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Higher Order Pheromone Models in Ant Colony
Optimisation

James Montgomery

Faculty of Information & Communication Technologies,
Swinburne University of Technology, Melbourne, Australia

jmontgomery@ict.swin.edu.au

Abstract. Ant colony optimisation is a constructive metaheuristic that
successively builds solutions from problem-specific components. A pa-
rameterised model known as pheromone—an analogue of the trail phero-
mones used by real ants—is used to learn which components should be
combined to produce good solutions. In the majority of the algorithm’s
applications a single parameter from the model is used to influence the
selection of a single component to add to a solution. Such a model can
be described as first order. Higher order models describe relationships
between several components in a solution, and may arise either by con-
triving a model that describes subsets of components from a first order
model or because the characteristics of solutions modelled naturally re-
late subsets of components. This paper introduces a simple framework to
describe the application of higher order models as a tool to understand-
ing common features of existing applications. The framework also serves
as an introduction to those new to the use of such models. The utility
of higher order models is discussed with reference to empirical results in
the literature.

Keywords: Ant colony optimisation, pheromone model, model-based search.

1 Introduction

Ant colony optimisation (ACO) is a constructive metaheuristic that belongs
to the model-based search (MBS) class of optimisation algorithms [15]. In an
MBS algorithm, successive solutions are built using a parameterised probabilis-
tic model, the parameters of which are revised over time using the solutions
produced by the algorithm in order to direct its search towards promising areas
of the solution space. The model used in ACO is referred to as a pheromone
model in reference to the trail pheromones laid down by real ants to mark paths
from their nest to a food source. In essence, the model describes relationships
between components in the solution, such as one component succeeding another
or whether a component is in a solution or not. The problem being solved thus
partially dictates what can be modelled. Although the initial application of ACO
to the well-known travelling salesman problem (TSP) used a model that very
closely resembles the environment in which real ants move—there is a clear sim-
ilarity between a Hamiltonian cycle in an edge-weighted graph and alternative



routes between nest and food—as the range of problems to which it is applied
has grown so too has the range of models [9].

During a single iteration of a typical ACO algorithm, each artificial ant con-
structs a solution by successively adding problem-specific solution components.
The relative utility of alternative components is given by the parameters of the
pheromone model. When the utility of adding a candidate component to a par-
tial solution is described by a single parameter, the model is said to be first
order [2, 3, 9]. A higher order model is one in which the utility of adding a
candidate component to a partial solution is described by several parameters,
requiring that the information be aggregated before judging that component’s
utility.

This paper introduces a simple framework for higher order pheromone mod-
els that serves both as a tool to understand existing applications of such models
and as a guide for their future application. The utility of such models is also dis-
cussed with reference to their empirical performance. These topics are organised
as follows. Section 2 formalises the discussion of pheromone models, introduc-
ing some necessary notation, before Section 3 describes the framework. The
empirical performance of higher order models is compared to that of first order
alternatives in Section 4. Section 5 provides some concluding remarks.

2 Pheromone Models

An ACO algorithm consists of a number of iterations of solution construction,
within which each (artificial) ant builds its solution by successively selecting a
solution component to add to its sequence. Solution components are typically
selected probabilistically, biased by the parameters of the pheromone model,
which provide an estimate of the utility of adding a solution component to an
ant’s partial solution. It should be noted that the term solution component is
somewhat overloaded in the ACO literature, at times being used to refer to
components of the model rather than the components from which solutions are
built (sometimes referred to as natural solution components [2]). As both kinds
of “component” are discussed in this paper, the term solution characteristic [9]
is introduced to describe components of the model. A pheromone model thus
consists of a set of solution characteristics, and is denoted by C. To each solution
there corresponds a set of solution characteristics that is a proper subset of that
defined by the model.

In essence, the model describes relationships between components or com-
ponents and the solution. For instance, the model used with the TSP describes
a relationship between exactly two components, the candidate being considered
and the previous component added. The model commonly used with knapsack
problems represents a relationship between a candidate and the solution as a
whole, indicating the utility of including a component at all. The relationships
described by a pheromone model may also make reference to aspects of solu-
tions other than the components from which they are built. For instance, some
models used in the literature represent the absolute position of components in



a solution, while others represent the assignment of items from one set of en-
tities to another (with the solution components being drawn from only one of
the two sets). When a model represents a relationship between a candidate solu-
tion component and at most one other component in the partial solution, as in
these examples, that model is said to be first order. In other words, the utility
of adding a candidate component is described by a single pheromone value (a
non-zero, real-valued number denoted by τ). When the relationships modelled
relate to multiple solution components, the pheromone model is higher order.

Higher order pheromone models implicitly define two sets of solution charac-
teristics: one set relates to decisions to include individual solution components
based on the current state of a partial solution, while the other set relates to
higher order decisions, i.e., whether a single solution should exhibit two or more
particular solution characteristics at the same time. Given a first order model
C, an nth-order model may be a set of n-tuples of solution characteristics, de-
noted by Cn. Higher order models may be contrived by modelling combinations
of n solution characteristics from some first order model or, when the solution
characteristics modelled relate many parts of the solution to each other, will
form naturally as a consequence of having to combine information from each
relationship. In the latter case there is typically no related first order model.

3 Using Higher Order Models

The two main issues that arise when using a higher order model are how the
higher order information is used, and the trade-off between the computational
overhead associated with the larger pheromone model versus the benefits of using
the extra information it provides. The former is discussed in this section, while
the latter is discussed in Section 4 below.

Although higher order pheromone models have been used in a number of
ACO algorithms, there is no single approach to their use. Nevertheless, there are
common features of each of the approaches currently described in the literature
that allow a general framework to be proposed.

When using a first order pheromone model, each constructive step is a com-
petition between individual solution characteristics (and hence between the so-
lution components they implicitly represent). When using a higher order model,
the pheromone associated with adding a particular solution component is an
aggregate of a number of pheromone values. Given a first order solution charac-
teristic c ∈ C, denote the set of all other single solution components or charac-
teristics to which c is related, and which consequently should be used to inform
the decision to include c in the current partial solution, by Cc. In general, for an
nth order pheromone model it is important to know to which tuples of (n − 1)
solution components or characteristics a first order characteristic c is related,
denoted Cn−1

c . Given an appropriate definition for Cn−1
c , a suitable aggregation

function must also be defined, as well as an alternative when Cn−1
c = ∅.

Assuming that a solution characteristic c corresponds to a single constructive
step (e.g., the addition of a single solution component or a single assignment),



and denoting the pheromone associated with adding c to the partial solution
sp using an nth order pheromone model by τ(sp, c, n), a generic function for
τ(sp, c, n) where n ≥ 2 is given by

τ(sp, c, n) =
{
f(sp, c, τn) if ∃ τn and |Cn−1

c | > 0
τ(sp, c, n− 1) otherwise (1)

where τn : C × Cn−1 → R+ is a function from collections of n solution char-
acteristics to pheromone values, and f(s, c, τn) is an aggregation function over
the pheromone values associated between c and the elements of Cn−1

c , which
is discussed in more detail below. Note that the equation is recursive; if Cn−1

c

is empty or τn does not exist then a lower order pheromone model is sought.
To ensure that the recursion defined by Equation 1 is well-founded, τ1 must be
defined, either to be a constant value or a separate first order pheromone model.
In pheromone models where the elements of Cn−1

c are taken from sp, early in
solution construction sp contains few solution characteristics and it is likely that
Cn−1

c = ∅, and hence a lower order pheromone model such as τ1 must be used
until the nth order model τn can be used. Conceivably, for n > 1, if an nth order
model is used, n − 1 other pheromone models may also be employed to deal
with the first n− 1 steps of solution construction. In practice, most higher order
pheromone models are only second order, so at most two pheromone models may
be required.

Instances of higher order models are specified by providing definitions for the
three components of this general framework, Cc, f and τ1. The definition of Cc

is highly problem specific and closely tied to the way solutions are constructed.
A number of options are available for the aggregation function f , four of

which are to take the minimum, maximum, mean or sum of the different phero-
mone values involved. These four alternative definitions of f are denoted by
min(τn), max(τn), mean(τn) and sum(τn) respectively.

The definition of Cn−1
c also determines which pheromone values from τn are

updated by a solution s. For instance, using a second order pheromone model
that represents the learned utility of having pairs of solution characteristics
(ci, cj) ∈ C2 copresent in a solution, pheromone is updated for all pairs (ci, cj)
such that ci, cj ∈ s, ci 6= cj . Alternatively, when using a second order model
that represents the utility of placing a solution component before certain other
solution components, the value of Cn−1

c when the solution was constructed must
be used to identify which pheromone values to update.

3.1 Defining Cc, f and τ1 for a problem

The definition of Cc is problem specific and typically apparent from the higher
order solution characteristics being modelled. For instance, if a second order
model is used to learn whether pairs of components should be part of the same
solution, then intuitively Cc should contain those components already in the
partial solution. Alternatively, given a different second order pheromone model
that models pairs of components that should not be part of the same solution



Table 1. Sample of customisations of Equation 1. τmax is an upper bound on phero-
mone values imposed in the MAX −MIN Ant System algorithm [14]

Cc f τ1 Example(s)

∈ sp sum unknown [10, 13]
equivalent to 1 [7]
1st order model [1]

mean 1 [5, 11]
1 [6]
1 [8]
1st order model [8]

6∈ sp min τmax [12]
∞ [3]

(or where there is a relationship based on the relative order of the pairs of com-
ponents as in [3]), and faced with a first order decision about whether to include
a candidate characteristic, intuitively Cc should contain only those components
that have not yet been added to the partial solution.

The definitions of f and τ1 can be somewhat separate from the solution
characteristics modelled and so may appear to be arbitrary choices. Nevertheless,
a number of observations may be made concerning existing applications of higher
order models. Table 1 categorises the usage of higher order pheromones found
in the literature, based on whether the elements of Cc come from the partial
solution or its complement, the aggregation function used and definition of τ1.
Full details of the retrospective application of the framework to the works cited
are given in [8].

With regards to the aggregation function f , all the examples in Table 1 use
min, mean or sum, while none uses max. The use of the min function can be
characterised as a cautious approach—any single low pheromone value can in
effect veto the first order decision being considered. Conversely, max allows any
single high pheromone value to make the decision more likely. The functions sum
and mean allow each higher order solution characteristic’s pheromone value to
influence the first order decision, with the choice of whether to use sum or mean
dependent on the number of higher order solution characteristics available for
each candidate first order characteristic (or component). In the examples cited,
sum is used in all cases where |Cc| = |Cc′ | ∀ c 6= c′ for a fixed partial solution
size, while mean is used in those cases where this is not the case (or where the
magnitude of observed pheromone values must be kept constant).

Notably, min is used only in those cases where the elements of Cc are not
present in the partial solution. Blum and Sampels [3] describe an ACO algorithm
for shop scheduling problems in which each solution characteristic indicates the
relative order of operations that must be processed on the same machine. In this
application, the rationale for using min is that if any pheromone value is low then
there must exist at least one related operation that should be scheduled before



the one being considered. The min function is also used in an ACO algorithm for
a university timetabling problem developed by Socha, Knowles and Sampels [12],
where higher order pheromone values are used to learn which events should not
be placed in the same timeslot. Conceivably, taking the minimum value between
the current event and those already assigned a timeslot might produce similar
results to considering unscheduled events. However, this approach may allow an
event to be placed in a timeslot that suits another unscheduled event better
and which may increase solution cost if that other event were later placed in
the same timeslot. Consequently, taking the minimum value may avert such
undesirable actions. Thus, in both examples, using min in relation to those
solution components or characteristics that have yet to be added to a partial
solution appears to avoid making decisions that may force the algorithm to
make an inferior decision later in solution construction. In contrast, the use of
sum and mean with pheromone values associated with solution components or
characteristics already in a partial solution appears to promote the selection of
a solution component that is well suited to the existing partial solution.

In those examples where τ1 is clearly defined and the elements of Cc are
taken from the partial solution, the first solution characteristic is chosen either
randomly or using a first order pheromone model when used in conjunction with
sum, while it is assigned a constant value when used with mean. Where the
elements Cc do not come from the partial solution, τ1 is set to either a high
value (τmax) or a candidate component is chosen as if it had a high value (such
as ∞).

4 Utility of Higher Order Pheromones

When implemented, higher order pheromone models require greater computa-
tional resources than their first order counterparts. While storage overhead is
typically not problematic—most higher order models are second order, repre-
senting a squaring in size—higher order models necessarily take longer to process
as multiple pheromone values must be considered for each solution characteristic.
This increased computational overhead must be weighed against any potential
improvements to the quality of solutions produced by the algorithm, as the fol-
lowing examples show.

A comparative study of first and second order pheromone models for the k-
cardinality tree problem found that, given the same amount of execution time,
the latter produces fewer solutions and thus the algorithm makes less progress
towards good solutions [1]. It was concluded that the first order model is conse-
quently a better choice for this problem.

Roli, Blum and Dorigo [10] compared the performance of an ACO algorithm
for constraint satisfaction using three alternative pheromone models, including a
first order pheromone model that represents which assignments should be made
and a second order pheromone modelling which pairs of assignments should be
made. Both models performed similarly well. However, again due to the increased



computational overhead for the second order model, the first order model is
promoted as the best-suited to that problem.

Montgomery [8] compared first and second order pheromone models for the
knapsack problem, also finding that the two gave equivalent performance in
terms of solution quality, with the second order model increasing the required
computation time for an equivalent number of solutions produced.

Montgomery [8] also compared a first and two second order pheromone mod-
els for a car sequencing problem in which different car models must be assigned
positions in a production sequence such that the separation penalty between
cars of the same model is minimised (i.e., it is desirable keep cars of the same
model apart). The penalty varies between models. The first order pheromone
model represents the assignment of a car model to a sequence position. One
of the higher order models represents pairs of sequence positions assigned the
same car model, similar to the model used by Costa and Hertz [5] for the graph
colouring problem in which nodes in a partially connected graph are partitioned
into colour groups. The other higher order model represents pairs of sequence
positions assigned the same car model plus which model is assigned. The study
found that the first order model and the second order model that includes the
actual car model assigned both outperformed the model inspired by that used
by Costa and Hertz. This finding is commensurate with suggestions by Mont-
gomery, Randall and Hendtlass [9] regarding appropriate pheromone models.
However, the first order model performed best overall.

These four studies would appear to suggest that higher order models have
little or no utility. However, there are some combinatorial problems, such as
the maximum-clique [7] and graph colouring [5] problems, for which first order
models may not be appropriate—both of these problems involve the assignment
of components to groups. Indeed, potential problems have been identified with
first order models for the graph colouring problem [9]. Furthermore, the best
performing model for shop scheduling problems is the second order model devel-
oped by Blum and Sampels [3, 4], a key feature of which is that it is not derived
from a first order model. Taken together, these results suggest that if a simpler
pheromone model is “appropriate” for a given problem, it is unnecessary to use a
higher order (typically, a second order) model. Montgomery, Randall and Hendt-
lass [9] put forward a number of qualities of a model that make it “appropriate”
for a particular problem, the chief one being that it represents characteristics
of solutions that directly impact on solution cost. Using this guiding criterion,
the use of higher order pheromone models is implicated in a number of problem
domains.

5 Conclusions

The majority of pheromone models used in ACO algorithms are first order,
with a single parameter of the model representing the learned utility of adding
a single solution component to a partial solution. A number of higher order
models have also been developed which give more detailed information about



the utility of adding a single component. This paper has introduced a simple
framework for describing higher order pheromone models, which serves as a tool
to understand common features of existing applications and may assist in the
future development of new higher order models for other problems.

A review of studies that compare first and second order models suggests
that higher order models will often give equivalent performance to first order
counterparts, but at the expense of greater computation times. However, there
are some problems where the use of higher order models appears necessary.
Therefore, if a problem appears to require the use of a higher order model then
a first order model should also be developed and its performance examined.
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