
Distinguishing Stream Ciphers with Convolutional Filters

Joan Daemen and Gilles Van Assche
STMicroelectronics – Smart Cards ICs Division

Excelsiorlaan 44–46, 1930 Zaventem, Belgium

February 15, 2005

Abstract

This paper presents a new type of distinguisher for the shrinking generator and the
alternating-step generator with known feedback polynomial and for the multiplexor gen-
erator. For the former the distinguisher is more efficient than existing ones and for the
latter it results in a complete breakdown of security. The distinguisher is conceptually
very simple and lends itself to theoretical analysis leading to reliable predictions of its
probability of success.

1 Introduction

In this paper we present efficient distinguishers for a class of stream ciphers. This class can
be characterized as irregularly sampled linear feedback shift registers (LFSR). These stream
ciphers have the following in common:

• A set of source registers, each of which generates a source sequence.

• The source sequences are sampled in an irregular fashion to form an output sequence. In
most cases, the sampling is governed by an independent sequence generator, typically
just another LFSR. The latter is called the sampling sequence or sampling LFSR.

Examples of this type of stream ciphers are the shrinking generator [3, 16], the alternating-
step generator [12, 16] and some variants of the multiplexor generator [13, 16]. The bits in an
LFSR source sequence satisfy a linear recurrence that can be very easily detected. Clearly,
as each bit in the output sequence corresponds to a bit in a source sequence, the bits in the
output sequence may also satisfy a linear recurrence. The irregularity of the sampling process
is supposed to make this hard to exploit. This paper now presents distinguishers for the
shrinking and alternating-step generators exploiting all remainders of linear recurrence in the
output sequence. To build such a distinguisher requires knowledge of the feedback polynomial
of the source sequence. It also presents very powerful distinguishers for the multiplexor
generator exploiting the weakness that a single bit in the source stream may appear multiple
times in the output stream. We call the distinguishers presented in this paper convolutional
filters as they make use of convolution as their main operation.

Correlation attacks on the shrinking generator were already described in [4], analyzed
in [17] and later improved in [14]. Detectable statistical weaknesses in the output stream
were shown in [5] and [6] if the feedback polynomial has very low weight or moderate degree.
More recent work includes another correlation analysis of the shrinking generator in [8] and

1

of the alternating-step generator in [9] and [11]. A draft paper [10] saw the light describing a
statistical distinguisher for the shrinking generator.

The work that lead to this paper was triggered by an efficient attack on the shrinking
generator described in [2] and can be considered as an improvement and extension of the
latter. It improves the attacks in [2] in that convolutional filters require less output stream for
the same probability of success. As opposed to the distinguisher proposed in [2], convolutional
filters are conceptually very simple: they return a real number and require no decision rules
(hard or soft) in the computation thereof. As such, they require no parameter trade-offs
or fine-tuning, their probability of success is easy to compute analytically and there is no
discrepancy between the theory and the simulation results. Finally, while [2] describe attacks
for the shrinking generator only, this paper presents distinguishers for the shrinking generator,
the alternating-step generator and the multiplexor generator. In the rest of this paper we
first provide a number of definitions, then the distinguishers for the shrinking and alternating-
step generators, the distinguishers for multiplexor generators and finally a description of our
simulation results.

2 Definitions

2.1 Sequences

We denote sequences by lowercase letters such as a and b and their individual components with
notation at and bt, where the indices start from 1. We define the product of two sequences
c = a× b as the sequence with ct = atbt and the convolution of a sequence a with a function
f , c = a⊗ f as the sequence with ct =

∑
i f(i)at−i.

2.2 Linear feedback shift registers

Linear feedback shift registers (LFSR) come in two types. In the Fibonacci configuration the
feedback is from a number of stages to the first stage while in a Galois configuration, the
feedback is from the last stages to a number of stages. Both configurations are governed by a
feedback polynomial that determines the positions of the stages involved in the feedback. The
output bits of a linear feedback shift register (LFSR) satisfy a recurrence relation determined
by its feedback polynomial:

ai ⊕ ai−G1 ⊕ ai−G2 ⊕ · · · ⊕ ai−Gw−1 = 0. (1)

We call w the weight of the feedback polynomial and define the w − 1 gaps as g1 = G1,
g2 = G2−G1, . . . , gw−1 = Gw−1−Gw−2. The output bits of an LFSR satisfy many recurrence
relations, one for every multiple of the feedback polynomial. For some distinguishers, the
efficiency tends to decrease with the weight of the polynomial and it is advantageous to find
multiples of the feedback polynomial with low weight. Techniques for doing so are described
in [1, 7, 15, 18].

2.3 Index maps

We define the index map S(j) associated with a (sampling) sequence s as:

S(j) = min{k|
k∑

i=1

si = j}, (2)

2

where the bits si are interpreted as integers 0 and 1. Having S(j) = k requires that sk = 1
and that the interval [s1 . . . sk−1] contains j − 1 ones. Clearly, S(j) is an increasing function.
Given a random binary sequence s, S(j) is a stochastic variable with probability distribution:

Pr[S(j) = k] = 2−k

(
k − 1
j − 1

)
if k ≥ j and 0 otherwise. (3)

More generally, having S(j +h)−S(j) = g requires the interval [sS(j) . . . sS(j)+g−1] to contain
h− 1 ones and sS(j+h) = 1:

Pr[S(j + h)− S(j) = g] = 2−g

(
g − 1
h− 1

)
if g ≥ h and 0 otherwise. (4)

We denote Pr[S(j +h)−S(j) = g] by S(g, h) as it is independent of j. This function satisfies:

∞∑
g=h

S(g, h) = 1 and
g∑

h=1

S(g, h) = 1/2. (5)

For a given g, S(g, h) has a maximum in h = (g + 1)/2 for g odd and in h = (g + 1± 1)/2 for
g even. We denote the mean value of a stochastic variable x by 〈x〉 and its variance by σ2.
Unless g is very small or h is very far from g/2, S(g, h) is closely approximated by a (scaled)
normal distribution:

S(g, h) ≈ 1
2

1
σ
√

2π
e
−(h−〈h〉)2

2σ2 , (6)

with 〈h〉 = (g +1)/2 and σ2 = (g−1)/4. For a given h, the shape of S(g, h) is slightly skewed
with respect to a normal distribution. It reaches its maximum value in both g = 2h− 2 and
g = 2h− 1 and has 〈g〉 = 2h and σ2 = 2h.

2.4 The shrinking generator

A shrinking generator (SG) is a stream cipher with a single source LFSR and a sampling
LFSR. During an iteration both registers are clocked. If the sampling bit is 1, the source bit
is presented at the output of the generator. Otherwise, no output bit is generated. On the
average the SG requires two iterations per bit generated. Its output bits satisfy:

zi = aS(i), (7)

with a the source sequence and S(i) the index map of the sampling sequence.

2.5 The alternating-step generator

An alternating-step generator (ASG) is a stream cipher with two source LFSRs generating
sequences a and b and a sampling LFSR generating sequence s. During an iteration the
sampling LFSR and only one of the two source LFSRs is clocked. Which one of the two
source LFSRs is clocked depends on the output bit of the sampling LFSR. The output bit
y of the ASG is the XOR of the two output bits of the source LFSR. The difference of two
subsequent output bits zt = yt⊕yt−1 of an ASG is either the XOR of two output bits ai⊕ai−1

of one source LFSR or bj⊕bj−1 of the other source LFSR. Note that if a sequence a satisfies a
recurrence relation, this is also the case for a sequence c with ci = ai⊕ ai−1. In the following,

3

we will deal with the sequences z, c and d and not the sequences y, a and b. The bits of c
map to bits in z by

ci = zS(i). (8)

The bits of d with di = bi ⊕ bi−1 map to bits in z in a similar way:

di = zS′(i), with S′(i) = min{k|
k∑

j=1

(1− sj) = i}. (9)

2.6 Multiplexor generators

We consider multiplexor generators with a single source LFSR and a single sampling LFSR.
During an iteration both registers are clocked. A multiplexor taking as input a number n of
stages in the sampling LFSR selects a stage in the source LFSR whose contents is presented
as output bit. The input to the multiplexor can be modeled as a sampling sequence S of
integers in the range [0, 2n−1] and the stages selected as a function of St as an array M with
2n stage positions. We call M the selection position table.

If the source LFSR has a Fibonacci configuration, the multiplexor generator can be mod-
eled as a binary source sequence a sampled by a sampling sequence S in the following way:

zt = at+M [St] . (10)

If the source LFSR has a Galois configuration, this model does not apply.

3 A basic distinguisher for SG and ASG

If we select a number w output bits, they may correspond to w source bits that satisfy the re-
currence relation. We denote the selected output bits by zt, zt−H1 , zt−H2 , . . . , zt−Hw−1 and the
gaps of this selection as H = (h1, h2, . . . , hw−1). Given H and the gaps G = (g1, g2, . . . , gw−1)
of the recurrence relation, we can compute the probability that the selected output bits cor-
respond to source bits that satisfy the recurrence relation. This probability is independent of
t and only depends on G and H. We denote it by P (G|H). Given a sequence z, we define xt

as:
xt = (−1)zt⊕zt+H1

⊕···⊕zt+Hw−1 . (11)

Using the convention z̄i = (−1)zi , this becomes xt = z̄tz̄t+H1 · · · z̄t+Hw−1 . We can model the
probability distribution of xt as the combination of two distributions:

• If the output bits correspond to source bits that satisfy the linear recurrence, the distri-
bution of xt has a peak equal to 1 at 1. For an SG or ASG, this happens with probability
P (G|H).

• Otherwise, the distribution of xt has equal peaks of value 1/2 both at positions 1 and
−1. For an SG or ASG, this happens with probability 1− P (G|H).

Hence, for an SG or ASG, xt has a distribution with mean 〈xt〉 = P (G|H) and variance is
1− P (G|H)2 ≈ 1. For a truly random sequence z, xt has mean 0 and variance 1.

4

The basic distinguisher now consists of the following. Given a stream z, compute xt for a
large range of t values and take the average value X:

X =
1
L

L∑
t=1

xt. (12)

If we consider the different xt as independent, X is the average of a large number of indepen-
dent stochastic variables all with variance 1 and so has a normal distribution with standard
deviation 1/

√
L. If z is the output of an SG or ASG, 〈X〉 = P (G|H) and if z is a random

sequence 〈X〉 = P (G|H).
If X > P (G|H)/2 we decide z is the output of an SG (or ASG). If L = P (G|H)−2, the

probability of error is about 31%. To obtain a probability of error below 1%, we must take
L ≈ 22P (G|H)−2. For a given probability of success, the amount P (G|H)−2 determines the
length of the output sequence required with a given distinguisher. We denote P (G|H)−2 by
Ld.

3.1 The shrinking generator

The probability that a gap h in the output sequence maps to a gap g in the input sequence is
given by Pr[S(j + h)− S(j) = g] = S(g, h). The w − 1 gaps of H are mapped to w − 1 gaps
in G in an independent way. Therefore it follows that:

Ps(G|H) =
w−1∏
i=1

S(gi, hi). (13)

Choosing the gaps hi = (gi + 1)/2 such that Ps(G|H) is maximized and using the Gaussian
approximation yields:

Ps(G|H) ≈
w−1∏
i=1

1√
2π(gi − 1)

and Ld = (2π)w−1
w−1∏
i=1

(gi − 1). (14)

3.2 The alternating-step generator

The probability that a gap h in the output sequence maps to a gap g in the source sequences
c is given by Pr[S(j+g)−S(j) = h] = S(h, g). The w−1 gaps of H are mapped to w−1 gaps
in G in an independent way. However, we require that the bits come from source sequence c
and not d, which happens with probability 1/2. Therefore it follows that:

Pa(G|H) =
1
2

w−1∏
i=1

S(hi, gi). (15)

Choosing the gaps hi = 2gi − 1 such that Pa(G|H) is maximized and using the Gaussian
approximation yields:

Pa(G|H) ≈ 1
2

w−1∏
i=1

1
2
√

π(gi − 1)
and Ld = 4(4π)w−1

w−1∏
i=1

(gi − 1). (16)

5

4 A convolutional filter for SG and ASG

Instead of just considering combinations of bits of the output sequence for which P (G|H) is
optimum, we introduce a more sophisticated distinguisher that considers all combinations of
w bits of z for which P (G|H) is different from 0. We compute a function Y as:

Y =
1
L

∑
t

yt with yt =
∑
H

CH z̄tz̄t+H1 · · · z̄t+Hw−1 . (17)

Here the CH are weighing factors as the optimum result is not necessarily obtained by
just adding all combinations. Each yt is the sum of a number of independent expressions
CH z̄tz̄t+H1 · · · z̄t+Hw−1 . Such an expression has variance C2

H and mean CHP (G|H). If we
want yt to have a variance equal to 1, we must choose the CH values such that

∑
H C2

H = 1.
In other words, the CH values can be seen as the coordinates of a vector of length 1. The
mean value of yt is:

〈yt〉 =
∑
H

CHP (G|H). (18)

The latter can be seen as the inner product between two vectors, the C-vector and the
P (G|H)-vector. The mean value 〈yt〉 for a truly random sequence being zero, we wish to
maximize this inner product so as to best distinguish SG or ASG from other generators. We
must thus choose the vector C equal to the vector P (G|H) divided by its norm, hence:

CH =
P (G|H)√∑
H P (G|H)2

. (19)

For this choice of CH , we obtain:

〈yt〉 =
√∑

H

P (G|H)2 and Ld =
1∑

H P (G|H)2
. (20)

4.1 The shrinking generator

We can now compute the value of Ld for an SG given the feedback polynomial G of its source
register:

Ld
−1 =

∑
h1

∑
h2

· · ·
∑
hw−1

w−1∏
i=1

S(gi, hi)
2 (21)

=
∑
h1

S(g1, h1)
2
∑
h2

S(g2, h2)
2 · · ·

∑
hw−1

S(gw−1, hw−1)
2. (22)

Introducing following notation

ρg(h) =
S(g, h)√∑
h S(g, h)2

(23)

results in:

Ld
−1 =

w−1∏
i=1

∑
hi

S(gi, hi)
2 and CH =

w−1∏
i=1

ρgi(hi) . (24)

6

Using the Gaussian approximation yields
∑

h S(g, h)2 ≈ 1/4
√

π(g − 1) and

Ld = (4
√

π)w−1

√∏
i

(gi − 1). (25)

In the following theorem we prove that the stream y can be computed iteratively by taking
w − 1 convolutions and w − 1 stream multiplications.

Theorem 1 The computation of yt = v
(0)
t for an SG is given as

v(w−2) = z̄ × (z̄ ⊗ ρgw−1), . . .

v(i) = z̄ × (v(i+1) ⊗ ρgi+1), . . .

v(0) = z̄ × (v(1) ⊗ ρg1).

Proof: We have:

v
(0)
t =

∑
h1

ρg1(h1)z̄tv
(1)
t−h1

=
∑
h1

ρg1(h1)

∑
h2

z̄t−h1ρg2(h2)v
(2)
t−(h1+h2)

 z̄t

=
∑
h1

ρg1(h1)
∑
h2

ρg2(h2)v
(2)
t−H2

z̄t−H1 z̄t

=
∑
h1

∑
h2

ρg1(h1)ρg2(h2)v
(2)
t−H2

z̄tz̄t−H1

= . . .

=
∑
h1

. . .
∑
hw−1

w−1∏
i=1

ρgi(hi)z̄tz̄t−H1 · · · z̄t−Hw−1

=
∑
H

(
w−1∏
i=1

ρgi(hi)

)
z̄tz̄t−H1 · · · z̄t−Hw−1 .

We thus correctly obtain

yt = v
(0)
t =

∑
H

CH z̄tz̄t−H1 · · · z̄t−Hw−1 with CH =
w−1∏
i=1

ρgi(hi). (26)

ut

4.2 The alternating-step generator

We can now compute the values of Ld and CH for an ASG given the gaps G of a feedback
polynomial of one of its source registers:

Ld
−1 =

∑
h1

∑
h2

· · ·
∑
hw−1

1
4

w−1∏
i=1

S(hi, gi)
2 (27)

=
1
4

∑
h1

S(h1, g1)
2
∑
h2

S(h2, g2)
2 · · ·

∑
hw−1

S(hw−1, gw−1)
2. (28)

7

Introducing following notation:

µg(h) =
S(h, g)√∑
h S(h, g)2

(29)

results in:

Ld =
4∏w−1

i=1

∑
hi
S(hi, gi)

2 and CH =
w−1∏
i=1

µgi(hi). (30)

The expression
∑

h S(h, g)2 appears to be very closely approximated by 1/2
√

2π(g − 1), yield-
ing

Ld = 4(2
√

2π)w−1

√∏
i

(gi − 1). (31)

Theorem 2 The computation of yt = v
(0)
t for an ASG is given as

v(w−2) = z̄ × (z̄ ⊗ µgw−1), . . .

v(i) = z̄ × (v(i+1) ⊗ µgi+1), . . .

y = z̄ × (v(1) ⊗ µg1).

The proof is very similar to that of Theorem 1.

4.3 Usage of multiple recursion relations

In the ASG, we can conduct the same attack using the feedback polynomial of source sequence
b. Moreover, we can conduct the attack for any polynomial that is a multiple of a feedback
polynomial of (one of) the source registers. In general, given any number of independent
distinguishers with mean 〈y(i)〉, the optimum distinguisher is formed by

yt =
∑

i〈y(i)〉y(i)
t√∑

i 〈y(i)〉2
yielding Ld =

1∑
i〈y(i)〉2

=
1∑

i
1

Ld(i)

. (32)

5 Distinguishers for multiplexor generators

We construct distinguishers exploiting the fact that source stream bits may appear multiple
times in the output stream. Whereas the distinguishers for the SG and ASG reveal weaknesses
in the source sequences, here the distinguishers work independently from the nature of the
source stream and reveals weaknesses due to the sampling process itself.

5.1 Fibonacci configuration

The probability that two bits in the output stream separated by a gap h originate from the
same bit in the source stream is:

Pr[t + h + M [St−h] = t + M [St]] = Pr[M [s]−M [s′] = h], (33)

8

for independent random variables s and s′ following the same distribution as S. We define
the distribution function of the selection position table, PM (i), as

PM (i) = Pr[M [a] = i] = 2−n
∑

j

δiM [j] , (34)

with δ the Kronecker delta. If we now define QM as the convolution of PM with itself,
QM = PM ⊗ PM , we have:

Pr(M [s]−M [s′] = h) = QM (h). (35)

So QM (h) gives the probability that two output bits separated by a gap h originate from the
same bit in the source stream.

A basic distinguisher consists of the following. Find the gap hm for which QM (h) is
maximum and compute X =

∑
t xt/

√
L with xt = z̄tz̄t−hm . Clearly [xt] = QM (hm), yielding

Ld = QM (hm)−2. We can build a convolutional filter that exploits the probabilities QM (h)
for all gaps h:

Y =
1
L

∑
t,h>0

Chz̄tz̄t−h or Y =
1
L

∑
t

yt with yt = z̄t

∑
h>0

Chz̄t−h . (36)

The restriction h > 0 is there to ensure that every expression of type ytyt+h appears only once.
With a similar argument as in Section 4, the optimum values for Ch are given by Ch = qM(h)

with
qM(h) =

QM (h)√∑
h>0 QM (h)2

if h > 0 and 0 otherwise. (37)

This yields:

Ld =
1∑

h>0 QM (h)2
and Ch = qM (h), (38)

resulting in:
y = z̄ × (z̄ ⊗ qM) . (39)

Hence the distinguisher takes one convolution and one stream multiplication. Both for the
basic distinguisher and the convolutional filter Ld depends strongly on QM determined by
the table M . In the worst case (for the attacker), M has been chosen such that for any
gap h, QM (h) = 2−2n or zero. For example if M = (0, 1, 3, 7), the resulting QM is 2−4

for h ∈ {1, 2, 3, 4, 6, 7}. For this kind of M , the simple distinguisher has Ld = 24n and the
convolutional filter has

Ld = 1/2n−1(2n − 1)2−4n ≈ 22n+1 . (40)

As there are (2n − 1)(2n − 2)/2 differences among 2n entries, the choice of such an M is only
possible if the length of the source register is in the order of 22n−1, so Ld is only a factor 4
longer than the source register. For example for a multiplexor choosing from 64 positions the
source register must have a length in the order of 2000 bits and Ld is only 8000.

Another interesting case is when M [i] = i, i.e., the selection positions are subsequent. For
h 6= 0 we have QM (h) = (2n − h)2−2n. The best simple distinguisher has hm = 1 and yields
Ld = 24n/(2n − 1)2 ≈ 22n. For the convolutional filter this gives:

Ld
−1 =

2n−1∑
i=1

i2

24n
= 2−4n

2n−1∑
i=1

i2, (41)

9

resulting in

Ld = 24n 6
(2n − 1)(2(22n−1 + 1)(2n)

≈ 3 · 2n. (42)

Hence for a multiplexor selecting from 64 positions this yields Ld ≈ 192, again only a small
factor larger than the minimum size of the source register. Both cases show that for a
multiplexor generator with a Fibonacci source register we can construct distinguishers with
Ld in the same order of magnitude as the source register.

5.2 Galois configuration

If the source register has a Galois configuration the output sequence cannot be modeled as a
simple sampling of the source sequence and the analysis above does not apply. The value of
Ld depends on interaction between the selection position table and the feedback polynomial
of the source LFSR. Given the weight of the feedback polynomial and characteristics of the
selection position table upper bounds for Ld can be formulated. For example, for a 64-bit
multiplexor and a source register with an LFSR of weight 17 a distinguisher similar to the
one in Equation (39) can be built with Ld below 215/7 ≈ 4700.

6 Simulation results

We have experimentally verified the correctness of the values Ld for all distinguishers presented
in this paper. As Ld = 〈Y 〉−2, it suffices to apply the distinguisher to sequences with length
much larger than Ld and see whether Y converges to 〈yt〉 in case it matches the generator
and to 0 in case of a random sequence. All our experimentally obtained data confirmed the
theoretical values.

The function ρg(h) used for the simulation is based on the Gaussian approximation for
S(g, h). To avoid the infinite domain of Gaussian variables, it is truncated beyond 5 times
the standard deviation below and above the average 〈h〉. The same truncation is done for
S(h, g), which is used to compute µg(h). With the roles of g and h reversed for µg(h), this
results in a asymmetry in the truncation below and above 〈h〉 in order to preserve the actual
shape of µg(h). For the multiplexor generators the exact expression of QM (h) is used.

We illustrate our simulation results for a convolutional filter adapted to an SG with a
source LFSR governed by the polynomial p(x) = x300 + x219 + x131 + x73 + 1 taken from
[2]. For this polynomial, [2] gives a theoretical estimation of a parameter N = 230.3 where
N plays the same role as Ld with N = 4Ld. It reports an experiment with 48 successes out
of 50 sequences each of length 229, i.e. a failure rate of 4 %. Our convolutional filter has
〈Y 〉 ≈ 0.000272 resulting in Ld ≈ 1.35× 107. This is a factor 24 smaller than the equivalent
in [2]. For sequences of length 229 the expected failure rate of our convolutional filter is below
0.1 %.

For a sequence of L the standard deviation of Y is equal to 1/
√

L. Relating that to 〈Y 〉
of the convolutional filter yields σ(Y) =

√
Ld/L〈Y 〉. Figure 1 shows the convergence of Y

to 〈Y 〉 for an output sequence of the target SG and to 0 for the output of a pseudo-random
generator based on SHA-1. Figure 2 compares the distribution of the value of Y over a set of
100 sequences of length Ld of the SG with the distributions predicted by the theory.

The experimental implementation uses explicit convolutions and component-wise multi-
plications. The complexity of the attack is dominated by the convolutions. For the SG and

10

-0.0002

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0.125 0.25 0.5 1 2 4 8 16 32 64

Y

L/Ld

Shrinking generator
Expected mean value (0.000272)

Mean + standard deviation
Mean - standard deviation

Another pseudo-random generator

Figure 1: Convergence of Y as a function of L.

ASG, the convolution kernels have width of the order of
√

gi. The complexity of the attack
is thus O(Ld ×

∑
i

√
gi). For the multiplexor generator with M [i] = i, the width of QM (h)

is of order 2n. The complexity of this attack is thus O(L2
d). In this last case, we could make

the convolution in the frequency domain using a fast Fourier transform (FFT), decreasing the
complexity down to O(Ld log Ld).

7 Conclusions

Convolutional filters are a new type of distinguisher applicable to shrinking generators,
alternating-step generators and multiplexor generators. They are more powerful than ex-
isting distinguishers for those generators and their conceptual simplicity allows to predict
their probability of success accurately.

References

[1] A. Canteaut, M. Trabbia, “Improved Fast Correlation Attacks Using Parity-Check Equa-
tions of Weight 4 and 5”, Advances in Cryptology – Eurocrypt 2000, LNCS 1807, Springer-
Verlag, 2000, pp. 573-588.

[2] P. Ekdahl, W. Meier, T. Johansson, “Predicting the Shrinking Generator with Fixed
Connections”, Advances in Cryptology – Eurocrypt 2003, LNCS 2656, Springer-Verlag,
2003, pp. 330-344.

11

 0

 500

 1000

 1500

 2000

 2500

-0.001 -0.0005 0 0.0005 0.001

Pr
ob

ab
ili

ty
 d

en
si

ty

Y

Experimental data obtained with a shrinking generator
Theoretical distribution for a shrinking generator

Theoretical distribution for a true random number generator

Figure 2: Distribution of Y for 100 sequences of length Ld.

[3] D. Coppersmith, H. Krawczyk, Y. Mansour, “The Shrinking Generator”, Advances in
Cryptology – Crypto ’93, LNCS 773, Springer-Verlag, 1994, pp. 22-39.

[4] J. Dj. Golić, L. O’Connor, “Embedding and probabilistic correlation attacks on clock-
controlled shift registers”, Advances in Cryptology – Eurocrypt ’94, LNCS 950, Springer-
Verlag, 1995, pp. 230-243.

[5] J. Dj. Golić, “Towards Fast Correlation Attacks on Irregularly Clocked Shift Registers”,
Advances in Cryptology – Eurocrypt ’95, LNCS 921, Springer-Verlag, 1995, pp. 248-262.

[6] J. Dj. Golić, “Linear Models for Keystream Generators”, IEEE Trans. on Computers,
Vol. 45, No 1 January, IEEE Press, 1996, pp. 41-49.

[7] J. Dj. Golić, “Computation of low-weight parity-check polynomials”, Electronic Letters,
Vol. 32, No 21 October, 1996.

[8] J. Dj. Golić, “Correlation analysis of the Shrinking Generator”, Advances in Cryptology
– CRYPTO 2001, LNCS 2139, Springer-Verlag, 2001, pp. 440-457.

[9] J. Dj. Golić, “On the Success of the Embedding Attack on the Alternating Step Gener-
ator”, Selected Areas in Cryptography 2003, 2003, pp. 262-274.

[10] J. Dj. Golić, R. Menicocci, “A New Statistical Distinguisher for the Shrinking Generator”,
Cryptology ePrint Archive: Report 2003/041, http://eprint.iacr.org/2003/041/

[11] J. Dj. Golić, R. Menicocci, “Correlation Analysis of the Alternating Step Generator”,
Designs, Codes and Cryptography 31(1), 2004, pp. 51-74.

12

[12] C. G. Günther, “Alternating step generators controlled by de Bruijn sequences”, Ad-
vances in Cryptology – Eurocrypt ’87, LNCS 304, 1988, pp. 5-14

[13] S. Jennings, “Multiplexed sequences: Some properties of the minimum polynomial”,
Cryptography – Proceedings of the Workshop on Cryptography, Burg Feuerstein, LNCS
149, Springer-Verlag, 1983, pp. 189-206.

[14] T. Johansson, “Reduced complexity correlation attacks on two clock-controlled genera-
tors”, Advances in Cryptology – Asiacrypt ’98, LNCS 1514, Springer-Verlag, 1998, pp.
342-357.

[15] T. Johansson, F. Jönsson, “Fast Correlation Attacks Through Reconstruction of Linear
Polynomials”, Advances in Cryptology – CRYPTO 2000, LNCS 1880, Springer-Verlag,
2000, pp. 300-315.

[16] A. Menezes, P. van Oorschot, S. Vanstone, Handbook of Applied Cryptography, CRC
Press, 1997.

[17] L. Simpson, J. Dj. Golić, E. Dawson, “A probabilistic correlation attack on the shrinking
generator”, Information Security and Privacy ’98 - Brisbane, LNCS 1438, Springer-
Verlag, 1998, pp. 147-158.

[18] D. Wagner, “A Generalized Birthday Problem”, Advances in Cryptology – CRYPTO
2002, LNCS vol 2442, Springer-Verlag, 2002, pp. 288-303.

13

