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Abstract. A box-ball system is a kind of cellular automata obtained
by the ultradiscrete Lotka-Volterra equation. Similarities and differences
between behavious of discete systems (cellular automata) and continu-
ous systems (differential equations) are investigated using techniques of
ultradiscretizations. Our motivations is to take advantage of behavious
of box-ball systems for new kinds of computations. Especially, we tried
to find out useful periodic box-ball systems(pBBS) for random number
generations. Applicable pBBS systems should have long fundamental cy-
cles. We focus on pBBS with at most two kinds of solitons and investigate
their behaviours, especially, the length of cycles and the number of or-
bits. We showed some relational equations of soliton sizes, a box size
and the number of orbits. Varying a box size, we also found out some
simulation results of the periodicity of orbits of pBBS with same kinds
of solitons.

1 Introduction

In 1990, Takahashi and Satsuma introduced a soliton cellular automaton(SCA)[7].
The SCA is now called a box and ball system(BBS) because they explained tran-
sitions of the system using an infinite array of boxes and a finite number of balls.
BBS has a property of solitons because of its transition being obtained by the
ultradiscrete Lotka-Volterra equation[6, 8].

In 1997, a new soliton cellular automaton is proposed by Takahashi et al[6].
That system is called box and ball system with a carrier(BBSC). BBSC can
be considered as a kind of abstract model of Hyper-Threading(HT) Technology.
HT Technology is a recent attractive CPU hardware technology. The main aim
of HT Technology brings out the parallel efficiency of CPUs and improves the
performance of a system. We hope that we could make a connection between a
study of BBSC and the HT Technology in the future.

Recently, the researche areas using ultradiscritizations is extending and it
contains crystal formulations, combinatorics, stochastic cellular automata and
algorithms[1, 2, 4, 5].
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In 2003, the notion of periodic box-ball system(pBBS) is introduced by Yoshi-
hara et al[9]. They have shown a formula to determine the fundamental cycle
of a pBBS for a given initial state. In the same year, Habu et al.[3] investigated
properties about randomness and autocorrelations of configurations of pBBS and
compared with Gold sequences. They showed some experimental results about
their properties for a fixed system size varying the number of balls and the size
of solitons.

In this paper, we focus on pBBS with at most two kinds of solitons. We
re-formulate the pBBS and define sets of configurations precisely. A set of con-
figurations with a same type is divided into some disjoint same size of orbits. We
investigate the size of the configuration set and the number of orbits for designing
a pBBS with a longer fundamental cycle. According to the result of Yoshihara
et al.[9], we reformulate the equation of the fundamental cycles. Further, we
induce the equation of the number of orbits and prove that its upperbound is
not depened on the size of boxes. Finally, we show some experimental results
between a size of boxes and the number of orbits.

2 periodic box-ball systems (pBBS)

Let Q = {0, 1}, N a natural number, N̄ = {1, 2, . . . , N} and 2N = {1, 2, . . . , 2N}.

We define three functions dbl : QN̄ → Q2N , snd : Q2N → QN̄ and trs :

Q2N → Q2N by dbl(c)j = c((j−1) mod N)+1, snd(c)j = cN+j and trs(c)j =

min

(

1 − cj ,

j−1
∑

i=1

(ci − trs(c)i)

)

. The shift function sftα : QN̄ → QN̄ is defined

by sftα(c)j = c((j−1+α) mod N)+1 (α = 0, · · · , N − 1) .

Definition 1 (N-pBBS). The periodic box-ball system with the size N (N-

pBBS) is the dynamical system (C, f), where C = {c ∈ QN̄ |

N∑

j=1

cj <
N

2
} and

the transition function f : C → C is defined by f = snd ◦ trs ◦ dbl.

The definition of the N -pBBS is well-defined. It is guaranteed by the next
proposition.

Proposition 1. Asuume #{i ∈ N̄ |ci = 1} ≤ N
2 for c ∈ QN̄ .

(1) ]{i ∈ N̄ |ci = 1} = ]{i ∈ N̄ |(snd ◦ trs ◦ dbl(c))i = 1}, where ]S is the size of
the set S.

(2) (snd ◦ trs ◦ dbl) ◦ sftα(c) = sftα ◦ (snd ◦ trs ◦ dbl)(c) (α = 0, 1, · · · , N − 1).

The proposition is proved using the following lemma.

Lemma 1. For c ∈ QN , we put δj =

j
∑

i=1

(dbl(c)i − trs(dbl(c))i),
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∆j =

j
∑

i=1

(

dbl(c)i − dbl(c)i

)

, where x denote the conmplement 1 − x for

x ∈ Q. Then we have

(1) δj = ∆j + max
1≤i≤j

{dbl(c)i − ∆i} (j = 1, 2, . . . , 2N).

(2) ∆N+j = ∆N + ∆j (j = 1, 2, . . . , N).
(3) δN+j = max{δN + ∆j , δj} (j = 1, 2, . . . , 2N).

The proof of Lemma 1 and Proposition 1 is listed in an appendix.

Fig. 1. Transition of pBBS

sft12

sft12

f f

Fig. 2. commutative diagram

Example 1. Fig. 1 is an example of a transition of pBBS with size 30. Fig. 2 is
an example transition (f ◦ sft12 = sft12 ◦ f) to confirm Proposition 1(2).

Definition 2 (Fundamental cycle of a pBBS). Let (C, f) be a pBBS with
size N . The fundamental cycle of a configuration c ∈ C is defined by l(c) =
min {t|f t(c) = c, t > 0}.

Yoshihara et al. classified configurations of pBBS using size of solitons L1, · · · , Ls

and introduced an equation to compute the fundamental cycle of it.
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Theorem 1 (Yoshihara 2003[9]). Let (C, f) be a pBBS with size N . If a
configuration c ∈ C has a type (L1, L2, · · · , Ls), then the fundamental cycle T

of the configuration c is

T = L.C.M

(
NsNs−1

lsl0
,
Ns−1Ns−2

ls−1l0
, · · · ,

N1N0

l1l0
, 1

)

,

where lj = Lj −Lj+1 (j = 1, 2, · · · , s− 1) and Nj = l0 +2

j
∑

i=1

ni (Li − Lj+1). ut

t

t + 1

t + 2

t + 3

t + 4

t + 5

t + 6

t + 7

t + 8

t + 9

t + 10

t + 11

t + 12

t + 13

t + 14

t + 15

t + 16

t + 17

t + 18

t + 19

t + 20

t + 21

t + 22

t + 23

t + 24

Fig. 3. Time evolution rule of pBBS

3 The number of orbits of a pBBS

In this section, we restrict the number of solitons up to 2. We re-formulate the
class of configurations and imply a simple equation of the fundamental cycle.
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We also introduce an equation of the total number of all configurations and the
number of orbits.

Definition 3. Let (C, f) be pBBS with size N . All configurations with two soli-
tons is defined by

C2 = {c ∈ C|c = 0x11l10x21l20x3 , 0 ≤ x1, x3, 1 ≤ l1, l2, x2, x1+l1+x2+l2+x3 = N}.

For numbers L1 and L2 (L1 + L2 <
N

2
, L1 ≥ L2), we define a set C(L1,L2,N) of

configurations with a type (L1, L2, N) as follows:

(a) If c = 0x11l10x21l20x3 and (l1 ≥ l2, l2 ≤ x2) then c ∈ C(l1,l2,N) and
sftα(c) ∈ C(l1,l2,N) for α = 0, 1, · · · , N − 1.

(b) If c = 0x11l10x21l20x3 and (l1 ≥ l2, x2 < l2) then c ∈ C(l1+l2−x2,x2,N), and
sftα(c) ∈ C(l1+l2−x2,x2,N) for α = 0, 1, · · · , N − 1.

We note that we can find some number L1 and L2 for a configuration c =
0x11l10x21l20x3 (l1 < l2) to belong in C(L1,L2,N) using above Definition and sftα.

Example 2. Let N = 16.

(a) c = 0313021206 ∈ C(3,2,N)

· · ·L1 = 3, L2 = 2.

(b) c = 0512011206 ∈ C(3,1,N)

· · ·L1 = 3, L2 = 1.

Definition 4 ((L1, L2, N)-pBBS). We define a subsystem (L1, L2, N)-pBBS
of pBBS (C, f) with size N by a dynamical system (C(L1,L2,N), f). The funda-
mental cycles for all c ∈ C(L1,L2,N) are the same number T . We call T as the
fundamental cycle of C(L1,L2,N).

The definition of the (L1, L2, N)-pBBS is well-defined. It is guaranteed by
the next proposition.

Proposition 2. (1) f(c) ∈ C(L1,L2,N) for any c ∈ C(L1,L2,N).
(2) If c0, c1 ∈ C(L1,L2,N) then l(c0) = l(c1).
(3) Let α = L1 + L2, β = L1 − L2, N = 2(L1 + L2) + n. The number of config-

urations of (L1, L2, N)-pBBS is (2α + n)(2β + n).
ut

We denote the number S = (2α + n)(2β + n) in Proposition 2(3) by S.

Definition 5 (Orbits of pBBS). Configuration c and d are on the same orbit
if and only if d = f i(c) for some i.(cf. Fig. 4)

C(L1,L2,N) is covered by several disjoint orbits like {f i(c)|i ≥ 0}. By Propo-
sition 2(2), each orbits contains T elements, where T is the fundamental cycle
of C(L1,L2,N).
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c

f(c)

f2(c)

f j(c)

f j+1(c)

fT−1(c)

Fig. 4. The orbits of (L1, L2, N)-pBBS

Fig. 5. The orbits of (2, 1, 8)-pBBS
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Example 3. Fig. 5 is an example of orbit sets. C(2,1,8) is covered by two orbit
sets where each set contains 17 elements. The fundamental cycle of c is 17 for
any c ∈ C(2,1,8). S = 34, T = 17 and K = 2.

Theorem 2 (The number of orbits). Let α = L1 + L2, β = L1 − L2, N =
2(L1 + L2) + n.

(1) The fundamental cycle T of (L1, L2, 2(L1 + L2) + n)-pBBS is

T = L.C.M

(

(2α+n)(2β+n)

G.C.D((2α+n)(2β+n), α−β

2
n))

, 2β+n

G.C.D(2β+n,β)

)

,

(2) The number of orbits K of (L1, L2, 2(L1 + L2) + n)-pBBS is

K = G.C.D
(

(2α + n)(2β + n), (2α + n)β, α−β
2 n

)

.

Proof. (1) is immediately induced by Theorem 1. Since T = L.C.M

(
N2N1

l2l0
,
N1N0

l1l0
, 1

)

,

N2 = N , N1 = N − 4L2, N0 = l0, l1 = L1 − L2 and l2 = L2, we have

T = L.C.M
(

N(N−4L2)
L2(N−2L1−2L2)

, N−4L2

L1−L2

, 1
)

. Since α = L1 + L2, β = L1 − L2, we

have T = L.C.M

(

(2α+n)(2β+n)

G.C.D((2α+n)(2β+n), α−β

2
n)

, 2β+n
G.C.D(2β+n,β)

)

.

(2) By Proposition 2(3) and above results, we have

K =
(2α + n)(2β + n)

L.C.M

(

(2α+n)(2β+n)

G.C.D((2α+n)(2β+n), α−β

2
n)

, 2β+n

G.C.D(2β+n,β)

)

=
2α + n

L.C.M

(

2α+n

G.C.D((2α+n)(2β+n), α−β

2
n)

, 1
G.C.D(2β+n,β)

)

=
(2α + n)G.C.D (2β + n, β)

L.C.M

(

(2α+n)G.C.D(2β+n,β)

G.C.D((2α+n)(2β+n), α−β
2

n)
, 1

)

=
(2α + n)G.C.D (2β + n, β)

(2α+n)G.C.D(2β+n,β)

G.C.D((2α+n)(2β+n),(2α+n)β,
α−β

2
n)

= G.C.D

(

(2α + n)(2β + n), (2α + n)β,
α − β

2
n

)

ut

The next theorem shows some relations between the box-size n and the num-
ber of orbits K, especially the upper bound of the number of orbits K.

Theorem 3. Let α = L1 + L2, β = L1 − L2.

(1) gcd(L1 − L2, n)|K,
(2) gcd(2, n)|K,
(3) gcd(L1 + L2, n)|K, and
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(4) K|
αβ(α − β)

G.C.D (L1, L2)
.

Proof. (1) Let L1 − L2 = ka, n = ma. We have

K = G.C.D

(

(2α + n)(2β + n), (2α + n)β,
α − β

2
n

)

= G.C.D

(

(2α + ma)(2ka + ma), (2α + ma)ka,
α − ka

2
ma

)

= a × G.C.D

(

(2α + ma)(2k + m), (2α + ma)k,
α − ka

2
m

)

.

(2) Let n = 2k. We have

K = G.C.D

(

(2α + n)(2β + n), (2α + n)β,
α − β

2
n

)

= G.C.D

(

(2α + 2k)(2β + 2k), (2α + 2k)β,
α − β

2
2k

)

= 2 × G.C.D

(

2(α + k)(β + k), (α + k)β,
α − β

2
k

)

.

(3) Let L1 + L2 = ka, n = ma. We have

K = G.C.D

(

(2α + n)(2β + n), (2α + n)β,
α − β

2
n

)

= G.C.D

(

(2ka + ma)(2β + ma), (2ka + ma)β,
ka − β

2
ma

)

= a × G.C.D

(

(2k + m)(2β + ma), (2k + m)β,
ka − β

2
m

)

.

(4) Let g = G.C.D (an + b, cn). Since g|cn and cn = G.C.D (a, c)× c
G.C.D(a,c) ×

n, we can set g = gagcgn where ga|G.C.D (a, c), gc|
c

G.C.D(a,c) and gn|n.

Since gagn|an and gagn|(an + b), we have gagn|b. So we can induce gagcgn |
bc

G.C.D(a,c) .

Let a = β, b = 2αβ and c = α−β
2 .

Then we have g = G.C.D
(

2αβ + βn, α−β

2 n
)

|
2αβ·

α−β

2

G.C.D(β,
α−β

2
)
.
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K = G.C.D

(

(2α + n)(2β + n), (2α + n)β,
α − β

2
n

)

= G.C.D

(

(2α + n)(2β + n), G.C.D

(

2αβ + βn,
α − β

2
n

))

| G.C.D



(2α + n)(2β + n),
αβ(α − β)

G.C.D
(

β, α−β

2

)





|
αβ(α − β)

G.C.D (L1 − L2, L2)

=
αβ(α − β)

G.C.D (L1, L2)
.

ut

4 Simulations

Fig. 6. Simulation results

The lefthand side of Fig. 6 is a graph of n and K for C(13,2,2(13+2)+n). A

peak of K is 660 and
αβ(α − β)

G.C.D(L1, L2)
=

15 · 13 · 2 · 2

G.C.D(13, 2)
= 660. The righthand side

of Fig. 6 is a graph of n and K for C(12,3,2(12+3)+n). A peak of K is 270 and
αβ(α − β)

G.C.D(L1, L2)
=

15 · 9 · 2 · 3

G.C.D(12, 3)
= 270.

In Theorem 3 we showed an upperbound of K. By the simulation results
αβ(α − β)

G.C.D(L1, L2)
may not only be an upper boud but also the maximum value of

K.
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Finally we have another conjecture from experimental resuts. pBBS with the
number of orbits K = 1 must have a longer fundamental cycle, so the next
conjecture may be useful to design a pBBS with a longer fundamental cycle.

Conjecture 1. Let K be the number of orbits for C(L1,L2,2(L1+L2)+n). If gcd(L1−
L2, n) = 1, gcd(2, n) = 1 and gcd(L1 + L2, n) = 1 then K = 1.

5 Concluding remarks

We re-formulate the pBBS with up to 2 kinds of solitons using precise equations.
We showed the formula for the fundamental cycle and the number of orbits
for pBBS. Further we proved the number of orbits is bounded some constant
defined by the type of solitons. This means that we can design pBBS with longer
fundamental cycle if we can choose larger box size pBBS. Future works contain
to investigate a expression of orbits and behaviour of orbits when we increase
sorts and number of solitons.
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Appendix

Proof. (of Lemma 1)

(1) Since for any c, trs(c)1 = 0, we have for j = 1, (left hand side) = c1−trs(c)1
= c1 = (right hand side). Now suppose that the equality holds for some j.
Then it follows that

δj+1 = δj + dbl(c)j+1 − trs(dbl(c))j+1

= δj + dbl(c)j+1 − min
{

dbl(c)j+1, δj

}

= δj + max
{

dbl(c)j+1 − dbl(c)j+1, dbl(c)j+1 − δj

}

= δj + max {∆j+1 − ∆j , dbl(c)j+1 − δj}

= max {δj − ∆j + ∆j+1, dbl(c)j+1}

= max

{

max
1≤i≤j

{dbl(c)i − ∆i} + ∆j+1, dbl(c)j+1

}

= ∆j+1 + max

{

max
1≤i≤j

{dbl(c)i − ∆i}, dbl(c)j+1 − ∆j+1

}

= ∆j+1 + max
1≤i≤j+1

{dbl(c)i − ∆i},

which establishes the equality for j + 1.
(2) It follows from the fact that dbl(c)N+i = dbl(c)i (i = 1, 2, . . . , N).
(3) By virtue of (1) and (2),

δN+j = ∆N+j + max
1≤i≤N+j

{dbl(c)i − ∆i}

= ∆N+j + max

{

max
1≤i≤N

{dbl(c)i − ∆i}, max
1≤i≤j

{dbl(c)N+i − ∆N+i}

}

= ∆N + ∆j

+ max

{

max
1≤i≤N

{dbl(c)i − ∆i}, max
1≤i≤j

{dbl(c)i − ∆N − ∆i}

}

= max

{

∆j + ∆N + max
1≤i≤N

{dbl(c)i − ∆i},

∆j + max
1≤i≤j

{dbl(c)i − ∆i}

}

= max {∆j + δN , δj} .

ut

Proof. (of Proposition 1).

(1) By (3) of Lemma 1, δ2N = max{δN+∆N , δN}. On the other hand, by the as-

sumption, ∆N =

N∑

i=1

(

dbl(c)i − dbl(c)i

)

=

(
N∑

i=1

2dbl(c)i

)

−N = 2

(
N∑

i=1

ci

)

−
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N ≤ 0. Hence we have δ2N = δN . This implies that

#{i ∈ N |ci = 1} − #{i ∈ N |(snd ◦ trs ◦ dbl(c))i = 1}

=

(
N∑

i=1

ci

)

−

(
N∑

i=1

(snd ◦ trs ◦ dbl(c))i

)

=

(
2N∑

i=N+1

di

)

−

(
2N∑

i=N+1

trs(d)i

)

=

2N∑

i=N+1

(di − trs(d)i)

= s2N − sN

= 0.

(2) Since sftα = sft1 ◦ · · · ◦ sft1
︸ ︷︷ ︸

α

, it suffices to show this for α = 1. For the sake

of simplicity, we put d = dbl(c) and e = dbl(sft1(c)). Then the equations are
rewritten as

sft1(snd(trs(d)))j = snd(trs(e))j (j = 1, 2, . . . , N) (1)

Furthermore, to describe the effect of shift, we put δj =

j
∑

i=1

(di − trs(di)),

εj =

j
∑

i=1

(ei − trs(ei)), ∆j =

j
∑

i=1

(
di − di

)
, Ej =

j
∑

i=1

(ei − ei).

These variables are related as ∆j+1 = Ej +(c1−c1), δj+1 = max{εj , Ej +c1}

for j = 1, 2, . . . , 2N − 1. In fact, ∆j+1 =

j+1
∑

i=1

(
di − di

)
= (d1 − d1) +

j
∑

i=1

(ei − ei) = Ej + (c1 − c1).
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For the second one, by Lemma 1 (1),

δj+1 = ∆j+1 + max
1≤i≤j+1

{di − ∆i}

= ∆j+1 + max

{

d1 − ∆1, max
2≤i≤j+1

{di − ∆i}

}

= Ej + (c1 − c1) + max

{

c1, , max
1≤i≤j

{di+1 − ∆i+1}

}

= Ej + max

{

c1, max
1≤i≤j

{di+1 − ∆i+1 + (c1 − c1)}

}

= Ej + max

{

c1, max
1≤i≤j

{ei − Ei}

}

= max

{

Ej + c1, Ej + max
1≤i≤j

{ei − Ei}

}

= max {Ej + c1, εj} .

Next, we claim that sft1(snd(trs(d)))j and snd(trs(e))j are related by

sft1(snd(trs(d)))j = max {snd(trs(e))j , min{ej , EN+j−1 + c1}} (2)

for j = 1, 2, . . . , N . In fact, if j < N ,

sft1(snd(trs(d)))j = snd(trs(d))j+1

= trs(d)N+j+1

= min
{
dN+j+1, δN+j

}

= min {eN+j , max{εN+j−1, EN+j−1 + c1}}

= max {min{eN+j , εN+j−1}, min{eN+j , EN+j−1 + c1}}

= max {trs(e)N+j , min{eN+j , EN+j−1 + c1}}

= max {snd(trs(e))j , min{ej , EN+j−1 + c1}} .

For j = N ,

sft1(snd(trs(d)))N = snd(trs(d))1

= trs(d)N+1

= min
{
dN+1, δN

}

= min {eN , max{εN−1, EN−1 + c1}}

= max {min{eN , εN−1}, min{eN , EN−1 + c1}}

= max {trs(e)N , min{eN , EN−1 + c1}}

= max {snd(trs(e))N , min{eN , EN−1 + c1}} .

Now all we have to show is that

snd(trs(e))j ≥ min{ej , EN+j−1 + c1} (j = 1, 2, . . . , N). (3)
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In fact, by combining this with the relation (2), we obtain (1).
To show (3), we apply similar argment about δj ’s and ∆j ’s to εj ’s and Ej ’s.
Recall that, from the assumption of c, it follows that EN ≤ 0. By Lemma 1
(3), we have εN = max{εN +EN , εN} = ε2N . On the other hand, by Lemma
1 (1),

ε2N = E2N + max
1≤i≤2N

{ei − Ei} ≥ E2N + e2N − E2N = e2N = c1.

Thus we have εN ≥ c1. From this it follows that

εN+j−1 = max{εj−1, εN + Ej−1}

≥ εN + Ej−1

≥ c1 + Ej−1

≥ c1 + Ej−1 + EN

= EN+j−1 + c1.

Consequently, we have

snd(trs(e))j = trs(e)N+j

= min{eN+j , εN+j−1}

≥ min{eN+j , EN+j−1 + c1}

= min{ej , EN+j−1 + c1},

that is, the inequality (3). ut
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