Skip to main content

Plural, a Non–commutative Extension of Singular: Past, Present and Future

  • Conference paper
Book cover Mathematical Software - ICMS 2006 (ICMS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4151))

Included in the following conference series:

Abstract

We describe the non–commutative extension of the computer algebra system Singular, called Plural. In the system, we provide rich functionality for symbolic computation within a wide class of non–commutative algebras. We discuss the computational objects of Plural, the implementation of main algorithms, various aspects of software engineering and numerous applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Apel, J.: Gröbnerbasen in nichtkommutativen Algebren und ihre Anwendung. Dissertation, Universität Leipzig (1988)

    Google Scholar 

  2. Apel, J., Klaus, U.: FELIX, a Special Computer Algebra System for the Computation in Commutative and Non-commutative Rings and Modules (1998), available from: http://felix.hgb-leipzig.de/

  3. Brickenstein, M.: Neue Varianten zur Berechnung von Gröbnerbasen. Diplomarbeit, Universität Kaiserslautern (2004)

    Google Scholar 

  4. Brickenstein, M.: Slimgb: Gröbner Bases with Slim Polynomials. In: Reports On Computer Algebra No. 35, Centre for Computer Algebra, University of Kaiserslautern (2005), available from: http://www.mathematik.uni-kl.de/~zca/

  5. Bueso, J., Gómez–Torrecillas, J., Verschoren, A.: Algorithmic methods in non-commutative algebra. Applications to quantum groups. Kluwer Academic Publishers, Dordrecht (2003)

    MATH  Google Scholar 

  6. Castro-Jiménez, F.J., Ucha, J.M.: On the computation of Bernstein–Sato ideals. J. of Symbolic Computation 37, 629–639 (2004)

    Article  MATH  Google Scholar 

  7. Chyzak, F.: The GROEBNER Package for MAPLE (2003), available from: http://algo.inria.fr/libraries/

  8. Chyzak, F., Salvy, B.: Non–commutative Elimination in Ore Algebras Proves Multivariate Identities. J. of Symbolic Computation 26(2), 187–227 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chyzak, F., Quadrat, A., Robertz, D.: Linear control systems over Ore algebras. Effective algorithms for the computation of parametrizations. In: Proc. of Workshop on Time-Delay Systems (TDS 2003), INRIA (2003)

    Google Scholar 

  10. Cohen, A.M., Gijsbers, D.A.H.: GBNP, a Non–commutative Gröbner Bases Package for GAP 4 (2003), available from: http://www.win.tue.nl/~amc/pub/grobner

  11. Eisenbud, D., Fløystad, G., Schreyer, F.-O.: Sheaf algorithms using the exterior algebra. Trans. Am. Math. Soc. 355(11), 4397–4426 (2003)

    Article  MATH  Google Scholar 

  12. García Román, M., García Román, S.: Gröbner bases and syzygies on bimodules over PBW algebras. J. of Symbolic Computation 40(3), 1039–1052 (2005)

    Article  MATH  Google Scholar 

  13. Gerdt, V.P.: Involutive Algorithms for Computing Groebner Bases. In: Pfister, G., Cojocaru, S., Ufnarovski, V. (eds.) Computational Commutative and Non-Commutative Algebraic Geometry. IOS Press, Amsterdam (2005)

    Google Scholar 

  14. Gómez–Torrecillas, J., Lobillo, F.J.: Auslander-regular and Cohen-Macaulay quantum groups. J. Algebr. Represent. Theory 7(1), 35–42 (2004)

    Article  MATH  Google Scholar 

  15. Granger, M., Oaku, T., Takayama, N.: Tangent cone algorithm for homogenized differential operators. J. of Symbolic Computation 39(3–4), 417–431 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Grayson, D., Stillman, M.: MACAULAY 2, a Software System for Research in Algebraic Geometry (2005), available from: http://www.math.uiuc.edu/Macaulay2/

  17. Green, E., Heath, L., Keller, B.: Opal: A System for Computing Noncommutative Gröbner Bases. In: Comon, H. (ed.) RTA 1997. LNCS, vol. 1232, pp. 331–334. Springer, Heidelberg (1997)

    Google Scholar 

  18. Greuel, G.-M., Pfister, G., Bachmann, O., Lossen, C., Schönemann, H.: A SINGULAR Introduction to Commutative Algebra. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  19. Greuel, G.-M., Levandovskyy, V., Schönemann, H.: PLURAL. A SINGULAR 3.0 Subsystem for Computations with Non–commutative Polynomial Algebras. Centre for Computer Algebra, University of Kaiserslautern (2006)

    Google Scholar 

  20. Greuel, G.-M., Pfister, G., Schönemann, H.: SINGULAR 3.0. A Computer Algebra System for Polynomial Computations. Centre for Computer Algebra. University of Kaiserslautern (2006), available from: http://www.singular.uni-kl.de

  21. Helton, J.W., Stankus, M.: NCGB 3.1, a Noncommutative Gröbner Basis Package for Mathematica (2001), available from: http://www.math.ucsd.edu/~ncalg/

  22. Backelin, J., et. al. The Gröbner basis calculator BERGMAN (2006), available from: http://servus.math.su.se/bergman/

  23. Kandri-Rody, A., Weispfenning, V.: Non–commutative Gröbner bases in algebras of solvable type. J. of Symbolic Computation 9(1), 1–26 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  24. Kredel, H.: Solvable polynomial rings. Shaker (1993)

    Google Scholar 

  25. Kredel, H., Pesch, M.: MAS, Modula-2 Algebra System (1998), available from: http://krum.rz.uni-mannheim.de/mas.html

  26. Levandovskyy, V.: Non–commutative computer algebra for polynomial algebras: Gröbner bases, applications and implementation. Doctoral Thesis, Universität Kaiserslautern (2005), available from: http://kluedo.ub.uni-kl.de/volltexte/2005/1883/

  27. Levandovskyy, V.: On preimages of ideals in certain non–commutative algebras. In: Pfister, G., Cojocaru, S., Ufnarovski, V. (eds.) Computational Commutative and Non-Commutative Algebraic Geometry. IOS Press, Amsterdam (2005)

    Google Scholar 

  28. Levandovskyy, V.: PBW Bases, Non–Degeneracy Conditions and Applications. In: Buchweitz, R.-O., Lenzing, H. (eds.) Representation of algebras and related topics. Proceedings of the ICRA X conference, vol. 45, pp. 229–246. AMS. Fields Institute Communications (2005)

    Google Scholar 

  29. Levandovskyy, V.: Intersection of ideals with non–commutative subalgebras. In: Proc. of the International Symposium on Symbolic and Algebraic Computation (ISSAC 2006). ACM Press, New York (to appear, 2006)

    Google Scholar 

  30. Levandovskyy, V., Schönemann, H.: Plural — a computer algebra system for noncommutative polynomial algebras. In: Proc. of the International Symposium on Symbolic and Algebraic Computation (ISSAC 2003). ACM Press, New York (2003)

    Google Scholar 

  31. Levandovskyy, V., Zerz, E.: Algebraic systems theory and computer algebraic methods for some classes of linear control systems. In: Proc. of the International Symposium on Mathematical Theory of Networks and Systems (MTNS 2006) (2006)

    Google Scholar 

  32. Li, H.: Noncommutative Gröbner bases and filtered-graded transfer. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  33. McConnell, J.C., Robson, J.C.: Noncommutative Noetherian rings. AMS (2001)

    Google Scholar 

  34. Mora, T.: Groebner bases in non-commutative algebras. In: Gianni, P. (ed.) ISSAC 1988. LNCS, vol. 358, pp. 150–161. Springer, Heidelberg (1989)

    Google Scholar 

  35. Mora, T.: An introduction to commutative and non-commutative Groebner bases. Theor. Comp. Sci. 134, 131–173 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  36. Oaku, T., Takayama, N.: An algorithm for de Rham cohomology groups of the complement of an affine variety via D-module computation. Journal of Pure and Applied Algebra 139(1–3), 201–233 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  37. Pearce, R.: The F4 Algorithm for Gröbner Bases, Package for MAPLE (2005), available from: http://www.cecm.sfu.ca/~rpearcea/

  38. Saito, S., Sturmfels, B., Takayama, N.: Gröbner Deformations of Hypergeometric Differential Equations. Springer, Heidelberg (2000)

    MATH  Google Scholar 

  39. Takayama, N.: kAN/SM1, a Gröbner engine for the ring of differential and difference operators. available from: http://www.math.kobe-u.ac.jp/KAN/index.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Levandovskyy, V. (2006). Plural, a Non–commutative Extension of Singular: Past, Present and Future. In: Iglesias, A., Takayama, N. (eds) Mathematical Software - ICMS 2006. ICMS 2006. Lecture Notes in Computer Science, vol 4151. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11832225_13

Download citation

  • DOI: https://doi.org/10.1007/11832225_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38084-9

  • Online ISBN: 978-3-540-38086-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics