
University of Tasmania Open Access RepositoryUniversity of Tasmania Open Access Repository

Cover sheetCover sheet

Title
Solution representation for job shop scheduling problems in ant colony optimisation

Author
Erin Montgomery, Fayad, C, Petrovic, S

Bibliographic citationBibliographic citation
Montgomery, Erin; Fayad, C; Petrovic, S (2006). Solution representation for job shop scheduling problems in
ant colony optimisation. University Of Tasmania. Conference contribution.
https://figshare.utas.edu.au/articles/conference_contribution/Solution_representation_for_job_shop_scheduling_problems_in_ant_colony_optimisation/23093606

Is published in: 10.1007/11839088_49

Copyright informationCopyright information
This version of work is made accessible in the repository with the permission of the copyright holder/s under
the following,

Licence.

Rights statement: Copyright 2006 Springer-Verlag Berlin Heidelberg

If you believe that this work infringes copyright, please email details to: oa.repository@utas.edu.au

Downloaded from University of Tasmania Open Access Repository

Please do not remove this coversheet as it contains citation and copyright information.

University of Tasmania Open Access RepositoryUniversity of Tasmania Open Access Repository

Library and Cultural CollectionsLibrary and Cultural Collections

University of TasmaniaUniversity of Tasmania

Private Bag 3Private Bag 3

Hobart, TAS 7005 AustraliaHobart, TAS 7005 Australia

EE oa.repository@utas.edu.au oa.repository@utas.edu.au CRICOS Provider Code 00586B | ABN 30 764 374 782CRICOS Provider Code 00586B | ABN 30 764 374 782 utas.edu.auutas.edu.au

http://doi.org/10.1007/11839088_49
http://rightsstatements.org/vocab/InC/1.0/
mailto:oa.repository@utas.edu.au
https://figshare.utas.edu.au
https://utas.edu.au

Solution Representation for Job Shop Scheduling
Problems in Ant Colony Optimisation

James Montgomery?1, Carole Fayad2, and Sanja Petrovic2

1 Faculty of Information & Communication Technologies, Swinburne University of
Technology, Melbourne, Australia
jmontgomery@ict.swin.edu.au

2 School of Computer Science & IT, University of Nottingham, Nottingham, UK
{cxf,sxp}@cs.nott.ac.uk

Abstract. Production scheduling problems such as the job shop con-
sist of a collection of operations (grouped into jobs) that must be sched-
uled for processing on different machines. Typical ant colony optimisa-
tion applications for these problems generate solutions by constructing
a permutation of the operations, from which a deterministic algorithm
can generate the actual schedule. This paper considers an alternative
approach in which each machine is assigned a dispatching rule, which
heuristically determines the order of operations on that machine. This
representation creates a substantially smaller search space that likely
contains good solutions. The performance of both approaches is com-
pared on a real-world job shop scheduling problem in which processing
times and job due dates are modelled with fuzzy sets. Results indicate
that the new approach produces better solutions more quickly than the
traditional approach.

Keywords: Ant colony optimisation, fuzzy job shop scheduling, solution rep-
resentation.

1 Introduction

Ant colony optimisation (ACO) is a constructive metaheuristic in which, during
successive iterations of solution construction, a number of artificial ants build so-
lutions by probabilistically selecting from problem-specific solution components,
influenced by a parameterised model of solutions (called a pheromone model in
reference to ant trail pheromones). The parameters of this model are updated
at the end of each iteration using the solutions produced so that, over time, the
algorithm learns which solution components should be combined to produce the
best solutions. When adapting ACO to suit a problem an algorithm designer
must first decide how solutions are to be represented and built (i.e., what base
components are to be combined to form solutions) and then what characteristics
of the chosen representation are to be modelled.
? Corresponding author

Production scheduling problems consist of a number of jobs, made up of
a set of operations, each of which must be scheduled for processing on one of
a number of machines. Precedence constraints are imposed on the operations
of each job. The majority of ACO algorithms for these problems represent so-
lutions as permutations of the operations to be scheduled (operations are the
base components of solutions), which determines the relative order of operations
that require the same machine (see, e.g., [1, 2]). A deterministic algorithm can
then produce the best possible schedule given the precedence constraints estab-
lished by the permutation. This approach is more generally referred to as the list
scheduler algorithm [1]. An alternative approach is to assign different heuristics
to each machine which determine the relative processing order of operations,
thereby searching the reduced space of schedules that can be produced by dif-
ferent combinations of the heuristics [3]. Building solutions in this manner may
offer an advantage by concentrating the search on heuristically good solutions.
This paper compares these two solution representations by using a real-world
job shop scheduling problem (JSP).

A formal description of the JSP is given in Section 2, including further details
of the two solution construction approaches. Section 3 describes the real-world
JSP instance to which both approaches are applied, in which processing times
and due dates are modelled by fuzzy sets to reflect the uncertain nature of these
in industrial settings. Details of the ACO algorithms developed for the fuzzy
JSP are given in Section 4, followed by analysis of their empirical performance
in Section 5. Section 6 describes the implications of the results for the future ap-
plication of ACO to such problems. An extended version of this paper, including
more extensive empirical analyses, is presented in [9].

2 Job Shop Scheduling and Solution Construction

The JSP examined in this study consists of a set of n jobs J1, . . . , Jn, with as-
sociated release dates r1, . . . , rn and due dates d1, . . . , dn. Each job consists of a
sequence of operations (determined by the processing requirements of the job)
that must each be scheduled for processing on one of m machines M1, . . . ,Mm.
Only one operation of a job may be processed at any given time, only one opera-
tion may use a machine at any given time and operations may not be preempted.
Two criteria have to be minimised simultaneously, the average tardiness of jobs
CAT and the number of tardy jobs CNT , calculated as follows:

CAT =
1
n

n∑
j=1

Tj (1)

where Tj = max{0, Cj−dj} is the tardiness of of job Jj and Cj is the completion
time of job Jj .

CNT =
n∑

j=1

uj (2)

where uj = 1 if Tj > 0, 0 otherwise.
It is common in ACO applications for the JSP and related scheduling prob-

lems to generate a permutation of the operations, which implicitly determines
the relative processing order of operations on each machine. These algorithms
are restricted to creating permutations that respect the required processing order
of operations within each job, which can consequently be called feasible permu-
tations. A deterministic algorithm transforms the relative processing order into
an actual schedule.

Different solution construction approaches produce different search spaces.
The space of feasible permutations of operations for a JSP is very large (a weak
upper bound is O(k!), where k is the number of operations) and is certainly
much larger than the space of actual solutions. This space also has a slight bias
towards good solutions, which can be exploited by some pheromone models and
proves disastrous for others [10]. Another notable feature of this search space is
that while all solutions can be reached, solutions (schedules) are represented by
differing numbers of permutations.

An alternative approach to building solutions is to assign different dispatching
rules (i.e., ordering heuristics) to each machine, which subsequently build the
actual schedule [3]. The search space then becomes the space of all possible
combinations of rules assigned to machines, which is O(|D|m) where D is the set
of rules and m the number of machines. Given a small number of dispatching
rules (this study uses four, described in Section 4) it is highly probable that this
search space is a subset of the space of all feasible schedules. However, assuming
the dispatching rules are individually likely to perform well it is expected that
this reduced space largely consists of good quality schedules.

The performance of these two approaches is compared on a real-world JSP
instance, described in the next section.

3 A Real-World JSP

The data set used has been provided by a printing company, Sherwood Press,
in Nottingham, United Kingdom [5]. There are 18 machines in the shop floor,
grouped within seven work centres: printing, cutting, folding, card-inserting,
embossing and debossing, gathering, stitching and trimming, and packaging.

Due to both machine and human factors, processing times of jobs are un-
certain and due dates are not fixed but promised instead. Therefore, fuzzy sets
are used to model these uncertain values. A triangular membership function
µp̃ij

(t) = (p1
ij , p

2
ij , p

3
ij) is used to model the fuzzy processing time p̃ij of job Jj

on machine Mi, i = 1, . . . ,m, j = 1, . . . , n, where p1
ij and p3

ij are lower and
upper bounds of the processing time, while p2

ij is the so-called modal point [7].
An example of fuzzy processing time is shown in Fig. 1(a). A trapezoidal fuzzy
set (d1

j , d
2
j) is used to model the due date d̃j of each job, where d1

j is the crisp
due date and the upper bound d2

j of the trapezoid exceeds d1
j by 10%, following

the policy of the company. An example of a fuzzy due date is given in Fig. 1(b).

0

1

1
ijp 2

ijp 3
ijp

ijp~

t

)(~ t
ijpµ

(a)

0

1

1
jd 2

jd

jd
~

t

)(~ t
jd

µ

(b)

Fig. 1. Fuzzy (a) processing time and (b) due date

0

1
µ(t)

1
jd 2

jd

jd
~

jC
~

t

()jC
d

j

~
~π

(a)

jj dC
~~

I
0

1
µ(t)

1
jd 2

jd

jd
~

jC
~

t

(b)

Fig. 2. Satisfaction grade of tardiness using (a) possibility measure and (b) area of
intersection

The objective function takes into account both the average tardiness of jobs
and the number of tardy jobs. As these are measured in different units they are
mapped onto satisfaction grades in the range [0, 1], which are then combined in
an overall satisfaction grade. Two approaches used to measure tardiness in [5]
are investigated:

1. The possibility measure πC̃j
(d̃j), used by Itoh and Ishii [6] to handle tardy

jobs in a JSP, measures the satisfaction grade of a fuzzy completion time
SGT (C̃j) of job Jj by evaluating the possibility of a fuzzy event C̃j occurring
within the fuzzy set d̃j [6] (illustrated in Fig. 2(a)):

SGT (C̃j) = πC̃j
(d̃j) = sup min{µC̃j

(t), µd̃j
(t)} j = 1, . . . , n (3)

where µC̃j
(t) and µd̃j

(t) are the membership functions of fuzzy sets C̃j and

d̃j respectively. This measure is referred to as poss hereafter.
2. The area of intersection measure (denoted area hereafter), introduced by

Sakawa and Kubota [11], measures the proportion of C̃j that is completed
by the due date d̃j (illustrated in Fig. 2(b)):

SGT (C̃j) = (area C̃j ∩ d̃j)/(area C̃j) (4)

The satisfaction grades of tardiness defined in (3) and (4) are used in two
objectives:

1. To maximise the satisfaction grade of average tardiness SAT :

SAT =
1
n

n∑
j=1

SGT (C̃j) (5)

2. To maximise the satisfaction grade of number of tardy jobs SNT : A parameter
λ is introduced such that a job Jj , j = 1, . . . , n, is considered to be tardy if
SGT (C̃j) ≤ λ, λ ∈ [0, 1]. After calculating the number of tardy jobs nTardy,
the satisfaction grade SNT is calculated as:

SNT =

1 if nTardy = 0
(n′′ − nTardy)/n′′ if 0 < nTardy < n′′

0 if nTardy > n′′
(6)

where n′′ = 15% of n, where n is the number of jobs.

Two different aggregation operators, average and minimum (denoted average
and min hereafter), were investigated for combining the satisfaction grades of
the objectives.

4 ACO for a Fuzzy JSP

Two ACO algorithms were developed based on theMAX −MIN Ant System
(MMAS), which has been found to work well in practice [12]. The first of these,
denoted MMASperm, constructs solutions as permutations of the operations,
while the second, denoted MMASrules, assigns dispatching rules to machines.
The set of dispatching rules D consists of the following four rules: Early Due
Date First, Shortest Processing Time First, Longest Processing Time First and
Longest Remaining Processing Time First.

The two solution representations require different pheromone models. The
models chosen have been found to produce the best performance for their respec-
tive solution representations [8]. For MMASperm, a pheromone value, denoted
τ(oi, oj), exists for each directed pair of operations that use the same machine,
and represents the learned utility of operation oi preceding operation oj [1]. At
each step of solution construction, the set of unscheduled operations that re-
quire the same machine as a candidate operation o is denoted by Orel

o . Blum
and Sampels [1] take the minimum of the relevant pheromone values. Thus, the
probability of selecting an available operation o to add to the partial permutation
p is given by

P (o, p) =
minor∈Orel

o
τ(o, or)∑

o′ 6∈p minor∈Orel
o′
τ(o′, or)

. (7)

The last operation on each machine is scheduled as soon as it becomes available.
For MMASrules, a pheromone value τ(Mk, d) is associated with each com-

bination of machine and dispatching rule (Mk, d) ∈M ×D, where M is the set

of machines. At each step of solution construction, a machine is assigned a dis-
patching rule. The probability of assigning a dispatching rule d ∈ D to machine
Mk is given by

P (Mk, d) =
τ(Mk, d)∑

d′∈D\{d} τ(Mk, d′)
. (8)

In both algorithms, after each iteration all pheromone values are reduced
in proportion to (ρ − 1) while those for the iteration best solution sib are in-
creased by ρ · F (sib), where ρ is the pheromone evaporation rate and F is the
overall satisfaction grade of sib (given by either the average or min aggregation
operator).

5 Computational Results

The performance of the algorithms was compared on one month’s data collected
from Sherwood Press (the March set used by Fayad and Petrovic [5]). The re-
sulting JSP instance consists of 549 operations partitioned into 159 jobs.

The algorithms were implemented in the C language and executed under
Linux on a 2.6GHz Pentium 4 with 512Mb of RAM. The MMAS control pa-
rameters used were: 10 ants per iteration; 3000 iterations; ρ = 0.1; τmax = 1;
τmin = 1 × 10−3 in MMASrules and τmin = 1 × 10−4 in MMASperm. The
values of τmin and τmax were chosen to approximate those suggested by Stützle
and Hoos [12] based on the size of the solution representation and pheromone
update.

Both algorithms were executed with different combinations of parameter val-
ues for solution evaluation: poss and area tardiness measures, and average and
min aggregation operators. The value of λ was fixed at 0.7. Each combination
was run with 10 different random seeds.

5.1 Solution quality

The results revealed that when using themin aggregation operator,MMASperm

is unable to find a solution with a non-zero objective value. This is because the
algorithm, facing a large number of solutions with SNT = 0, searches randomly
until a subset of pheromone values is updated. Further testing confirmed that a
random search of permutations is unlikely to produce solutions with SNT > 0.
A second version of the algorithm, namedMMASmin

perm, was developed in which
the pheromone update was modified such that, if all solutions in an iteration have
an objective value of zero, the best solution in terms of SAT is used to update
pheromone values using the average aggregation operator. Such a modification
was not necessary for MMASrules as random assignments of dispatching rules
to machines typically produced solutions with SNT > 0.

Table 1 summarises the satisfaction grades of tardiness measures according to
the aggregation operator used for each algorithm. It is evident thatMMASmin

perm

is much more successful than its original form when using the min aggregation

Table 1. Performance of the algorithms. The best result for each measure is given
with the mean value in parentheses. Bold items are best within each solution quality
measure

Algorithm F SAT SNT CNT

Using poss and average
MMASperm 0.69 (0.62) 0.91 (0.91) 0.46 (0.34) 13 (15.9)
MMASrules 0.73 (0.73) 0.93 (0.93) 0.54 (0.53) 11 (11.2)

Using poss and min
MMASperm 0 0.72 (0.71) 0 48 (51.2)
MMASmin

perm 0.42 (0.35) 0.89 (0.88) 0.42 (0.35) 14 (15.5)
MMASrules 0.54 (0.53) 0.93 (0.93) 0.54 (0.53) 11 (11.3)

Using area and average
MMASperm 0.62 (0.59) 0.90 (0.90) 0.33 (0.28) 16 (17.3)
MMASrules 0.71 (0.70) 0.93 (0.93) 0.50 (0.48) 12 (12.5)

Using area and min
MMASperm 0 0.70 (0.69) 0 49 (52.1)
MMASmin

perm 0.42 (0.32) 0.88 (0.87) 0.42 (0.32) 14 (16.4)
MMASrules 0.50 (0.48) 0.93 (0.92) 0.50 (0.48) 12 (12.5)

operator. Further investigation revealed that it required the use of the average
aggregation operator in up to 33% of iterations. Across solution evaluation mea-
sures, MMASrules clearly outperforms MMASperm.

5.2 CPU time

An order of magnitude difference was observed between the CPU time of the
two algorithms, with MMASperm taking more than 1400 seconds compared
to approximately 100 seconds for MMASrules. This is to be expected given
the respective number of components each must consider at each construc-
tive step;MMASperm considers approximately 40 operations on average, while
MMASrules considers only four. Moreover, MMASrules finds its best solu-
tions very early in each run (often within 1 second) whileMMASperm does not
converge until quite late.

6 Conclusions

Typical ACO algorithms for production scheduling problems such as the JSP
build solutions as permutations of the operations to be scheduled, from which
actual schedules are generated deterministically. An alternative approach when
the problem in question has multiple machines and various criteria upon which
to judge the urgency of competing operations is to assign different dispatching
rules to each machine. The chosen dispatching rules are then responsible for
determining the relative processing order of operations on each machine. This

paper compared both approaches on a multi-objective real-world JSP, modelled
with fuzzy operation processing times and job due dates. The results show that
assigning dispatching rules to machines produces higher quality solutions in far
less time than building a permutation of the operations. This supports the claim
that the assignment of dispatching rules restricts the search space to an area of
good quality solutions.

As this study focused on a single, real-world JSP instance (albeit using a
variety of solution quality measures) future work is required to determine if
these results hold for other production scheduling instances. Additionally, it is
now common practice in most ACO algorithms to use a local search procedure
to improve the solutions produced, something not done in this study so that
differences between the two solution construction approaches could be observed.
While the addition of local search to a permutation-based ACO algorithm for
these problems may allow it to perform better, it is potentially more useful in the
new approach, where it can explore solutions that combinations of dispatching
rules would otherwise never produce.

References

[1] C. Blum and M. Sampels. An ant colony optimization algorithm for shop schedul-
ing problems. J. Math. Model. Algorithms, 3(3):285–308, 2004.

[2] A. Colorni, M. Dorigo, V. Maniezzo, and M. Trubian. Ant system for job-shop
scheduling. JORBEL, 34(1):39–53, 1994.

[3] U. Dorndorf and E. Pesch. Evolution based learning in a job shop scheduling
environment. Comput. Oper. Res., 22:25–44, 1995.

[4] D. Dubois and P. H. Possibility theory: An approach to computerized processing
of uncertainty. Kluwer Academic, New York, 1988.

[5] C. Fayad and S. Petrovic. A fuzzy genetic algorithm for real-world job shop
scheduling. In M. Ali and F. Esposito, editors, Innovations in Applied Artificial
Intelligence, volume 3533 of LNAI, pages 524–533, 2005. Springer-Verlag.

[6] T. Itoh and H. Ishii. Fuzzy due-date scheduling problem with fuzzy processing
time. Int. Trans. Oper. Res., 6:639–647, 1999.

[7] G. Klir and T. Folger. Fuzzy sets, uncertainty and information. Prentice Hall,
New Jersey, 1988.

[8] E. J. Montgomery. Solution biases and pheromone representation selection in ant
colony optimisation. PhD thesis, Bond University, 2005.

[9] J. Montgomery, C. Fayad and S. Petrovic. Representation of solutions to job
shop scheduling problems in ant colony optimisation. Technical Report SUTICT-
TR2006.05, Faculty of Information & Communication Technologies, Swinburne
University of Technology, 2006.

[10] J. Montgomery, M. Randall, and T. Hendtlass. Structural advantages for ant
colony optimisation inherent in permutation scheduling problems. In M. Ali and
F. Esposito, editors, Innovations in Applied Artificial Intelligence, volume 3533
of LNAI, pages 218–228, 2005. Springer-Verlag.

[11] M. Sakawa and R. Kubota. Fuzzy programming for multiobjective job shop
scheduling with fuzzy processing time and fuzzy duedate through genetic algo-
rithms. Eur. J. Oper. Res., 120(2):393–407, 2000.

[12] T. Stützle and H. Hoos. MAX −MIN ant system. Future Gen. Comp. Sys.,
16:889–914, 2000.

	University of Tasmania Open Access Repository
	Cover sheet
	Cover sheet
	Author's final draft
	Introduction
	Job Shop Scheduling and Solution Construction
	A Real-World JSP
	ACO for a Fuzzy JSP
	Computational Results
	Solution quality
	CPU time

	Conclusions

