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Abstract

Motivated by the proactive security problem, we study the question of maintaining secrecy
against a mobile eavesdropper that can eavesdrop to a bounded number of communication
channels in each round of the protocol. We characterize the networks in which secrecy can be
maintained against an adversary that can eavesdrop to t channels in each round. Using this
characterization, we analyze the number of eavesdropped channels that complete graphs can
withhold while maintaining secrecy.

Keywords: unconditional security, passive adversary, mobile adversary, graph search games.

1 Introduction

Many cryptographic protocols are secure if an unknown fixed set of processors of bounded size is
dishonest. Proactive security [13, 9] considers a more realistic scenario, where a mobile adversary
can control a different set of processors of bounded size in each period. Protocols in the proactive
model have to cope with a stronger adversary, which, for example, might have controlled every
processor by some point during the protocol execution. In protocols secure in the proactive model,
each processor has to “spread” the secret information it holds.

Franklin, Galil, and Yung [6] studied maintaining secrecy against a mobile eavesdropper which
can eavesdrop to a bounded number of processors in each round of the protocol. Unfortunately,
we discovered that the main characterization given in [6] of maintaining secrecy against a mobile
eavesdropper is incorrect. We describe the flaw in their proof and the correct characterization,
see Section 1.2. The main focus of this paper is a similar question, where a mobile eavesdropper
can eavesdrop to a bounded number of communication channels in each round of the protocol.
As eavesdropping to communication channels is easier than eavesdropping to processors, this is a
natural question. Although the two problems are similar, there are differences between the two
problems, for example in the number of rounds that an adversary can learn the secret information
in a complete graph while eavesdropping to minimal number of vertices or edges respectively.

To model the question of maintaining the secrecy of a system against a mobile adversary that
can eavesdrop to communication channels, we consider the following abstract game, similar to [6],
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called the distributed database maintenance game. There is a protocol trying to maintain the
secrecy of one bit b in the system. The first stage in the game is an initialization stage in which
each edge gets an initial value. (This abstracts an intermediate state of a more complex protocol.)
In Round i, each vertex receives messages, and sends messages generated based on the messages it
received in the previous round and a “fresh” random string. The secret bit b can be reconstructed
in each round of the protocol from the messages sent in the system in that round. The mobile
adversary eavesdrops to t channels of its choice in each round. We require that an unbounded
adversary cannot learn the secret from the messages it heard. The adversary can only eavesdrop
to channels; it cannot change, insert, or delete messages.

Following [6], because of the close connection with “graph search games” [14, 11], we refer to
the eavesdropping to a channel as placing a “guard” on this edge, and we say that a graph is
“cleared” at the end of a “search” (finite sequence of subsets of edges the adversary eavesdrops) if
the adversary has collected enough information to infer the secret bit b.

The search terminology we use is somewhat unnatural as it “takes the side” of the adversary.
That is, the adversary defeats the secrecy of a protocol if it clears the graph. In contrast, a protocol
maintaining privacy should prevent the adversary from clearing the graph. Furthermore, we will
define when a vertex is contaminated after i rounds of the protocol, and the protocol maintains
privacy if there is at least one contaminated vertex at the end of the protocol. The reason we use the
graph search terminology is that it describes the interplay between the protocol and the adversary
as contamination tends to spread unless the adversary guards the edges adjacent to contaminated
vertices.

We consider two variants of the edge eavesdropping game, depending on whether the underlying
communication network is modeled as a directed or an undirected graph. When the network is
modeled as an undirected graph, each edge is a full-duplex channel, and a single eavesdropper can
monitor the message flow in both directions. When the network is modeled as a directed graph,
each edge allows communication in one direction only, and a single eavesdropper can monitor the
message flow in that direction only. Note that a full-duplex channel can be represented as a pair
of directed edges, but then two eavesdroppers are required to monitor the message flow in both
directions.

To see some of the subtleties of edge eavesdropping games, consider the three graphs described
in Figure 1. A single guard can clear these graphs, and thus the distributed database maintenance
game on these networks is defeated by an adversary controlling a single mobile eavesdropper. An
explanation of these examples can be found in Example 3.5 and in Section 4.3.

1.1 Our Results

Our first result (Theorem 3.2) is a characterization of when a search clears a graph. Given a
directed or undirected graph G and given a search of length `, we construct an undirected layered
version of the graph where the number of layers is the length of the search. In the layered graph
there are `+1 copies of each vertex, and there is an edge between the ith copy of u to the (i+1)th
copy of w iff there is an edge between u and v in G. We prove that a search clears a graph iff it
cuts the first layer from the last layer in the layered graph. That is, we prove that:

1. If there is no search with t guards that cuts the first layer from the last layer, then there is
a simple protocol that can maintain privacy against any adversary that can eavesdrop to t
channels in each round.
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Figure 1: Three graphs that can be cleared with one guard.

2. If there is a search that cuts the first layer from the last layer in the layered graph, then
no protocol can maintain privacy against this search. This is proved by a reduction to the
impossibility of unconditional key exchange.

These results demonstrate a zero-one phenomenon: either the adversary can learn the everything or
it cannot deduce any information about the secret. This zero-one phenomenon is typical to secure
computation against an unbounded adversary, e.g., [4].

Inspired by this characterization, we say that an undirected path in the layered graph is con-
taminated if all edges in the path are unguarded; a vertex is contaminated after i rounds of the
search if there is a contaminated path (through any layers) from the first layer to the copy of the
vertex in layer i. That is, contamination “flows” both forwards and backwards in time.

We give a second characterization (Theorem 3.6) of when a search clears a graph based on the
sets of contaminated vertices in each round of the protocol. This characterization is more useful for
analyzing the possibility and impossibility of clearing graphs. Based on this second characterization,
we prove an upper bound on the length of the search (Theorem 3.8): If an adversary can clear a
graph while eavesdropping to at most t edges in each round, then it can clear the graph in at most 2n

rounds while eavesdropping to at most t edges in each round. We do not know if super-polynomial
search length is sometimes necessary.

A search is “monotonic” if once a vertex is cleared, it will remain clear for the entire search.
We explore the usefulness and limitations of a generic monotonic searches. On the positive side,
we show that monotonic search is essentially optimal for directed and undirected complete graphs.
A complete directed graph with n vertices can be cleared by n2/2 guards in two rounds when n is
even (by monotonic search). We prove that n2/2 guards are required to clear this graph no matter
how many rounds the adversary is allowed (by any search). For a complete undirected graph with
n vertices, we show that it can be cleared by n2/4 + n/2 guards in O(

√
n) rounds (by monotonic

search). Furthermore, we prove that n2/4 + n/2 guards are required to clear this graph no matter
how many rounds the adversary is allowed (by any search), and Ω(

√
n) rounds are required to

clear the graph even if the adversary uses n2/4 + O(n) guards (by any search). In contrast, with
3n2/8 + n/4 guards, the complete undirected graph can be cleared in two rounds (by monotonic
search).
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1.2 Comparison to the Vertex Eavesdropping Game

The problem we consider is similar to the vertex eavesdropping games considered in [6]. In the
vertex eavesdropping game, a mobile adversary eavesdrops to processors – it monitors their internal
state, the computations they perform, and the messages they send and receive. A search is a finite
sequence of subsets of vertices; a search succeeds (“clears the graph”) if the adversary learns enough
information to infer the secret bit b in the distributed database maintenance game. Unfortunately,
the main characterization given in [6] of successful searches is incorrect. The correct characterization
is similar to the edge eavesdropping games: Given a directed or undirected graph, and given a
search, construct the undirected layered version of the graph where the number of layers is the
length of the search (and with all self-loops added, i.e., an edge from each node in each non-final
layer to the same node in the next layer). A search clears a graph iff it cuts the first layer from the
last layer in the undirected layered graph.

The mistake in [6] is that they considered the directed layered version of the graph instead of the
undirected case. In particular, the flaw is in the proof of Lemma 4 of [6], i.e., Alice cannot simulate
the behavior of every node in Vs by herself. A graph demonstrating this problem is described in
Appendix A. The characterization of [6] is correct if we require that each vertex is deterministic
during the execution of the protocol.

Although, the vertex eavesdropping game and the edge eavesdropping game seem similar, there
are differences between them. For example, the search of complete graphs is simple in the vertex
eavesdropping game: the complete graph with n vertices can be cleared with n guards in one
round, and cannot be cleared by fewer guards in any number of rounds. By contrast, the search
of undirected complete graphs in the edge eavesdropping game is more complicated as it requires
Ω(
√

n) rounds even if near optimal number of guards are used. See Sections 4 and 5 for a detailed
treatment.

In [6] it was shown that for directed layered graphs, super-polynomial search length is sometimes
necessary: There exists a family of graphs {Gn} such that each Gn has O(n2) vertices, however,
clearing the directed layered graph of Gn requires Ω(2n) rounds using the optimal number of
guards. This should be contrasted with classic search games, in which linear number of rounds are
sufficient to clear a graph with optimal number of guards [12, 1] (for background on search games
on graphs [14, 11]). However, due to the problem in the characterization of [6], the above sequence
of graphs does not imply that in vertex eavesdropping games super-polynomial search length is
sometimes necessary. It is not known if super-polynomial search length is ever necessary for the
vertex eavesdropping game or for the edge eavesdropping game.

1.3 Historical Background

Ostrovsky and Yung [13] considered mobile faults under the control of a Byzantine adversary to
achieve general secure distributed computation against virus-like waves of attack. Defense against
mobile Byzantine faults was subsequently called “proactive” security [9], and was considered in
numerous papers. The classic problem of Byzantine Agreement was studied in the mobile Byzantine
fault setting by Garay [7] and Buhrman et al. [2]. The distributed database game was analyzed
for the vertex eavesdropping game by Franklin et al. [6]. A more elaborate and fully functional
distributed storage, with all operations secure against a mobile Byzantine adversary, was treated by
Garay et al. [8]. In a work done in parallel to our work, Prasad, Srinathan, and Pandu Rangan [15]
considered proactive perfectly secure message transmission against an unbounded adversary.
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All the above works consider faults of processors, while we consider eavesdropping to com-
munication channels. In [3, 10, 5], the problem of using a multicast network coding to transmit
information securely in the presence of an adversary which can eavesdrop to a fixed set of edges of
bounded size was studied.

Organization. In Section 2 we present our model and some background results. In Section 3
we characterize when a graph can be cleared with t guards. In Section 4 we consider monotonic
searches, discuss how they can be used to clear complete graphs, and show that for some graphs
they are not optimal. Finally, in Section 5 we prove lower bounds on the number of guards needed
to clear complete directed and undirected graphs.

2 Preliminaries

We consider a network described either by an undirected graph or by a directed graph. In the
directed case we assume, for technical reasons, that the out-degree, |OUT(v)|, and in-degree, |IN(v)|,
of each node v is at least 1. The network is synchronous, and protocols in the network proceed in
rounds. In Round i, each vertex v does the following: (1) receives the messages sent by neighboring
vertices in Round i − 1, (2) chooses a random string ri

v for Round i, (3) computes new messages
based on the messages sent to it in Round i − 1 and the random string ri

v, and (4) sends the
messages it computes in Round i.

We consider the distributed database maintenance game (database game for short). There is a
protocol trying to maintain the secrecy of one bit b. The first stage in the game is an initialization
stage in which each edge gets an initial value; there is a initialization function I(b) = 〈m0

u,v〉〈u,v〉∈E

that generates initial messages for the edges as a randomized function of the secret bit b. In Round
i, where i ≥ 1, the state of each vertex v is 〈mi−1

u,v 〉u∈IN(v), r
i
v, that is, the messages it received

in the previous round and a random string for the current round. Vertex v computes messages
mi

v = 〈mi
v,w〉w∈OUT(v), where mi

v is a function of the vertex state,1 and sends mi
v,w to w. The

secret can be reconstructed in each round of the protocol; there is a reconstruction function φ such
that φ(〈mi

u,v〉〈u,v〉∈E , i) = b.
In the model we define, the messages that a vertex sends in Round i depend only on the messages

sent to it in Round i−1, and on a “fresh” random string for the round, thus, effectively each vertex
forgets all information from previous rounds. The reason for this requirement is that otherwise the
secrecy in the database game can be maintained in the local memory of some vertex. If we want
to allow local memory, that is, remembering the history, then the adversary must be able to read
it. Technically, this is done by adding self-loops in the graph. Thus, depending on the graph, we
allow or disallow each vertex to remember its history. However, the adversary cannot eavesdrop to
the local memory of a vertex during the momentary period of receiving the messages, computing
the new messages, and sending them.

A mobile adversary is trying to learn the bit b. The adversary eavesdrops to a possibly different
subset of edges in each round. In a directed graph, an adversary that eavesdrops to an edge 〈u, v〉 in
Round i, learns the message sent by u to v in Round i. In an undirected graph, an adversary that
eavesdrops to an edge 〈u, v〉 in Round i, learns two messages sent in Round i: the message sent by
u to v and the message sent by v to u. The adversary cannot change, insert, or delete messages.

1 In the undirected case, 〈u, v〉 and 〈v, u〉 are the same edge. However, mu,v and mv,u denote different messages.
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A search – a behavior of an adversary – is a sequence of subsets of edges W1,W2, . . . , W`, where in
Round i the adversary eavesdrops to the edges in Wi and learns no additional information on the
messages exchanged on other edges. Similarly to other search games, if the adversary eavesdrops
to an edge in Round i, then we say that it guards the edge in Round i.

The adversary is adaptive, it decides on Wi – the communication channels it eavesdrops in
Round i – based on the messages it heard on W1,W2, . . . , Wi−1 in previous rounds and on its
random string r. The view of the adversary, after an execution, is its random input, the search
W1, . . . , W` it chose to eavesdrop, and the messages it heard in this search. An unbounded adversary
has not gained information on the secret bit b, if its view is equally distributed when the bit is 0
and when the bit is 1.

Definition 2.1 The adversary does not gain information on the secret bit b in Protocol P if for
every possible view h:

Pr[ The view of the adversary is h | The secret bit is 0]
= Pr[ The view of the adversary is h | The secret bit is 1],

where the probability is taken over
{
ri
v : v ∈ V, 1 ≤ i ≤ `

}
, the random strings of the vertices, and

over the random string used by the initialization function I(b).

An adversary uses t guards if, for every search W1,W2, . . . ,W` that it can use, |Wi| ≤ t for every
1 ≤ i ≤ `.

Definition 2.2 A system can maintain its secrecy in a graph G against t guards if there is a protocol
P for the vertices in G such that every adversary that uses t guards does not gain information on
the secret bit. Otherwise, we say that t guards can clear G.

We next describe a simple protocol, considered in [6], for the database game. In each round of
the protocol we maintain the following property

b =
⊕

〈u,v〉∈E

mi
u,v. (1)

This describes the reconstruction function of the protocol. The basic step in the protocol is the
simple sharing of a bit b, generating k bits b1, . . . , bk by randomly choosing the first k − 1 bits
independently such that each bit is uniformly distributed, and setting bk ← b⊕⊕

1≤i≤k−1 bi. In the
initialization stage, Protocol Pxor generates the messages 〈m0

u,v〉〈u,v〉∈E as the sharing of the secret
bit b. In Round i of Protocol Pxor, each vertex computes the bit bi

v ←
⊕

u∈IN(v) mi−1
u,v , and shares

bi
v generating the bits 〈mi

v,w〉w∈OUT(v), that is,
⊕

u∈IN(v)

mi−1
u,v = bi

v =
⊕

w∈OUT(v)

mi
v,w. (2)

As we assume that each vertex has at least one in-going edge and at least one out-going edge, this
process is possible. Clearly, the reconstruction described in (1) is correct in the initialization stage.
A simple calculation shows, using induction, that the reconstruction described in (1) is correct in
each round of the protocol. In the next section we show that this simple protocol is “universal”: if
there exists a protocol that can maintain secrecy against t guards, then Protocol Pxor can maintain
secrecy against t guards.
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3 Characterization Theorems for Clearing Graphs

We give two theorems that characterize graphs that can be cleared with t guards. To understand the
evolution of the clearing process throughout the rounds of the protocol, we define a layered graph
version of the communication graph. In this graph there are two vertices Source and Target
that are added for technical reasons.

Definition 3.1 Given a directed or an undirected graph G = 〈V, E〉 and an index `, we construct
an undirected layered graph L(G, `) = 〈V `, E`〉 as follows. The vertices of L(G, `) are V ` def= (V ×
{1, . . . , ` + 1}) ∪ {Source,Target} . The edges of L(G, `) are

E` def= {〈(u, i), (v, i + 1)〉 : 〈u, v〉 ∈ E, 1 ≤ i ≤ `}
∪ {〈Source, (v, 1)〉 : v ∈ V } ∪ {〈(v, ` + 1),Target〉 : v ∈ V } .

Given a search W1,W2, . . . ,W`, we say that an edge 〈(u, i), (v, i+1)〉 in L(G, `) is guarded when
G is a directed graph if 〈u, v〉 ∈ Wi. We say that an edge 〈(u, i), (v, i + 1)〉 in L(G, `) is guarded
when G is an undirected graph if 〈u, v〉 ∈ Wi or 〈v, u〉 ∈ Wi. If an edge is not guarded, then we
say that the edge is unguarded. An undirected path in L(G, `) is contaminated if all edges in the
path are unguarded. Note that this path can go forwards and backwards in the layers. A search
W1,W2, . . . , W` of length ` cuts the undirected layered graph L(G, `) if there is no contaminated
path in L(G, `) from Source to Target. For example, consider Graph G1 shown in Figure 1. In
Figure 2 we describe its layered graph L(G1, 3) and a search that does not cut it, and in Figure 3
we describe its layered graph L(G1, 4) and a search that cuts it.

3.1 First Characterization Theorem

Theorem 3.2 (First Characterization Theorem) Let G be a graph. A system can maintain
its secrecy in the graph G against t guards iff for every ` ∈ N, every search W1, W2, . . . , W` with t
guards does not cut L(G, `).

In light of Theorem 3.2, if a search cuts the undirected layered graph L(G, `), we may say that
the search clears G. The theorem is implied by the following two lemmas.

Lemma 3.3 Let G be a graph, and W1,W2, . . . , W` be a search that cuts L(G, `). Then, for every
protocol P, the adversary that eavesdrops to Wi in Round i, for 1 ≤ i ≤ `, learns the secret after
at most ` rounds.

Proof: Fix any protocol P. We assume, for sake of contradiction, that the adversary that
eavesdrops to Wi in Round i, for 1 ≤ i ≤ `, does not learn the secret in the first ` rounds,
and construct an information-theoretic secure protocol in which two parties, Alice and Bob, can
exchange a secret key on a public channel (without any prior secret information), which is impossible
by the fundamental result of Shannon [16].

We next define two sets with respect to W1,W2, . . . , W`.

R
def= {Source} ∪ {(v, i) : there is a contaminated path from Source to (v, i)} ,

and B
def= V ` \R. Notice that all edges that connect vertices from R to B are guarded.
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Informally, to exchange a key Alice and Bob execute P, where Alice simulates the vertices in
R and Bob simulates the vertices in B, and the messages that should be sent on guarded edges,
that is, the messages the adversary hears, are broadcasted on the public channel. Formally, to
transmit a bit b, Alice uses the initialization function I(b) to generate messages 〈m0

u,v〉〈u,v〉∈E .
Now, Alice and Bob simulate P round by round. In the ith round, Alice simulates the vertices in
Ri

def= {v ∈ V : (v, i) ∈ R} and Bob simulates all other vertices, namely Bi
def= V \Ri. We will show

that the simulation maintains the following property:

Property 1 Each party knows all messages sent in Round i− 1 to the vertices that it simulates in
Round i.

Now, Alice (respectively, Bob) chooses random strings ri
v for every v ∈ Ri (respectively, v ∈ Bi),

computes the messages v sends in P, broadcasts on the public channel all the message that are sent
on guarded edges, and remembers all other messages.

Property 1 is maintained for Alice (respectively, for Bob), as all edges from Bi−1 to Ri (re-
spectively, all edges from Ri−1 to Bi) are guarded, and, therefore, the messages sent on them are
broadcasted on the public channel. This implies that the key-exchange protocol can proceed. On
one hand, there is no contaminated path in L(G, `), and after the `th round of the simulation all
vertices in G are in B`+1. So, Bob can compute the reconstruction function φ(〈m`

u,v〉〈u,v〉∈E , `)
and learn the message sent by Alice. On the other hand, the view of Eve after the key exchange
protocol is exactly the view of the adversary that eavesdrops to W1,W2, . . . , W` in P, so Eve learns
nothing about b. This is a contradiction to the fundamental result of Shannon [16] that there no
unconditionally secure key exchange protocol that only uses a public channel. Thus, in the original
protocol P, the adversary can learn the secret. 2

Notice that in Lemma 3.3 the adversary is deterministic and non-adaptive as it deterministically
chooses the search it uses before the execution of the protocol. Furthermore, the adversary exactly
learns the secret information.

Lemma 3.4 Let Pxor be the XOR protocol, and assume that for some ` there is no search with t
guards that cuts L(G, `). Then, any adversary that uses t guards does not gain information on the
secret in the first ` rounds of Pxor.

Proof: To understand the idea of the proof, first consider a deterministic adversary which
chooses a search W1,W2, . . . , W` with t guards before the execution of the protocol (that is, its
choice of Wi does not depend on the messages it heard in previous rounds). Since the search does
not clear the graph, there is a contaminated path in the layered graph from Source to Target.
The adversary cannot learn the secret bit b, since the value of the secret bit b can be flipped by
flipping the values of the messages sent on a contaminated path. This is a valid execution of the
protocol in which the adversary sees the same view, however with the secret b.

To consider a randomized, adaptive adversary, fix any view h for the adversary, that is, fix a
random string r of the adversary, a search W1,W2, . . . , W` with t guards, and the messages sent on
the edges of the search. To prove the lemma, we show that there is a one-to-one and onto function
from possible executions of Pxor when the view is h and the secret bit is 0 to possible executions
of Pxor when the view is h and the secret bit is 1. Thus, the number of these executions is the
same for both values of the secret, and, as every possible execution of protocol Pxor has the same
probability, the probability of the view is the same for both values of the secret.
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Figure 2: The contaminated path in L(G1, 3) with respect to the search that guards the edge
〈v1, v2〉 for three rounds. The edges in the path are the dotted edges.

Consider any execution of Pxor when the view is h and the secret bit is 0. There must be a
contaminated path from Source to Target in L(G, `) with respect to W1,W2, . . . ,W`. Consider
the lexicographically first simple contaminated path in L(G, `). We map the execution with secret
0 to the following execution of the protocol Pxor with the secret 1: We flip the values sent of the
path as follows.

• For 〈Source, (v, 1)〉, the first edge in the path, flip the initial value m0
u,v for the first u ∈ IN(v).

• For every “forward” edge 〈(u, i), (v, i + 1)〉 in the path, flip the message sent by u to v in
Round i.

• For every “backward” edge 〈(u, i), (v, i − 1)〉 in the path, flip the message sent by v to u in
Round i− 1.

We claim that this is a legal execution of Pxor, that is, for every v and every i, Equation (2)
holds – the exclusive-or of the messages v receives in Round i− 1 is equal to the exclusive-or of the
messages v sends in Round i. This is true since the path is simple, and, therefore, the mapping
flipped the values of two edges for every vertex in the path (and changed no messages sent on edges
not in the path). Since the mapping flipped the value of exactly one initial message, the value of
the secret in the new execution has changed to 1, thus, this is indeed an execution with secret 1.

As the mapping flipped the values only on unguarded edges, in each round of the protocol, the
adversary sees the same messages, thus, it cannot notice this change, and it continues to eavesdrop
to the same search. Finally, this transformation is one-to-one and onto since if we apply this
transformation twice, then the result is the original execution. 2

Example 3.5 Consider Graph G1 described in Figure 1 in the Introduction. The search that
guards the edge 〈v1, v2〉 for three rounds does not clear the graph as Source, (v2, 1), (v3, 2), (v1, 3),
(v2, 2), (v3, 3), (v1, 4), Target is a contaminated path from Source to Target in L(G1, 3).
Notice that this path goes forwards and backwards in the layer graph. This path is described in
Figure 2. There is no contaminated path in L(G1, 3) that only goes forward; this search illustrates
the importance of “backward” edges in the layered graph. Nevertheless, Graph G1 can be cleared
with one guard in 4 rounds as follows: In Round 1 guard 〈v2, v3〉, in Round 2 guard 〈v2, v1〉, in
Round 3 guard 〈v2, v3〉, and in Round 4 guard 〈v1, v2〉. This layered graph with this search is
described in Figure 3.
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Figure 3: A search that clears G1 with one guard. We describe the layered graph L(G1, 4); the
guarded edges are the dashed edges and the contaminated vertices are the black vertices.

Ri+1

Ri

Ri
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Figure 4: A description of the ith layer of the cut in L(G, `) for a search. The sets Ri and Ri+1

are the sets of the vertices reachable by an unguarded paths in layers i and i +1, respectively. The
edges in the cut are the edges between Ri and Ri+1 and the edges between Ri and Ri+1.

3.2 Second Characterization Theorem

Recall that a cut in an undirected graph H = 〈V, E〉 is a set of edges defined by a set R ⊂ V
containing all edges between R and R. Theorem 3.2 implies that a search clears a graph G iff it
induces a cut in L(G, `) such that all edges in the cut are guarded. That is, there is a search that
clears a graph iff there is a cut in the graph L(G, `) that, for every i, contains at most t edges
between layer i and layer i + 1. This is formalized in the next theorem, and illustrated in Figure 4.

Theorem 3.6 (Second Characterization Theorem) Let G be a graph. The graph G can by
cleared by t guards iff there is some ` ∈ N and a sequence of subsets of vertices R1, . . . , R`+1 (that
is, Ri ⊆ V for 1 ≤ i ≤ ` + 1) such that

1. R1 = V , R`+1 = ∅, and

2. for every 1 ≤ i ≤ ` the set
(
Ri ×Ri+1

) ⋃ (
Ri ×Ri+1

)
contains at most t edges of G.

Proof: By Theorem 3.2 it suffices to prove that such sequence of sets R1, . . . , R`+1 exists iff
there exists a search with t guards that cuts L(G, `).

First, we assume that such sequence of sets R1, . . . , R`+1 exists. We define the search W1, . . . , W`

with t guards, where Wi contains the edges in E that are in
(
Ri ×Ri+1

) ⋃ (
Ri ×Ri+1

)
. We claim

that this search cuts L(G, `), that is, every path from Source to Target in L(G, `) contains a
guarded edge. Define

R
def= {Source} ∪ {(v, i) : 1 ≤ i ≤ `, v ∈ Ri} .

10



The edges in the cut between R and V ` \R in L(G, `) are exactly the edges guarded by our search.
Every path from Source to Target in L(G, `) passes through this cut, thus, the path contains a
guarded edge and is not contaminated.

Now assume that there is a search W1, . . . , W` with t guards that cuts L(G, `). For every i,
where 1 ≤ i ≤ ` + 1, define

Ri
def= {v : there exists a contaminated path from Source to (v, i) in L(G, `)} .

We say that Ri is the set of contaminated vertices in Round i. First, R1 = V , since all edges from
Source to the first layer are unguarded. Second, R`+1 = ∅, since all edges from the last layer to
Target are unguarded and there is no contaminated path from Source to Target. We need to
prove that, for every i, the set

(
Ri ×Ri+1

) ⋃ (
Ri ×Ri+1

)
contains at most t edges of G. Recall

that in each round of the protocol, at most t edges are guarded, thus, it suffices to prove that the
edges of E in

(
Ri ×Ri+1

) ⋃ (
Ri ×Ri+1

)
must be guarded in Round i:

• For every v ∈ Ri and w ∈ Ri+1, the edge 〈v, w〉 (if exists) must be guarded in Round i, other-
wise the contaminated path ending at (v, i) together with 〈(v, i), (w, i+1)〉 is a contaminated
path ending at (w, i + 1).

• For every v ∈ Ri and w ∈ Ri+1, the edge 〈v, w〉 (if exists) must be guarded in Round i,
otherwise the contaminated path ending at (w, i + 1) together with 〈(w, i + 1), (v, i)〉 is a
contaminated path ending at (v, i).

To conclude the second direction, given a search with t guards that cuts L(G, `), we showed that
the sets of contaminated vertices satisfy the condition of the theorem. 2

Example 3.7 Consider a directed cycle with n vertices, i.e., the graph G = 〈V, E〉 where V =
{v0, . . . , vn−1} and E =

{〈vi, v(i+1) mod n〉 : 0 ≤ i ≤ n− 1
}
. This graph can be cleared by one guard

sitting on the same edge for n − 1 rounds. For concreteness, assume that Wi = {〈vn−1, v0〉} for
i = 1, . . . , n. Define Ri = {vi−1, . . . , vn−1}, for 1 ≤ i ≤ n + 1. Clearly, R1 = V and Rn+1 =
∅. For 1 ≤ i ≤ n − 1, the only edge from the set Ri = {vi−1, . . . , vn−1} to the set Ri+1 =
{v0, . . . , vi−1} is 〈vn−1, v0〉 and there are no edges from Ri = {v0, . . . , vi−2} to Ri+1 = {vi, . . . , vn−1}.
Furthermore, 〈vn−1, v0〉 is the only edge in

(
Rn ×Rn+1

) ⋃ (
Rn ×Rn+1

)
. It can be checked that

the sets R1, . . . , Rn+1 are exactly the sets of contaminated vertices in the above search.

As a consequence, we prove that 2n rounds are sufficient to clear a graph with minimal number
of guards.

Theorem 3.8 If a graph G can be cleared with t guards, then it can be cleared with t guards in at
most 2n rounds.

Proof: By Theorem 3.6, there is a sequence of subsets R1, . . . , R`+1 such that R1 = V , R`+1 = ∅,
and

(
Ri ×Ri+1

) ⋃ (
Ri ×Ri+1

)
contains at most t edges from E. Consider a shortest sequence

satisfying these conditions. We claim that there are no indices i1 < i2 such that Ri1 = Ri2 ,
otherwise, Ri1−1×Ri2 = Ri1−1×Ri1 and Ri1−1×Ri2 = Ri1−1×Ri1 , and thus their union contains
at most t edges in E and R1, . . . , Ri1−1, Ri2 , . . . , R`+1 is a shorter sequence which satisfies the above
conditions. Therefore, each set Ri can appear at most once in the search, and the length of the
search is at most 2n. 2

Finally, we observe that the problem of determining if a graph can be cleared with t guards is
in PSPACE . We do not know if this problem can be solved efficiently.
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A Monotonic Search

R1 ← V ; i ← 1
While Ri 6= ∅ do:

Choose a set Ai ⊆ Ri and set Ri+1 ← Ri \Ai

Guard the following set of edges Wi:
Wi =

{〈u, v〉 : u ∈ Ri, v ∈ Ri+1

} ∪ {〈u, v〉 : u ∈ Ri, v ∈ Ri+1

}
i ← i + 1.

Figure 5: A monotonic search strategy for clearing a graph.

Corollary 3.9 The decision problem if a graph can be cleared with t guards is in PSPACE.

Proof: To prove the corollary, we describe a non-deterministic algorithm that uses polynomial
space. The algorithm guesses the sets R1, . . . , R`+1, such that R1 = V , R`+1 = ∅, and verifies that
the set

(
Ri ×Ri+1

) ⋃ (
Ri ×Ri+1

)
contains at most t edges in G for every i. Since the search can be

long, the algorithm guesses the sets Ri round by round; in Round i the algorithm only remembers
Ri and Ri+1. By Theorem 3.6, the algorithm can guess such sets R1, . . . , R`+1 iff t guards can clear
G. 2

4 A Monotonic Search Strategy for Clearing Graphs

In this section we consider a special case of searches that clear a graph called monotone searches.
By Theorem 3.6, to specify a strategy for the adversary, we can specify the contaminated vertices
in each round.

Definition 4.1 (Monotone Searches) We say that a search is monotonic if R` ⊂ R`−1 ⊂ · · · ⊂
R2 ⊂ R1, that is, once a vertex is cleared, it will not become contaminated later.

In Figure 5, we formally describe monotonic searches. The advantage of monotonic searches is that
they are short; there can be at most n rounds until the adversary clears the graph. However, they are
not necessarily optimal, as they can require more guards than general searches (see Section 4.3).
In this section we present examples of a monotonic searches that clear directed and undirected
complete graphs. As complete graphs are symmetric, it suffices to specify the size of the each set
Ri without specifying the exact set of vertices.

4.1 Monotonic Search in Complete Directed Graphs

A complete directed graph, denoted Cn, is a graph with all the possible n2 edges (including self
loops).

Claim 4.2 When n is even, n2/2 guards can clear the complete directed graph with n vertices Cn

in two rounds. When n is odd, (n2 + 1)/2 guards can clear Cn in three rounds.

Proof: To clear the graph when n is even, partition the n vertices in Cn to two disjoint sets V1

and V2 of size n/2 each. In the first round, guard all the n2/2 edges from V to V1. In the second
round, guard all the n2/2 edges from V2 to V . In this case, R1 = V , R2 = V2, and R3 = ∅.
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To clear the graph when n is odd, partition the n vertices in Cn to three disjoint sets: V1 and
V2 of size (n−1)/2 each, and a single vertex v. In the first round, guard all the edges from V to V1.
There are n|V1| = n(n−1)/2 < (n2 +1)/2 such edges. In the second round, guard all edges from V1

to V2 and all edges from V2∪{v} to V1∪{v}. There are (n−1)2/4+(n+1)2/4 = (n2+1)/2 such edges.
In the third round, guard all the edges from V2 to V . There are n|V2| = n(n − 1)/2 < (n2 + 1)/2
such edges. In this case, R1 = V , R2 = V2 ∪ {v}, R3 = V2, and R4 = ∅. 2

In Section 5, we show that the number of guards in these searches is optimal by showing a
matching lower bound.

4.2 Monotonic Search in Complete Undirected Graphs

A complete undirected graph, denoted Un, is a graph with all the possible
(
n+1

2

)
edges (including

self loops). To simplify calculations, in this section n is even. We first show that 3n2/8+n/4 guards
can clear Un in two rounds. To clear the graph, partition the n vertices in Un to two disjoint sets
V1 and V2 of size n/2 each. In the first round, guard all the edges with at least one endpoint in V1.
There are

(
n/2+1

2

)
+ n2/4 = 3n2/8 + n/4 such edges. In the second round, guard all the edges with

at least one endpoint in V2. Again, there are 3n2/8 + n/4 such edges.

Claim 4.3 When n is even, n2/4 + n/2 guards can clear the complete undirected graph with n
vertices Un in O(

√
n) rounds.

Proof: We first describe a search of length n in Un using n2/4+n/2 guards. Let V = {v1, . . . , vn}
be the vertices of the graph. In the ith round of the search we choose Ri \ Ri+1

def= Ai = {vi} and
Ri = {vi, . . . , vn}. The guarded edges are

{〈vi, vj〉 : 1 ≤ j ≤ n} ∪ {〈vj , vk〉 : 1 ≤ j ≤ i− 1, i + 1 ≤ k ≤ n} .

The number of guarded edges in Round i is, thus, n + (i− 1)(n− i) = i(n− i + 1). The expression
is maximized when i = n/2, and is n2/4 + n/2. Thus, n2/4 + n/2 guards are sufficient to clear a
complete undirected graph in n rounds. In Section 5, we show that this is optimal by showing a
matching lower bound.

We next show that, with the same number of guards as in the previous search, the adversary
can clear the complete undirected graph in O(

√
n) rounds. (In Section 5.3, we show that if the

adversary uses n2/4+O(n) guards, then Ω(
√

n) rounds are necessary to clear the graph.) The idea
to reduce the number of rounds is that when |Ri| is small or big, the adversary can take bigger sets
Ai than the singletons considered in the previous search.

Let R1, . . . , R`+1 be sets defining a monotonic search of Un, let Ai
def= Ri \ Ri+1, and Si

def= Ri.
Notice that Ri = Ri+1 ∪Ai, Si+1 = Si ∪Ai, and Si ∪Ai ∪Ri+1 = Si ∪Ri = V . The edges guarded
in Round i of the monotonic search are

{〈u, v〉 : u ∈ Ri, v ∈ Si+1} ∪ {〈u, v〉 : u ∈ Si, v ∈ Ri+1}
= {〈u, v〉 : u ∈ (Ri+1 ∪Ai), v ∈ (Si ∪Ai)} ∪ {〈u, v〉 : v ∈ Si, u ∈ Ri+1}
= {〈u, v〉 : u ∈ Ai, v ∈ V } ∪ {〈u, v〉 : v ∈ Si, u ∈ Ri+1} .

Thus, the number of edges guarded in Round i is at most

|Ai||V |+ |Si||Ri+1| = |Ai|n + |Si|(n− |Si| − |Ai|). (3)
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In each round, we want to choose the largest set Ai such that the number of guards, as bounded
in (3), does not exceed n2/4 + n/2. In the first round, |S1| = 0, thus, the requirement is |A1|n ≤
n2/4+n/2, that is, we can take |A1| ≈ n/4. In the second round |S1| ≈ n/4, thus, the requirement
is |A2|n+ n

4 (3n
4 −|A2|) ≤ n2/4+n/2, that is, we can take |A2| ≈ n

12 . Similar calculations show that
in the ith round we can take |Ai| ≈ n

2i(i+1) , and, in this case, |Ri| ≈ n
2 (1+ 1

i ). After O(
√

n) rounds,
|Ri| ≈ n

2 −
√

n. Then, with choosing Ai as a singleton for O(
√

n) additional rounds, the adversary
gets |Ri| = n/2. Finally, by (3), with additional O(

√
n) rounds the adversary can get |Ri| = 0, by

using a “reverse” search strategy. That is, if the adversary used sets Ai of size a1, a2, . . . , aO(
√

n) to
clear the first n/2 vertices, then by using sets Ai of size aO(

√
n), . . . , a2, a1 the adversary clears the

last n/2 vertices. As |Ai| has to be an integer, there are some technical details to consider. The
exact details are omitted. 2

4.3 Monotonic Searches are Not Optimal

We show that monotonic searches can require more guards than non-monotonic searches. This
phenomenon is also true for the vertex eavesdropping game [6], but not for the classic search games
on graphs [12, 1].

In Figure 6 we describe an example of a simple directed graph, Graph G0 = 〈V0, E0〉 where
V0 = {v1, v2} and E0 = {〈v1, v2〉, 〈v2, v1〉, 〈v2, v2〉}. This graph can be cleared with one guard using
a non monotonic search:

• Guard 〈v2, v1〉 in the first round,

• Guard 〈v2, v2〉 in the second round,

• Guard 〈v1, v2〉 in the third round.

In Figure 6 we describe the layered graph L(G0, 3) and the above search. This is a non-monotonic
search since v1 is cleared in the first round and becomes contaminated in the second round.

We next claim that every monotonic search that clears G0 uses at least two guards. In every
search that clears G0 with one guard, the first vertex that must be cleared is v1. The only way to
keep v1 clear with one guard is to keep the guard on the edge 〈v2, v1〉, thus, not clearing v2 and not
clearing G0.

We next describe how to clear Graphs G2 and G3, described in Figure 1 in the Introduction,
with one guard using non-monotonic searches. To clear Graph G2, guard 〈v2, v3〉 for two rounds,
guard 〈v1, v1〉 in the 3rd round, guard 〈v2, v2〉 in the 4th round, and guard 〈v4, v1〉 for the last two
rounds.2

Notice that G3 contains the graph G2 and, in addition, a path with seven edges. To clear
Graph G3, guard 〈v2, v5〉 for six rounds (this clears the path), then, in six rounds, clear the G2

part of G3 using the search described in the previous paragraph. In these rounds the path becomes
contaminated, so we clear it again by guarding 〈v10, v1〉 for 6 rounds. It can be checked that this
search clears G3.

2To illustrate the importance of “backwards” edges in the layered graph, note that modifying this search by
guarding 〈v3, v4〉 immediately after 〈v1, v1〉 and before 〈v2, v2〉 yields a seven-round search that cuts all of the simple
“forward” paths in L(G2, 7) but fails to clear G2.
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v2 v1
v2

v1

The layered graph L(G0, 3)The Graph G0

Figure 6: The graph G0 and its layer graph. The guarded edges in the layer graph are the dashed
edges, and the contaminated vertices are the black vertices in the layered graph.

5 Lower Bounds on Clearing a Complete graph

We show that
⌈
n2/2

⌉
guards are necessary to clear Cn (no matter how many rounds the adversary

uses to clear the graph). Furthermore, we show that n2/4 + n/2 guards are necessary to clear a
complete undirected graph and Ω(

√
n) rounds are necessary to clear this graph with n2/4 + O(n)

guards.

5.1 Lower Bounds on Guards to Clear a Directed Complete Graph

Theorem 5.1 An adversary needs at least
⌈
n2/2

⌉
guards to clear a complete directed graph.

Proof: Assume that there is a search that clears the graph Cn with t guards. We claim that
t ≥ n2/2. Let R1, . . . , R`+1 be a sequence satisfying the conditions of Theorem 3.6. In particular,
|R1| = n and |R`+1| = 0. Let i be the minimal index such that |Ri+1| < n/2. Thus, |Ri| ≥ n/2.
We claim that the number of edges guarded in Round i is at least n2/2. In Cn, all edges in(
Ri ×Ri+1

)⋃ (
Ri ×Ri+1

)
exist, and the sets Ri × Ri+1 and Ri × Ri+1 are disjoint. Thus, the

number of edges is exactly

|Ri||Ri+1|+ |Ri||Ri+1| = |Ri|(n− |Ri+1|) + |Ri+1|(n− |Ri|) (4)

Since |Ri+1| < n/2, this expression is an increasing function of |Ri|, thus, since |Ri| ≥ n/2, it is
at least n/2(n − 2|Ri+1|) + |Ri+1|n = n2/2. As the number of guards is an integer, the theorem
follows. 2

5.2 Lower Bounds on Guards to Clear an Undirected Complete Graph

The following theorems provide lower bounds on the number of guards and rounds needed to clear
complete undirected graphs.

Theorem 5.2 An adversary needs at least n2/4+n/2 guards to clear a complete undirected graph.

Proof: The proof of the lower bound for the complete undirected graphs is similar to the proof
of the directed case. Indeed, a slightly weaker lower bound of n2/4 can be obtained by a simple
reduction to the directed case. However, in the undirected case, exactly counting the number of
edges in the cut is somewhat more complicated. Besides proving the tight lower bound, the proof
is used in Section 5.3 to prove a lower bound of Ω(

√
n) on the number of rounds if near optimal
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number of guards is used. Assume that there is a search that clears the graph Un with t guards. We
claim that t ≥ n4/2+n/2. Let R1, . . . , R`+1 be a sequence satisfying the conditions of Theorem 3.6.

In the directed case, the number of the edges in
(
Ri ×Ri+1

) ⋃ (
Ri ×Ri+1

)
was calculated

in (4). In the undirected case, we might count each edge twice since we might count 〈v, w〉 and
〈w, v〉 as different edges. However, every edge is counted at most twice. Thus, in the undirected
case, the number of edges in the above two sets is at least

|Ri|(n− 2|Ri+1|) + |Ri+1|n
2

. (5)

Similar to the directed case, this implies that the number of edges guarded is at least n2/4.
We next improve this lower bound to n2/4 + n/2. Towards this goal, we show that at least n

edges are not counted twice.

Claim 5.3 If v ∈ Ri
4 Ri+1, then the edge 〈v, v〉 is counted exactly once in (5). If v ∈ Ri

4 Ri+1

and w ∈ Ri
4 Ri+1, then the edge 〈v, w〉 is counted exactly once in (5).

Proof: All expressions in (5) and in the claim are symmetric with respect to Ri and Ri+1, thus,
we can assume without loss of generality that v ∈ Ri \Ri+1.

First, 〈v, v〉 ∈ Ri × Ri+1 (that is, 〈v, v〉 is counted at least once) and 〈v, v〉 /∈ Ri × Ri+1 (that
is, 〈v, v〉 is not counted more than once).

Second, consider the edge 〈v, w〉. There are two cases:

Vertex w is in Ri ∪Ri+1. On one hand, 〈v, w〉 ∈ Ri×Ri+1. On the other hand, 〈v, w〉 /∈ Ri×Ri+1

and 〈w, v〉 /∈ (Ri×Ri+1 )
⋃

(Ri×Ri+1 ). That is, in this case, the edge 〈v, w〉 is counted exactly
once.

Vertex w is in Ri ∩Ri+1. On one hand, 〈w, v〉 ∈ Ri × Ri+1. On the other hand, 〈v, w〉 /∈ (Ri ×
Ri+1 )

⋃
(Ri × Ri+1 ) and 〈w, v〉 /∈ Ri × Ri+1. That is, also in this case, the edge 〈v, w〉 is

counted exactly once.

(of Claim 5.3)

The contribution of the edges described in Claim 5.3, in addition to contribution in (5), is at
least

|Ri
4 Ri+1|(1 + |Ri

4 Ri+1|)
2

=
|Ri

4 Ri+1|(1 + n− |Ri
4 Ri+1|)

2
. (6)

All together, the number of guards in Round i must be at least

|Ri|(n− 2|Ri+1|) + |Ri+1|n
2

+
|Ri

4 Ri+1|(1 + n− |Ri
4 Ri+1|)

2
. (7)

At the beginning of the protocol, |R1| = n and at the end of the protocol |R`| = 0. Let i be the
minimal index such that |Ri+1| < n/2. Thus, |Ri| ≥ n/2, and |Ri|(n−2|Ri+1|)+|Ri+1|n

2 ≥ n2/4.
Denote r

def= |Ri
4 Ri+1|. To complete the proof of the lower bound, we need to prove that

|Ri
4 Ri+1|(1 + n − |Ri

4 Ri+1 |) = r(1 + n − r) ≥ n. Notice that 1 ≤ r ≤ n (since |Ri
4 Ri+1| ≥

|Ri \ Ri+1| ≥ |Ri| − |Ri+1| ≥ 1). The function r(1 + n − r), when 1 ≤ r ≤ n, is minimized in the
borders when r ∈ {1, n}. Thus, it is at least n, completing the proof that n2/4 + n/2 guards are
necessary. 2
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5.3 Lower Bounds on Rounds to Clear an Undirected Complete Graph

We next present a lower bound on the number of rounds needed to clear the complete undirected
graph with near optimal number of guards. Namely, we prove that if n2/4 + γn guards are used to
clear Un, for some γ ≥ 1/2, then the number of rounds is Ω(

√
n/γ).

Theorem 5.4 Every search clearing a complete undirected graph using at most n2/4 + γn guards,
for some γ ≥ 1/2, must use at least Ω(

√
n/γ) rounds.

Proof: The idea of the proof is to prove that when n/2 − 2
√

γn ≤ |Ri| ≤ n/2 − √
γn, the

size of Ri cannot decrees too much in each round. That is, |Ri| − |Ri+1| = O(γ); thus, it takes at
least Ω(

√
γn/γ) = Ω(

√
n/γ) rounds from the first round when |Ri| ≤ n/2 − √γn until the first

round when |Ri| ≤ n/2 − 2
√

γn. The proof uses the upper bound given in (7) together with the
assumption that the number of guards is at most n2/4 + γn.

The proof is technical and we break it to 3 claims. We start by showing that if |Ri+1| is relatively
small, then |Ri| is not too large.

Claim 5.5 Let γ > 0. Assume that at most n2/4 + γn guards are used to clear Un. If |Ri+1| <
n/2−√γn, then |Ri| ≤ n/2 +

√
γn.

Proof: Assume towards contradiction that |Ri| > n/2 +
√

γn. Thus, by (5), the number of
guards in Round i is at least

|Ri|(n− 2|Ri+1|) + |Ri+1|n
2

≥ (n/2 +
√

γn)(n− 2|Ri+1|) + |Ri+1|n
2

=
n2

4
+
√

γn(n− 2|Ri+1|)
2

>
n2

4
+
√

γn
√

γn =
n2

4
+ γn

(the last inequality is implied by the fact that |Ri+1| < n/2−√γn). This is a contradiction to our
assumption that only n2

4 + γn guards are used. (Of Claim 5.5)

We next give a crude upper-bound on |Ri+1|, this bound will be needed in the proof of Claim 5.7
to prove a better upper-bound.

Claim 5.6 Let 1/2 ≤ γ < n/100. Assume that at most n2/4 + γn guards are used to clear Un. If
n/2− 2

√
γn ≤ |Ri| ≤ n/2 +

√
γn, then |Ri+1| ≥ n/2− 5

√
γn.

Proof: Let |Ri| = n/2 − α for some α such that −√γn ≤ α ≤ 2
√

γn. Assume towards
contradiction that |Ri+1| < n/2− 5

√
γn. We next bound |Ri

4 Ri+1|:

3
√

γn < |Ri| − |Ri+1| ≤ |Ri
4 Ri+1| ≤ |Ri|+ |Ri+1| ≤ n− 4

√
nγ,

which implies

|Ri
4 Ri+1|(1 + n− |Ri

4 Ri+1|) ≥ 3
√

γn(n− 3
√

γn) (8)

(since, the function r(1 + n− r), when 3
√

γn ≤ r ≤ n− 4
√

γn is minimized in the borders, that is,
when r = 3

√
γn).
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Furthermore, α ≤ 2
√

γn, thus,

− nα + 3n
√

γn− 9γn ≥ −2n
√

γn + 3n
√

γn− 9γn = n
√

γn− 9γn > γn (9)

(the last inequality holds since γ < n/100). Thus, by (7), (8), and (9), the number of guards in
round i is more than

(
n
2 − α

)
(n− 2|Ri+1|) + |Ri+1|n + 3

√
γn(1 + n− 3

√
γn)

2

≥ n2

4
+
−αn + 3n

√
γn− 9γn

2
>

n2

4
+ γn,

a contradiction. (of Claim 5.6)

Claim 5.7 Let 1/2 ≤ γ < n/100. Assume that at most n2/4 + γn guards are used to clear Un.
Let α be an integer such that

√
γn + 40γ ≤ α ≤ 2

√
γn and let i a round where |Ri| ≥ n/2− α and

|Ri+1| < n/2− α. Then, |Ri+1| ≥ n/2− α− 40γ.

Proof: As |Ri+1| < n/2−α < n/2−√γn, by Claim 5.5, |Ri| ≤ n/2+
√

γn. Hence, by Claim 5.6,
|Ri+1| ≥ n/2− 5

√
γn, and

|Ri|(n− 2|Ri+1|) + |Ri+1|n
2

≥ n2

4
− 10γn.

Let r
def= |Ri

4 Ri+1|. The assumption that the number of guards is at most n2/4 + γn and (7)
imply that

n2

4
− 10γn +

r(1 + n− r)
2

≤ n2

4
+ γn.

That is, r(1 + n− r) ≤ 22γn. If 40γ ≤ r ≤ n− 40γ then

r(1 + n− r) ≥ 40γ(n− 40γ) ≥ 40γ(n− 40n/100) > 22γn

(since γ ≤ n/100). This implies that either r ≤ 40γ, or r ≥ n − 40γ. If r ≥ n − 40γ, then
|Ri|+ |Ri+1| ≥ |Ri

4 Ri+1| = r ≥ n− 40γ. Thus, by Claim 5.5,

|Ri+1| ≥ n− 40γ − |Ri| ≥ n/2−√γn− 40γ,

contradicting our assumption that |Ri+1| < n/2−√γn− 40γ. Thus, r ≤ 40γ. Therefore,

|Ri| − |Ri+1| ≤ |Ri
4 Ri+1| = r ≤ 40γ,

and,
|Ri+1| ≥ |Ri| − 40γ ≥ n/2− α− 40γ.

(of Claim 5.7)

To complete the proof of the theorem, first note that if γ ≥ n/100, then at least one round is
necessary and the theorem holds. Thus, we can assume that γ < n/100. Let b

def=
⌊√

n/γ/40
⌋

and j
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be an index such that 1 ≤ j ≤ b. Finally, let ij be the first round when |Rij+1| < n/2−√γn−40jγ.
By our choice of parameters

n/2−√γn− 40bγ ≥ n/2− 2
√

γn.

By Claim 5.7,
|Rij+1| ≥ n/2−√γn− 40(j + 1)γ.

This implies that i1 < i2 < · · · < ib−1 < ib, and there must be at least b = Ω(
√

n/γ) rounds from
the round |Ri+1| ≤ n/2−√γn− 40γ until the first round that |Ri+1| ≤ n/2− 2

√
γn. 2
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A An example of the Problem in the Proof of [6]

We next describe an example in which the characterization in [6] is incorrect. Consider the graph
G4, described in Figure 7, from the family of graphs {Gn} used in the proof of Theorem 3 in [6].
The graph G4 consists of a left clique (complete graph) with vertices {x1, x2, x3, x4}, a right clique
with vertices {y1, y2, y3, y4}, a middle clique (M2) consisting of vertices {x2, y2}, a middle clique
(M3) consisting of vertices {x3, y3, u}, and a middle clique (M4) consisting of vertices {x4, y4, v, w}.

The following vertex search (suggested by the proof of Theorem 3 in [6]) cuts the directed
layered graph, but fails to cut the undirected layered graph:

Round Guarded set
1 {x1, x2, x3, x4}
2 {y2, x2, x3, x4}
3 {u, y3, x3, x4}
4 {y2, x2, y3, x4}
5 {v, w, y4, x4}

Round Guarded set
6 {y2, x2, y3, y4}
7 {u, y3, x3, y4}
8 {y2, x2, y3, y4}
9 {y1, y2, y3, y4}

One unguarded path in the undirected layered graph goes from y4 in the first layer, to y1 in the
second layer, to y4 in the third layer, to y1 in the fourth layer, to y3 in the fifth layer, back to u in
the fourth layer, to x3 in the fifth layer, to x1 in the sixth layer, to x2 in the seventh layer, to x1 in
the eight layer, to x2 in the ninth layer. With respect to Lemma 4 in [6], note that Alice is unable
to simulate the behavior of y3 in the fifth layer, even though this node is in the set Vs, since the
set Vr includes u in the fourth layer.
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In fact, the proof of Theorem 3 in [6] implies that the only search that clears the directed
layered graph with 4 guards is basically the search described above. Since every search that clears
the undirected layered graph clears the directed layered graph, and the above search does not clear
the undirected layered graph, every search that cuts the undirected layered graph, uses at least 5
guards.
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