we can prove that for every bin u of height k− 2, the number of bins that can reach u within
2p steps is at least (1 + 1

k−1)p+1, so there exists an augmenting path of length O(k log n) from some bin of
height at least k to u. ¤

Running Edmonds-Karp algorithm to eliminate all bins with height k + 2 and k − 2 takes time
O(mk log n), and results in a k-almost matching. We need to double the number of balls per left ver-
tex from 1 up to k. The running time of each phase increases geometrically, so the total running time is
dominated by the last phase, which is O(mk log n). To start with, we need to find a 1-almost matching,
so the total time is O(m log2 n + mk log n).

Theorem 12 If the graph has a perfect matching, then an k-almost matching can be found in time
O(m log2 n + mk log n).
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6 Appendix

6.1 Proof of Theorem3

Proof: First we show that the maximum height after one round is at most log n + 1. Let T (i) denote the
number of bins with height at least i. We will show that T (i) ≥ ∑h

j=i+1 T (j) where h is the maximum
height after one round. We will argue that there are at least

∑h
j=i+1 T (j) distinct bins with heights at

least i. For each of the heights j ranging from i + 1 through h, there are at least T (j) distinct balls. This
gives a total of

∑h
j=i+1 T (j) balls each with a different color. For every ball of a given color at height j

there is a unique bin corresponding to its assignment in a perfect matching; the height of that bin is at
least j−1 as otherwise the ball would not be at height j. Since each ball gives a distinct bin with height at
least i−1, the recurrence follows. Since T (h) is at least 1, T (h−1) is also at least 1 implying T (0) ≥ 2h−1.
So h is at most log n + 1.

We will inductively show that after r rounds the maximum fraction of bins with height 8k+ i is at most
αi where α < 1 will be specified later. Assume it is true after r rounds but is not true after the r+1 round.
This means there is a height 8(r +1)+ i where the number of balls is at least nαi. Look at the lowest such
height. By induction, there were at most nαi+8 balls at this height after r rounds. So at least nαi−nαi+8

new balls were added in the r +1th round. Also the number of balls at height 8(r +1)+ j− 1 must also be
at least nαi. So at least nαi− nαi+7 new balls were added at this height. So again as before we can argue
that total number of bins with height at least 8(r + 1) + i− 2 is at least nαi−nαi+8 + nαi−nαi+7. If this
is greater than nαi−2 then we get a contradiction as it gives a lower height where the induction hypothesis
is not true; observe that if i ≤ 2 this implies there are more than n balls at height 8(r + 1) + i− 2 which
is impossible. So we need nαi − nαi+8 + nαi − nαi+7 > nαi−2 or 1− α8 + 1− α7 > α−2. This holds for α
about 0.8. ¤
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